Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/51448
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.advisorГолотенко, Олександр Сергійович-
dc.contributor.advisorHolotenko, Olexander-
dc.contributor.authorValerie, Kasongo Bwanga-
dc.date.accessioned2026-01-28T20:34:44Z-
dc.date.available2026-01-28T20:34:44Z-
dc.date.issued2026-01-26-
dc.date.submitted2026-01-12-
dc.identifier.citationKasongo Bwanga V. Machine Learning–Driven Weather Forecasting Integrating Advanced Data Analysis Methods : Master’s qualification thesis in specialty 126 Information Systems and Technologies / supervisor O. Holotenko. — Ternopil : Ternopil Ivan Puluj National Technical University, 2026. — 97 p.uk_UA
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/51448-
dc.descriptionРоботу виконано на кафедрі комп'ютерних наук Тернопільського національного технічного університету імені Івана Пулюя. Захист відбудеться 26.01.2026р. на засіданні екзаменаційної комісії №37 у Тернопільському національному технічному університеті імені Івана Пулюяuk_UA
dc.description.abstractThe qualification work is devoted to the development and research of machine learning models to improve the accuracy of short-term weather forecasting. The first chapter analyzes classical meteorological methods and modern approaches to processing large climate datasets. The second chapter focuses on the application of intelligent analysis methods, particularly time series analysis and dimensionality reduction techniques for input parameter preparation. The third chapter presents the results of training various neural network architectures, provides a comparative analysis of their effectiveness on real historical data, and estimates prediction errors. The findings demonstrate the high efficiency of machine learning methods in identifying complex non-linear patterns in meteorological data. The work also includes a section on occupational safety and the economic justification for the system's applicationuk_UA
dc.description.tableofcontentsINTRODUCTION 1 THEORETICAL FOUNDATIONS OF WEATHER FORECASTING 1.1 Overview of traditional numerical weather prediction 1.2 Role of big data and AI in meteorology 1.3 Review of advanced data analysis techniques 2 METHODOLOGY AND DATA PREPROCESSING 2.1 Data sources and feature engineering for climate variables 2.2 Dimensionality reduction and time series decomposition 2.3 Selection of machine learning algorithms 3 MODEL IMPLEMENTATION AND COMPARATIVE ANALYSIS 3.1 Development of predictive models (SARIMA, Random Forest, Neural Networks) 3.2 Training, validation and error assessment 3.3 Discussion of results and accuracy improvements 4 ECONOMIC JUSTIFICATION OF THE PROPOSED SOLUTION 5 OCCUPATIONAL HEALTH AND SAFETY IN EMERGENCY SITUATIONS CONCLUSIONS REFERENCESuk_UA
dc.format.extent97-
dc.language.isoukuk_UA
dc.publisherТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Українаuk_UA
dc.subject126uk_UA
dc.subjectінформаційні системи та технологіїuk_UA
dc.subjectаналіз данихuk_UA
dc.subjectмагістерська робота, машинне навчання, метеорологія, прогнозування погоди, часові ряди, data analysis, deep learning, machine learning, neural networks, time series forecasting, weather predictionuk_UA
dc.subjectмагістерська роботаuk_UA
dc.subjectмашинне навчанняuk_UA
dc.subjectметеорологіяuk_UA
dc.subjectпрогнозування погодиuk_UA
dc.subjectчасові рядиuk_UA
dc.subjectdata analysisuk_UA
dc.subjectdeep learninguk_UA
dc.subjectmachine learninguk_UA
dc.subjectneural networksuk_UA
dc.subjecttime series forecastinguk_UA
dc.subjectweather predictionuk_UA
dc.titleMachine Learning–Driven Weather Forecasting Integrating Advanced Data Analysis Methodsuk_UA
dc.typeMaster Thesisuk_UA
dc.rights.holder© Valerie Kasongo Bwanga, 2026uk_UA
dc.contributor.committeeMemberЯсній, Олег Петрович-
dc.contributor.committeeMemberYasniy, Oleg-
dc.coverage.placenameТернопільuk_UA
dc.subject.udc004.85:551.509uk_UA
dc.relation.references1. Electricity price statistics. Statistics Explained. 2024. P. 2–3. URL: https://ec.europa.eu/eurostat/statistics-explained/SEPDF/cache/45239.pdf (date of access: 01.10.2024).uk_UA
dc.relation.references2. Impact of forecasting on energy system optimization / F. Peterssen et al. Advances in Applied Energy. 2024. Vol. 15. 100181. URL: https://doi.org/10.1016/j.adapen.2024.100181 (date of access: 22.10.2024).uk_UA
dc.relation.references3. Kolambe M., Arora S. Forecasting the Future: A Comprehensive Review of Time Series Prediction Techniques. Journal of Electrical Systems. 2024. Vol. 20, no. 2s. P. 575–586. URL: https://doi.org/10.52783/jes.1478 (date of access: 22.10.2024).uk_UA
dc.relation.references4. Shumway R. H., Stoffer D. S. ARIMA Models. Time Series: A Data Analysis Approach Using R. Boca Raton: CRC Press, Taylor & Francis Group, 2019. P. 99–128. URL: https://doi.org/10.1201/9780429273285-5 (date of access: 22.10.2024).uk_UA
