Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://elartu.tntu.edu.ua/handle/lib/48985
Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.contributor.authorМихайлишин, Роман-
dc.contributor.authorВіргала, Іван-
dc.contributor.authorМаєвич Фей, Aнн-
dc.contributor.authorДомае, Якіясу-
dc.contributor.authorХарада, Кенсуке-
dc.contributor.authorMykhailyshyn, Roman-
dc.contributor.authorVirgala, Ivan-
dc.contributor.authorMajewicz Fey, Ann-
dc.contributor.authorDomae, Yukiyasu-
dc.contributor.authorHarada, Kensuke-
dc.date.accessioned2025-06-22T06:05:19Z-
dc.date.available2025-06-22T06:05:19Z-
dc.date.issued2025-05-28-
dc.date.submitted2025-06-22-
dc.identifier.citationJet Grasping Systems in Robotics: Study and Application / Roman Mykhailyshyn, Ivan Virgala, Ann Majewicz Fey, Yukiyasu Domae, Kensuke Harada // Proceedings of The International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", 28-29 May 2025. — Т. : PE Palianytsia V.A., 2025. — pp. 145–146.uk_UA
dc.identifier.isbn978-617-7875-97-9-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/48985-
dc.descriptionGrasping systems in robotics are the primary means of interaction between a robot and its environment. Therefore, there are currently many gripping systems that allow for the automatic gripping and manipulation of various objects. Pneumatic grippers, available in various variations, are often used in the operation of both industrial and other types of robots.uk_UA
dc.description.abstractGrasping systems in robotics are the primary means of interaction between a robot and its environment. Therefore, there are currently many gripping systems that allow for the automatic gripping and manipulation of various objects. Pneumatic grippers, available in various variations, are often used in the operation of both industrial and other types of robots.uk_UA
dc.format.extent145-146-
dc.language.isoukuk_UA
dc.publisherPE Palianytsia V.A.uk_UA
dc.subjectroboticsuk_UA
dc.subjectautomationuk_UA
dc.subjectgraspinguk_UA
dc.subjectmanipulationuk_UA
dc.titleJet Grasping Systems in Robotics: Study and Applicationuk_UA
dc.title.alternativeСтруминні захоплювальні систем в робототехніці: дослідження та експлуатаціяuk_UA
dc.typeProceedings Bookuk_UA
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2025uk_UA
dc.coverage.placenameTernopiluk_UA
dc.subject.udc621.865uk_UA
dc.relation.references1. Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleischer, J., ... & Verl, A. (2014). Grasping devices and methods in automated production processes. CIRP annals, 63(2), 679-701.uk_UA
dc.relation.references2. Mykhailyshyn, R., Savkiv, V., Maruschak, P., & Xiao, J. (2022). A systematic review on pneumatic gripping devices for industrial robots. Transport, 37(3), 201-231.uk_UA
dc.relation.references3. Wolf, A., & Schunk, H. (2019). Grippers in Motion, 331. Carl Hanser Verlag GmbH & Co. KG.uk_UA
dc.relation.references4. Raval, S., & Patel, B. (2016). A review on grasping principle and robotic grippers. International Journal of Engineering Development and Research, 4(1), 483-490.uk_UA
dc.relation.references5. Long, Z., Jiang, Q., Shuai, T., Wen, F., & Liang, C. (2020, March). A systematic review and meta-analysis of robotic gripper. In IOP Conference Series: Materials Science and Engineering (Vol. 782, No. 4, p. 042055). IOP Publishing.uk_UA
dc.relation.references6. Shi, K., & Li, X. (2018). Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering, 52, 323-331.uk_UA
dc.relation.references7. Tomar, A. S., Hellum, A., Kamensky, K., & Mukherjee, R. (2024). Flow Physics of a Rotating Bernoulli Pad: A Numerical Study. Journal of Fluids Engineering, 146(9).uk_UA
dc.relation.references8. Ozcelik, B., Erzincanli, F., & Findik, F. (2003). Evaluation of handling results of various materials using a non‐contact end‐effector. Industrial Robot: An International Journal, 30(4), 363-369.uk_UA
dc.relation.references9. Mykhailyshyn, R., Duchoň, F., Mykhailyshyn, M., & Majewicz Fey, A. (2022). Three-dimensional printing of cylindrical nozzle elements of bernoulli gripping devices for industrial robots. Robotics, 11(6), 140.uk_UA
dc.relation.references10. Mykhailyshyn, R., Savkiv, V., Boyko, I., Prada, E., & Virgala, I. (2021). Substantiation of parameters of friction elements of Bernoulli grippers with a cylindrical nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 11(2), 17-39.uk_UA
dc.relation.references11. Liu, D., Liang, W., Zhu, H., Teo, C. S., & Tan, K. K. (2017, July). Development of a distributed Bernoulli gripper for ultra-thin wafer handling. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 265-270). IEEE.uk_UA
dc.relation.references12. Mykhailyshyn, R., Duchoň, F., Virgala, I., Sinčák, P. J., & Majewicz Fey, A. (2023). Optimization of outer diameter bernoulli gripper with cylindrical nozzle. Machines, 11(6), 667.uk_UA
dc.relation.references13. Sam, R., & Buniyamin, N. (2012, November). A Bernoulli principle based flexible handling device for automation of food manufacturing processes. In 2012 International Conference on Control, Automation and Information Sciences (ICCAIS) (pp. 214-219). IEEE.uk_UA
dc.relation.references14. Mykhailyshyn, R., & Xiao, J. (2022). Influence of inlet parameters on power characteristics of Bernoulli gripping devices for industrial robots. Applied Sciences, 12(14), 7074.uk_UA
dc.relation.references15. Zhai, P., Xu, Z., Yin, Z., Li, X., Xie, B., & Wu, H. (2025). Simulation and Experimental Analysis of Contactless Chip Pickup Process Based on a Vortex Flow Gripper. IEEE Transactions on Semiconductor Manufacturing.uk_UA
dc.relation.references16. Lyu, X., Dai, H., Shi, K., & Li, X. (2024). Experimental study on radial suction flow and its effect in water vortex unit. Physics of Fluids, 36(6).uk_UA
dc.relation.references17. Mykhailyshyn, R., & Fey, A. M. (2024, June). Low-contact grasping of soft tissue using a novel vortex gripper. In 2024 International Symposium on Medical Robotics (ISMR) (pp. 1-6). IEEE.uk_UA
dc.relation.references18. Mykhailyshyn, R., Savkiv, V., Fey, A. M., & Xiao, J. (2022). Gripping device for textile materials. IEEE Transactions on Automation Science and Engineering, 20(4), 2397-2408.uk_UA
dc.relation.references19. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Finite element modeling of grasping porous materials in robotics cells. Robotica, 41(11), 3485-3500.uk_UA
dc.relation.references20. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Toward Novel Grasping of Nonrigid Materials Through Robotic End-Effector Reorientation. IEEE/ASME Transactions on Mechatronics, 29(4), 2614-2624.uk_UA
dc.relation.references21. Makatura, L., Foshey, M., Wang, B., Hähnlein, F., Ma, P., Deng, B., ... & Matusik, W. (2024). How can large language models help humans in design and manufacturing? Part 1: Elements of the LLM-enabled computational design and manufacturing pipeline. Harvard Data Science Review, ( Special Issue 5)uk_UA
dc.relation.referencesen1. Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleischer, J., ... & Verl, A. (2014). Grasping devices and methods in automated production processes. CIRP annals, 63(2), 679-701.uk_UA
dc.relation.referencesen2. Mykhailyshyn, R., Savkiv, V., Maruschak, P., & Xiao, J. (2022). A systematic review on pneumatic gripping devices for industrial robots. Transport, 37(3), 201-231.uk_UA
dc.relation.referencesen3. Wolf, A., & Schunk, H. (2019). Grippers in Motion, 331. Carl Hanser Verlag GmbH & Co. KG.uk_UA
dc.relation.referencesen4. Raval, S., & Patel, B. (2016). A review on grasping principle and robotic grippers. International Journal of Engineering Development and Research, 4(1), 483-490.uk_UA
dc.relation.referencesen5. Long, Z., Jiang, Q., Shuai, T., Wen, F., & Liang, C. (2020, March). A systematic review and meta-analysis of robotic gripper. In IOP Conference Series: Materials Science and Engineering (Vol. 782, No. 4, p. 042055). IOP Publishing.uk_UA
dc.relation.referencesen6. Shi, K., & Li, X. (2018). Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering, 52, 323-331.uk_UA
dc.relation.referencesen7. Tomar, A. S., Hellum, A., Kamensky, K., & Mukherjee, R. (2024). Flow Physics of a Rotating Bernoulli Pad: A Numerical Study. Journal of Fluids Engineering, 146(9).uk_UA
dc.relation.referencesen8. Ozcelik, B., Erzincanli, F., & Findik, F. (2003). Evaluation of handling results of various materials using a non‐contact end‐effector. Industrial Robot: An International Journal, 30(4), 363-369.uk_UA
dc.relation.referencesen9. Mykhailyshyn, R., Duchoň, F., Mykhailyshyn, M., & Majewicz Fey, A. (2022). Three-dimensional printing of cylindrical nozzle elements of bernoulli gripping devices for industrial robots. Robotics, 11(6), 140.uk_UA
dc.relation.referencesen10. Mykhailyshyn, R., Savkiv, V., Boyko, I., Prada, E., & Virgala, I. (2021). Substantiation of parameters of friction elements of Bernoulli grippers with a cylindrical nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 11(2), 17-39.uk_UA
dc.relation.referencesen11. Liu, D., Liang, W., Zhu, H., Teo, C. S., & Tan, K. K. (2017, July). Development of a distributed Bernoulli gripper for ultra-thin wafer handling. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 265-270). IEEE.uk_UA
