Por favor, use este identificador para citar o enlazar este ítem:
http://elartu.tntu.edu.ua/handle/lib/48985
Título : | Jet Grasping Systems in Robotics: Study and Application |
Otros títulos : | Струминні захоплювальні систем в робототехніці: дослідження та експлуатація |
Autor : | Михайлишин, Роман Віргала, Іван Маєвич Фей, Aнн Домае, Якіясу Харада, Кенсуке Mykhailyshyn, Roman Virgala, Ivan Majewicz Fey, Ann Domae, Yukiyasu Harada, Kensuke |
Affiliation: | Амерікан Юніверсіті Київ Технологічний університет в Кошице Техаський університет в Остіні Національний інститут передової промислової науки і технологій Університет Осаки American University Kyiv Technical University of Košice The University of Texas at Austin National Institute of Advanced Industrial Science and Technology The University of Osaka |
Bibliographic description (Ukraine): | Jet Grasping Systems in Robotics: Study and Application / Roman Mykhailyshyn, Ivan Virgala, Ann Majewicz Fey, Yukiyasu Domae, Kensuke Harada // Proceedings of The International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", 28-29 May 2025. — Т. : PE Palianytsia V.A., 2025. — pp. 145–146. |
Bibliographic reference (2015): | Струминні захоплювальні систем в робототехніці: дослідження та експлуатація / Роман Михайлишин, Іван Віргала, Енн Маєвич Фей, Якіясу Домае, Кенсуке Харада // Матеріали МНТК „Фундаментальні та прикладні проблеми сучасних технологій“, 28-29 травня 2025 року. — Т. : ФОП Паляниця В. А., 2025. — С. 145–146. — (Сучасні технології в машино- та приладобудуванні). |
Bibliographic description (International): | Jet Grasping Systems in Robotics: Study and Application / Roman Mykhailyshyn, Ivan Virgala, Ann Majewicz Fey, Yukiyasu Domae, Kensuke Harada // Proceedings of The International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", 28-29 May 2025. — Т. : PE Palianytsia V.A., 2025. — pp. 145–146. |
Bibliographic citation (APA): | Mykhailyshyn, R., Virgala, I., Fey, A. M., Domae, Y., & Harada, K. (2025). Jet Grasping Systems in Robotics: Study and Application. Proceedings of the International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", 28-29 May 2025, Ternopil, 145-146. PE Palianytsia V.A.. |
Bibliographic citation (CHICAGO): | Mykhailyshyn R., Virgala I., Fey A. M., Domae Y., Harada K. (2025) Jet Grasping Systems in Robotics: Study and Application. Proceedings of the International Scientific and Technical Conference "Fundamental and Applied Problems of Modern Technologies", (Tern., 28-29 May 2025), pp. 145-146. |
Fecha de publicación : | 28-may-2025 |
Submitted date: | 22-jun-2025 |
Date of entry: | 22-jun-2025 |
Editorial : | PE Palianytsia V.A. |
Country (code): | UA |
Place of the edition/event: | Ternopil |
UDC: | 621.865 |
Palabras clave : | robotics automation grasping manipulation |
Page range: | 145-146 |
Resumen : | Grasping systems in robotics are the primary means of interaction between a robot and its environment. Therefore, there are currently many gripping systems that allow for the automatic gripping and manipulation of various objects. Pneumatic grippers, available in various variations, are often used in the operation of both industrial and other types of robots. |
Descripción : | Grasping systems in robotics are the primary means of interaction between a robot and its environment. Therefore, there are currently many gripping systems that allow for the automatic gripping and manipulation of various objects. Pneumatic grippers, available in various variations, are often used in the operation of both industrial and other types of robots. |
URI : | http://elartu.tntu.edu.ua/handle/lib/48985 |
ISBN : | 978-617-7875-97-9 |
Copyright owner: | © Тернопільський національний технічний університет імені Івана Пулюя, 2025 |