dc.relation.references5. Comparison of SARIMAX, SARIMA, modified SARIMA and ANN-based models for short-term PV generation forecasting / S. I. Vagropoulos et al. 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016. 2016. URL: https://doi.org/10.1109/energycon.2016.7514029 (date of access: 22.10.2024).uk_UA
dc.relation.references6. Maulud D., Abdulazeez A. M. A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends. 2020. Vol. 1, no. 4. P. 140–147. URL: https://doi.org/10.38094/jastt1457 (date of access: 22.10.2024).uk_UA
dc.relation.references7. Box G. E. P., Jenkins G. M., Reinsel G. C., Ljung G. M. Time Series Analysis: Forecasting and Control. 5th ed. Hoboken: John Wiley & Sons, 2015. 712 p.uk_UA
dc.relation.references8. Hyndman R. J., Athanasopoulos G. Forecasting: Principles and Practice. 3rd ed. OTexts, 2021. URL: https://otexts.com/fpp3/ (date of access: 22.10.2024).uk_UA
dc.relation.references9. Brockwell P. J., Davis R. A. Introduction to Time Series and Forecasting. 3rd ed. Springer, 2016. 425 p.uk_UA
dc.relation.references10. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer, 2009. 745 p.uk_UA
dc.relation.references11. Hamilton J. D. Time Series Analysis. Princeton University Press, 1994. 799 p.uk_UA
dc.relation.references12. Box G. E. P., Jenkins G. M. Some Recent Advances in Forecasting and Control. Applied Statistics. 1970. Vol. 19, no. 1. P. 91–109.uk_UA
dc.relation.references13. De Gooijer J. G., Hyndman R. J. 25 Years of Time Series Forecasting. International Journal of Forecasting. 2006. Vol. 22, no. 3. P. 443–473.uk_UA
dc.relation.references14. Makridakis S., Wheelwright S. C., Hyndman R. J. Forecasting: Methods and Applications. 3rd ed. John Wiley & Sons, 1998. 656 p.uk_UA
dc.relation.references15. Bishop C. M. Pattern Recognition and Machine Learning. Springer, 2006. 738 p.uk_UA
dc.relation.references16. Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press, 2016. 775 p.uk_UA
dc.relation.references17. Montgomery D. C., Jennings C. L., Kulahci M. Introduction to Time Series Analysis and Forecasting. 2nd ed. Wiley, 2015. 472 p.uk_UA
dc.relation.references18. Tibshirani R., Friedman J. H., Hastie T. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software. 2010. Vol. 33, no. 1. P. 1–22.uk_UA
dc.relation.references19. Tsay R. S. Analysis of Financial Time Series. 3rd ed. Wiley, 2010. 720 p.uk_UA
dc.relation.references20. Wei W. W. S. Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. Addison-Wesley, 2006. 618 p.uk_UA
dc.relation.references21. Li M., Fu G., Zhang Y. Short-Term Wind Speed Forecasting Using SARIMA Model. Renewable Energy. 2022. Vol. 187. P. 591–600.uk_UA
dc.relation.references22. Engle R. F., Granger C. W. J. Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica. 1987. Vol. 55, no. 2. P. 251–276.uk_UA
dc.relation.references23. Jolliffe I. T. Principal Component Analysis. 2nd ed. Springer, 2002. 487 p.uk_UA
dc.relation.references24. Walker G. T. On Periodicity in Series of Related Terms. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1931. Vol. 131, no. 818. P. 518–532.uk_UA
dc.relation.references25. Box G. E. P., Pierce D. A. Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association. 1970. Vol. 65, no. 332. P. 1509–1526.uk_UA
dc.relation.references26. Brockwell P. J., Davis R. A. Time Series: Theory and Methods. 2nd ed. Springer, 1991. 577 p.uk_UA
dc.relation.references27. Gelman A., Hill J. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, 2006. 625 p.uk_UA
dc.relation.references28. Cressie N. Statistics for Spatial Data. Revised ed. Wiley, 1993. 900 p.uk_UA
dc.relation.references29. Fuller W. A. Introduction to Statistical Time Series. 2nd ed. Wiley, 1996. 698 p.uk_UA
dc.relation.references30. Enders W. Applied Econometric Time Series. 4th ed. Wiley, 2014. 496 p.uk_UA
dc.relation.references31. Box G. E. P., Tiao G. C. Intervention Analysis with Applications to Economic and Environmental Problems. Journal of the American Statistical Association. 1975. Vol. 70, no. 349. P. 70–79.uk_UA
dc.contributor.affiliationТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра комп’ютерних наук, м. Тернопіль, Українаuk_UA
dc.coverage.countryUAuk_UA
dc.identifier.citation2015Kasongo Bwanga V. Machine Learning–Driven Weather Forecasting Integrating Advanced Data Analysis Methods: Master’s qualification thesis in specialty 126 Information Systems and Technologies / supervisor O. Holotenko. Ternopil: Ternopil Ivan Puluj National Technical University, 2026. 97 p.uk_UA
Розташовується у зібраннях:126 — інформаційні системи та технології

Файли цього матеріалу:
Файл Опис РозмірФормат 
KRM_2026_ISTm-62_Valerie_KB.pdfДипломна робота2,1 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора