Utilizza questo identificativo per citare o creare un link a questo documento: http://elartu.tntu.edu.ua/handle/lib/48985
Назва: Jet Grasping Systems in Robotics: Study and Application
Інші назви: Струминні захоплювальні систем в робототехніці: дослідження та експлуатація
Автори: Михайлишин, Роман
Віргала, Іван
Маєвич Фей, Aнн
Домае, Якіясу
Харада, Кенсуке
Mykhailyshyn, Roman
Virgala, Ivan
Majewicz Fey, Ann
Domae, Yukiyasu
Harada, Kensuke
Приналежність: Амерікан Юніверсіті Київ
Технологічний університет в Кошице
Техаський університет в Остіні
Національний інститут передової промислової науки і технологій
Університет Осаки
American University Kyiv
Technical University of Košice
The University of Texas at Austin
National Institute of Advanced Industrial Science and Technology
The University of Osaka
Бібліографічний опис: Jet Grasping Systems in Robotics: Study and Application / Roman Mykhailyshyn, Ivan Virgala, Ann Majewicz Fey, Yukiyasu Domae, Kensuke Harada // Proceedings of The International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", 28-29 May 2025. — Т. : PE Palianytsia V.A., 2025. — pp. 145–146.
Бібліографічне посилання: Струминні захоплювальні систем в робототехніці: дослідження та експлуатація / Роман Михайлишин, Іван Віргала, Енн Маєвич Фей, Якіясу Домае, Кенсуке Харада // Матеріали МНТК „Фундаментальні та прикладні проблеми сучасних технологій“, 28-29 травня 2025 року. — Т. : ФОП Паляниця В. А., 2025. — С. 145–146. — (Сучасні технології в машино- та приладобудуванні).
Bibliographic description: Jet Grasping Systems in Robotics: Study and Application / Roman Mykhailyshyn, Ivan Virgala, Ann Majewicz Fey, Yukiyasu Domae, Kensuke Harada // Proceedings of The International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", 28-29 May 2025. — Т. : PE Palianytsia V.A., 2025. — pp. 145–146.
Bibliographic citation (APA): Mykhailyshyn, R., Virgala, I., Fey, A. M., Domae, Y., & Harada, K. (2025). Jet Grasping Systems in Robotics: Study and Application. Proceedings of the International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", 28-29 May 2025, Ternopil, 145-146. PE Palianytsia V.A..
Bibliographic citation (CHICAGO): Mykhailyshyn R., Virgala I., Fey A. M., Domae Y., Harada K. (2025) Jet Grasping Systems in Robotics: Study and Application. Proceedings of the International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", (Tern., 28-29 May 2025), pp. 145-146.
Дата публікації: 28-тра-2025
Дата подання: 22-чер-2025
Дата внесення: 22-чер-2025
Видавництво: PE Palianytsia V.A.
Країна (код): UA
Місце видання, проведення: Ternopil
УДК: 621.865
Теми: robotics
automation
grasping
manipulation
Діапазон сторінок: 145-146
Короткий огляд (реферат): Grasping systems in robotics are the primary means of interaction between a robot and its environment. Therefore, there are currently many gripping systems that allow for the automatic gripping and manipulation of various objects. Pneumatic grippers, available in various variations, are often used in the operation of both industrial and other types of robots.
Опис: Grasping systems in robotics are the primary means of interaction between a robot and its environment. Therefore, there are currently many gripping systems that allow for the automatic gripping and manipulation of various objects. Pneumatic grippers, available in various variations, are often used in the operation of both industrial and other types of robots.
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/48985
ISBN: 978-617-7875-97-9
Власник авторського права: © Тернопільський національний технічний університет імені Івана Пулюя, 2025
Перелік літератури: 1. Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleischer, J., ... & Verl, A. (2014). Grasping devices and methods in automated production processes. CIRP annals, 63(2), 679-701.
2. Mykhailyshyn, R., Savkiv, V., Maruschak, P., & Xiao, J. (2022). A systematic review on pneumatic gripping devices for industrial robots. Transport, 37(3), 201-231.
3. Wolf, A., & Schunk, H. (2019). Grippers in Motion, 331. Carl Hanser Verlag GmbH & Co. KG.
4. Raval, S., & Patel, B. (2016). A review on grasping principle and robotic grippers. International Journal of Engineering Development and Research, 4(1), 483-490.