dc.relation.referencesen12. Mykhailyshyn, R., Duchoň, F., Virgala, I., Sinčák, P. J., & Majewicz Fey, A. (2023). Optimization of outer diameter bernoulli gripper with cylindrical nozzle. Machines, 11(6), 667.uk_UA
dc.relation.referencesen13. Sam, R., & Buniyamin, N. (2012, November). A Bernoulli principle based flexible handling device for automation of food manufacturing processes. In 2012 International Conference on Control, Automation and Information Sciences (ICCAIS) (pp. 214-219). IEEE.uk_UA
dc.relation.referencesen14. Mykhailyshyn, R., & Xiao, J. (2022). Influence of inlet parameters on power characteristics of Bernoulli gripping devices for industrial robots. Applied Sciences, 12(14), 7074.uk_UA
dc.relation.referencesen15. Zhai, P., Xu, Z., Yin, Z., Li, X., Xie, B., & Wu, H. (2025). Simulation and Experimental Analysis of Contactless Chip Pickup Process Based on a Vortex Flow Gripper. IEEE Transactions on Semiconductor Manufacturing.uk_UA
dc.relation.referencesen16. Lyu, X., Dai, H., Shi, K., & Li, X. (2024). Experimental study on radial suction flow and its effect in water vortex unit. Physics of Fluids, 36(6).uk_UA
dc.relation.referencesen17. Mykhailyshyn, R., & Fey, A. M. (2024, June). Low-contact grasping of soft tissue using a novel vortex gripper. In 2024 International Symposium on Medical Robotics (ISMR) (pp. 1-6). IEEE.uk_UA
dc.relation.referencesen18. Mykhailyshyn, R., Savkiv, V., Fey, A. M., & Xiao, J. (2022). Gripping device for textile materials. IEEE Transactions on Automation Science and Engineering, 20(4), 2397-2408.uk_UA
dc.relation.referencesen19. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Finite element modeling of grasping porous materials in robotics cells. Robotica, 41(11), 3485-3500.uk_UA
dc.relation.referencesen20. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Toward Novel Grasping of Nonrigid Materials Through Robotic End-Effector Reorientation. IEEE/ASME Transactions on Mechatronics, 29(4), 2614-2624.uk_UA
dc.relation.referencesen21. Makatura, L., Foshey, M., Wang, B., Hähnlein, F., Ma, P., Deng, B., ... & Matusik, W. (2024). How can large language models help humans in design and manufacturing? Part 1: Elements of the LLM-enabled computational design and manufacturing pipeline. Harvard Data Science Review, ( Special Issue 5)uk_UA
dc.identifier.citationenJet Grasping Systems in Robotics: Study and Application / Roman Mykhailyshyn, Ivan Virgala, Ann Majewicz Fey, Yukiyasu Domae, Kensuke Harada // Proceedings of The International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", 28-29 May 2025. — Т. : PE Palianytsia V.A., 2025. — pp. 145–146.uk_UA
dc.contributor.affiliationАмерікан Юніверсіті Київuk_UA
dc.contributor.affiliationТехнологічний університет в Кошицеuk_UA
dc.contributor.affiliationТехаський університет в Остініuk_UA
dc.contributor.affiliationНаціональний інститут передової промислової науки і технологійuk_UA
dc.contributor.affiliationУніверситет Осакиuk_UA
dc.contributor.affiliationAmerican University Kyivuk_UA
dc.contributor.affiliationTechnical University of Košiceuk_UA
dc.contributor.affiliationThe University of Texas at Austinuk_UA
dc.contributor.affiliationNational Institute of Advanced Industrial Science and Technologyuk_UA
dc.contributor.affiliationThe University of Osakauk_UA
dc.coverage.countryUAuk_UA
dc.identifier.citation2015Струминні захоплювальні систем в робототехніці: дослідження та експлуатація / Роман Михайлишин, Іван Віргала, Енн Маєвич Фей, Якіясу Домае, Кенсуке Харада // Матеріали МНТК „Фундаментальні та прикладні проблеми сучасних технологій“, 28-29 травня 2025 року. — Т. : ФОП Паляниця В. А., 2025. — С. 145–146. — (Сучасні технології в машино- та приладобудуванні).uk_UA
dc.identifier.citationenAPAMykhailyshyn, R., Virgala, I., Fey, A. M., Domae, Y., & Harada, K. (2025). Jet Grasping Systems in Robotics: Study and Application. Proceedings of the International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", 28-29 May 2025, Ternopil, 145-146. PE Palianytsia V.A..uk_UA
dc.identifier.citationenCHICAGOMykhailyshyn R., Virgala I., Fey A. M., Domae Y., Harada K. (2025) Jet Grasping Systems in Robotics: Study and Application. Proceedings of the International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", (Tern., 28-29 May 2025), pp. 145-146.uk_UA
Koleksiyonlarda Görünür:Наукові публікації працівників кафедри автоматизації технологічних процесів та виробництв

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
TNTU Proceeding 146-147.pdfPaper 146-147626,14 kBAdobe PDFGöster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.

Yönetim Araçları