References (Ukraine): | 1. Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleischer, J., ... & Verl, A. (2014). Grasping devices and methods in automated production processes. CIRP annals, 63(2), 679-701. 2. Mykhailyshyn, R., Savkiv, V., Maruschak, P., & Xiao, J. (2022). A systematic review on pneumatic gripping devices for industrial robots. Transport, 37(3), 201-231. 3. Wolf, A., & Schunk, H. (2019). Grippers in Motion, 331. Carl Hanser Verlag GmbH & Co. KG. 4. Raval, S., & Patel, B. (2016). A review on grasping principle and robotic grippers. International Journal of Engineering Development and Research, 4(1), 483-490. 5. Long, Z., Jiang, Q., Shuai, T., Wen, F., & Liang, C. (2020, March). A systematic review and meta-analysis of robotic gripper. In IOP Conference Series: Materials Science and Engineering (Vol. 782, No. 4, p. 042055). IOP Publishing. 6. Shi, K., & Li, X. (2018). Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering, 52, 323-331. 7. Tomar, A. S., Hellum, A., Kamensky, K., & Mukherjee, R. (2024). Flow Physics of a Rotating Bernoulli Pad: A Numerical Study. Journal of Fluids Engineering, 146(9). 8. Ozcelik, B., Erzincanli, F., & Findik, F. (2003). Evaluation of handling results of various materials using a non‐contact end‐effector. Industrial Robot: An International Journal, 30(4), 363-369. 9. Mykhailyshyn, R., Duchoň, F., Mykhailyshyn, M., & Majewicz Fey, A. (2022). Three-dimensional printing of cylindrical nozzle elements of bernoulli gripping devices for industrial robots. Robotics, 11(6), 140. 10. Mykhailyshyn, R., Savkiv, V., Boyko, I., Prada, E., & Virgala, I. (2021). Substantiation of parameters of friction elements of Bernoulli grippers with a cylindrical nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 11(2), 17-39. 11. Liu, D., Liang, W., Zhu, H., Teo, C. S., & Tan, K. K. (2017, July). Development of a distributed Bernoulli gripper for ultra-thin wafer handling. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 265-270). IEEE. 12. Mykhailyshyn, R., Duchoň, F., Virgala, I., Sinčák, P. J., & Majewicz Fey, A. (2023). Optimization of outer diameter bernoulli gripper with cylindrical nozzle. Machines, 11(6), 667. 13. Sam, R., & Buniyamin, N. (2012, November). A Bernoulli principle based flexible handling device for automation of food manufacturing processes. In 2012 International Conference on Control, Automation and Information Sciences (ICCAIS) (pp. 214-219). IEEE. 14. Mykhailyshyn, R., & Xiao, J. (2022). Influence of inlet parameters on power characteristics of Bernoulli gripping devices for industrial robots. Applied Sciences, 12(14), 7074. 15. Zhai, P., Xu, Z., Yin, Z., Li, X., Xie, B., & Wu, H. (2025). Simulation and Experimental Analysis of Contactless Chip Pickup Process Based on a Vortex Flow Gripper. IEEE Transactions on Semiconductor Manufacturing. 16. Lyu, X., Dai, H., Shi, K., & Li, X. (2024). Experimental study on radial suction flow and its effect in water vortex unit. Physics of Fluids, 36(6). 17. Mykhailyshyn, R., & Fey, A. M. (2024, June). Low-contact grasping of soft tissue using a novel vortex gripper. In 2024 International Symposium on Medical Robotics (ISMR) (pp. 1-6). IEEE. 18. Mykhailyshyn, R., Savkiv, V., Fey, A. M., & Xiao, J. (2022). Gripping device for textile materials. IEEE Transactions on Automation Science and Engineering, 20(4), 2397-2408. 19. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Finite element modeling of grasping porous materials in robotics cells. Robotica, 41(11), 3485-3500. 20. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Toward Novel Grasping of Nonrigid Materials Through Robotic End-Effector Reorientation. IEEE/ASME Transactions on Mechatronics, 29(4), 2614-2624. 21. Makatura, L., Foshey, M., Wang, B., Hähnlein, F., Ma, P., Deng, B., ... & Matusik, W. (2024). How can large language models help humans in design and manufacturing? Part 1: Elements of the LLM-enabled computational design and manufacturing pipeline. Harvard Data Science Review, ( Special Issue 5) |