5. Long, Z., Jiang, Q., Shuai, T., Wen, F., & Liang, C. (2020, March). A systematic review and meta-analysis of robotic gripper. In IOP Conference Series: Materials Science and Engineering (Vol. 782, No. 4, p. 042055). IOP Publishing.
6. Shi, K., & Li, X. (2018). Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering, 52, 323-331.
7. Tomar, A. S., Hellum, A., Kamensky, K., & Mukherjee, R. (2024). Flow Physics of a Rotating Bernoulli Pad: A Numerical Study. Journal of Fluids Engineering, 146(9).
8. Ozcelik, B., Erzincanli, F., & Findik, F. (2003). Evaluation of handling results of various materials using a non‐contact end‐effector. Industrial Robot: An International Journal, 30(4), 363-369.
9. Mykhailyshyn, R., Duchoň, F., Mykhailyshyn, M., & Majewicz Fey, A. (2022). Three-dimensional printing of cylindrical nozzle elements of bernoulli gripping devices for industrial robots. Robotics, 11(6), 140.
10. Mykhailyshyn, R., Savkiv, V., Boyko, I., Prada, E., & Virgala, I. (2021). Substantiation of parameters of friction elements of Bernoulli grippers with a cylindrical nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 11(2), 17-39.
11. Liu, D., Liang, W., Zhu, H., Teo, C. S., & Tan, K. K. (2017, July). Development of a distributed Bernoulli gripper for ultra-thin wafer handling. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 265-270). IEEE.
12. Mykhailyshyn, R., Duchoň, F., Virgala, I., Sinčák, P. J., & Majewicz Fey, A. (2023). Optimization of outer diameter bernoulli gripper with cylindrical nozzle. Machines, 11(6), 667.
13. Sam, R., & Buniyamin, N. (2012, November). A Bernoulli principle based flexible handling device for automation of food manufacturing processes. In 2012 International Conference on Control, Automation and Information Sciences (ICCAIS) (pp. 214-219). IEEE.
14. Mykhailyshyn, R., & Xiao, J. (2022). Influence of inlet parameters on power characteristics of Bernoulli gripping devices for industrial robots. Applied Sciences, 12(14), 7074.
15. Zhai, P., Xu, Z., Yin, Z., Li, X., Xie, B., & Wu, H. (2025). Simulation and Experimental Analysis of Contactless Chip Pickup Process Based on a Vortex Flow Gripper. IEEE Transactions on Semiconductor Manufacturing.
16. Lyu, X., Dai, H., Shi, K., & Li, X. (2024). Experimental study on radial suction flow and its effect in water vortex unit. Physics of Fluids, 36(6).
17. Mykhailyshyn, R., & Fey, A. M. (2024, June). Low-contact grasping of soft tissue using a novel vortex gripper. In 2024 International Symposium on Medical Robotics (ISMR) (pp. 1-6). IEEE.
18. Mykhailyshyn, R., Savkiv, V., Fey, A. M., & Xiao, J. (2022). Gripping device for textile materials. IEEE Transactions on Automation Science and Engineering, 20(4), 2397-2408.
19. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Finite element modeling of grasping porous materials in robotics cells. Robotica, 41(11), 3485-3500.
20. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Toward Novel Grasping of Nonrigid Materials Through Robotic End-Effector Reorientation. IEEE/ASME Transactions on Mechatronics, 29(4), 2614-2624.
21. Makatura, L., Foshey, M., Wang, B., Hähnlein, F., Ma, P., Deng, B., ... & Matusik, W. (2024). How can large language models help humans in design and manufacturing? Part 1: Elements of the LLM-enabled computational design and manufacturing pipeline. Harvard Data Science Review, ( Special Issue 5)
References: 1. Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleischer, J., ... & Verl, A. (2014). Grasping devices and methods in automated production processes. CIRP annals, 63(2), 679-701.
2. Mykhailyshyn, R., Savkiv, V., Maruschak, P., & Xiao, J. (2022). A systematic review on pneumatic gripping devices for industrial robots. Transport, 37(3), 201-231.
3. Wolf, A., & Schunk, H. (2019). Grippers in Motion, 331. Carl Hanser Verlag GmbH & Co. KG.
4. Raval, S., & Patel, B. (2016). A review on grasping principle and robotic grippers. International Journal of Engineering Development and Research, 4(1), 483-490.
5. Long, Z., Jiang, Q., Shuai, T., Wen, F., & Liang, C. (2020, March). A systematic review and meta-analysis of robotic gripper. In IOP Conference Series: Materials Science and Engineering (Vol. 782, No. 4, p. 042055). IOP Publishing.
6. Shi, K., & Li, X. (2018). Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering, 52, 323-331.
7. Tomar, A. S., Hellum, A., Kamensky, K., & Mukherjee, R. (2024). Flow Physics of a Rotating Bernoulli Pad: A Numerical Study. Journal of Fluids Engineering, 146(9).
8. Ozcelik, B., Erzincanli, F., & Findik, F. (2003). Evaluation of handling results of various materials using a non‐contact end‐effector. Industrial Robot: An International Journal, 30(4), 363-369.
9. Mykhailyshyn, R., Duchoň, F., Mykhailyshyn, M., & Majewicz Fey, A. (2022). Three-dimensional printing of cylindrical nozzle elements of bernoulli gripping devices for industrial robots. Robotics, 11(6), 140.
10. Mykhailyshyn, R., Savkiv, V., Boyko, I., Prada, E., & Virgala, I. (2021). Substantiation of parameters of friction elements of Bernoulli grippers with a cylindrical nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 11(2), 17-39.
11. Liu, D., Liang, W., Zhu, H., Teo, C. S., & Tan, K. K. (2017, July). Development of a distributed Bernoulli gripper for ultra-thin wafer handling. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 265-270). IEEE.
12. Mykhailyshyn, R., Duchoň, F., Virgala, I., Sinčák, P. J., & Majewicz Fey, A. (2023). Optimization of outer diameter bernoulli gripper with cylindrical nozzle. Machines, 11(6), 667.
13. Sam, R., & Buniyamin, N. (2012, November). A Bernoulli principle based flexible handling device for automation of food manufacturing processes. In 2012 International Conference on Control, Automation and Information Sciences (ICCAIS) (pp. 214-219). IEEE.
14. Mykhailyshyn, R., & Xiao, J. (2022). Influence of inlet parameters on power characteristics of Bernoulli gripping devices for industrial robots. Applied Sciences, 12(14), 7074.
15. Zhai, P., Xu, Z., Yin, Z., Li, X., Xie, B., & Wu, H. (2025). Simulation and Experimental Analysis of Contactless Chip Pickup Process Based on a Vortex Flow Gripper. IEEE Transactions on Semiconductor Manufacturing.
16. Lyu, X., Dai, H., Shi, K., & Li, X. (2024). Experimental study on radial suction flow and its effect in water vortex unit. Physics of Fluids, 36(6).
17. Mykhailyshyn, R., & Fey, A. M. (2024, June). Low-contact grasping of soft tissue using a novel vortex gripper. In 2024 International Symposium on Medical Robotics (ISMR) (pp. 1-6). IEEE.
18. Mykhailyshyn, R., Savkiv, V., Fey, A. M., & Xiao, J. (2022). Gripping device for textile materials. IEEE Transactions on Automation Science and Engineering, 20(4), 2397-2408.
19. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Finite element modeling of grasping porous materials in robotics cells. Robotica, 41(11), 3485-3500.
20. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Toward Novel Grasping of Nonrigid Materials Through Robotic End-Effector Reorientation. IEEE/ASME Transactions on Mechatronics, 29(4), 2614-2624.
21. Makatura, L., Foshey, M., Wang, B., Hähnlein, F., Ma, P., Deng, B., ... & Matusik, W. (2024). How can large language models help humans in design and manufacturing? Part 1: Elements of the LLM-enabled computational design and manufacturing pipeline. Harvard Data Science Review, ( Special Issue 5)
Тип вмісту: Proceedings Book
Розташовується у зібраннях:Наукові публікації працівників кафедри автоматизації технологічних процесів та виробництв

Файли цього матеріалу:
Файл Опис РозмірФормат 
TNTU Proceeding 146-147.pdfPaper 146-147626,14 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Strumenti di amministrazione