References (International): | 1. Fantoni, G., Santochi, M., Dini, G., Tracht, K., Scholz-Reiter, B., Fleischer, J., ... & Verl, A. (2014). Grasping devices and methods in automated production processes. CIRP annals, 63(2), 679-701. 2. Mykhailyshyn, R., Savkiv, V., Maruschak, P., & Xiao, J. (2022). A systematic review on pneumatic gripping devices for industrial robots. Transport, 37(3), 201-231. 3. Wolf, A., & Schunk, H. (2019). Grippers in Motion, 331. Carl Hanser Verlag GmbH & Co. KG. 4. Raval, S., & Patel, B. (2016). A review on grasping principle and robotic grippers. International Journal of Engineering Development and Research, 4(1), 483-490. 5. Long, Z., Jiang, Q., Shuai, T., Wen, F., & Liang, C. (2020, March). A systematic review and meta-analysis of robotic gripper. In IOP Conference Series: Materials Science and Engineering (Vol. 782, No. 4, p. 042055). IOP Publishing. 6. Shi, K., & Li, X. (2018). Experimental and theoretical study of dynamic characteristics of Bernoulli gripper. Precision Engineering, 52, 323-331. 7. Tomar, A. S., Hellum, A., Kamensky, K., & Mukherjee, R. (2024). Flow Physics of a Rotating Bernoulli Pad: A Numerical Study. Journal of Fluids Engineering, 146(9). 8. Ozcelik, B., Erzincanli, F., & Findik, F. (2003). Evaluation of handling results of various materials using a non‐contact end‐effector. Industrial Robot: An International Journal, 30(4), 363-369. 9. Mykhailyshyn, R., Duchoň, F., Mykhailyshyn, M., & Majewicz Fey, A. (2022). Three-dimensional printing of cylindrical nozzle elements of bernoulli gripping devices for industrial robots. Robotics, 11(6), 140. 10. Mykhailyshyn, R., Savkiv, V., Boyko, I., Prada, E., & Virgala, I. (2021). Substantiation of parameters of friction elements of Bernoulli grippers with a cylindrical nozzle. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 11(2), 17-39. 11. Liu, D., Liang, W., Zhu, H., Teo, C. S., & Tan, K. K. (2017, July). Development of a distributed Bernoulli gripper for ultra-thin wafer handling. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 265-270). IEEE. 12. Mykhailyshyn, R., Duchoň, F., Virgala, I., Sinčák, P. J., & Majewicz Fey, A. (2023). Optimization of outer diameter bernoulli gripper with cylindrical nozzle. Machines, 11(6), 667. 13. Sam, R., & Buniyamin, N. (2012, November). A Bernoulli principle based flexible handling device for automation of food manufacturing processes. In 2012 International Conference on Control, Automation and Information Sciences (ICCAIS) (pp. 214-219). IEEE. 14. Mykhailyshyn, R., & Xiao, J. (2022). Influence of inlet parameters on power characteristics of Bernoulli gripping devices for industrial robots. Applied Sciences, 12(14), 7074. 15. Zhai, P., Xu, Z., Yin, Z., Li, X., Xie, B., & Wu, H. (2025). Simulation and Experimental Analysis of Contactless Chip Pickup Process Based on a Vortex Flow Gripper. IEEE Transactions on Semiconductor Manufacturing. 16. Lyu, X., Dai, H., Shi, K., & Li, X. (2024). Experimental study on radial suction flow and its effect in water vortex unit. Physics of Fluids, 36(6). 17. Mykhailyshyn, R., & Fey, A. M. (2024, June). Low-contact grasping of soft tissue using a novel vortex gripper. In 2024 International Symposium on Medical Robotics (ISMR) (pp. 1-6). IEEE. 18. Mykhailyshyn, R., Savkiv, V., Fey, A. M., & Xiao, J. (2022). Gripping device for textile materials. IEEE Transactions on Automation Science and Engineering, 20(4), 2397-2408. 19. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Finite element modeling of grasping porous materials in robotics cells. Robotica, 41(11), 3485-3500. 20. Mykhailyshyn, R., Fey, A. M., & Xiao, J. (2023). Toward Novel Grasping of Nonrigid Materials Through Robotic End-Effector Reorientation. IEEE/ASME Transactions on Mechatronics, 29(4), 2614-2624. 21. Makatura, L., Foshey, M., Wang, B., Hähnlein, F., Ma, P., Deng, B., ... & Matusik, W. (2024). How can large language models help humans in design and manufacturing? Part 1: Elements of the LLM-enabled computational design and manufacturing pipeline. Harvard Data Science Review, ( Special Issue 5) |
Content type: | Proceedings Book |
Aparece en las colecciones: | Наукові публікації працівників кафедри автоматизації технологічних процесів та виробництв |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
TNTU Proceeding 146-147.pdf | Paper 146-147 | 626,14 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.
Herramientas de Administrador