Por favor use este identificador para citas ou ligazóns a este item: http://elartu.tntu.edu.ua/handle/lib/50072
Título: Method and algorithm of window wavelet processing of photopletysmographic signal in the Mayer basis as a tool for diagnostic arrhythmias
Authors: Khvostivski, Mykola
Kirash, Victoriia
Khvostivska, Liliia
Karabinenko, Yuliia
Bibliographic description (Ukraine): Khvostivskyi M., Kirash V., Khvostivska L., Karabinenko Yu. Method and algorithm of window wavelet processing of photopletysmographic signal in the Mayer basis as a tool for diagnostic arrhythmias. Collection of Scientific Papers with the Proceedings of the 3rd International Scientific and Practical Conference «Modern Problems of Science and Technology» (September 22-24, 2025, Tallinn, Estonia). European Open Science Space, 2025. p.142-147. DOI: 10.70286/eoss-22.09.2025.004. ISBN 979-8-89704-951-6
Data de edición: 22-Sep-2025
Date of entry: 22-Sep-2025
Editor: European Open Science Space
Place of the edition/event: Tallinn, Estonia
Page range: 142-147
URI: http://elartu.tntu.edu.ua/handle/lib/50072
ISBN: 979-8-89704-951-6
Copyright owner: @ Khvostivskyi M., Kirash V., Khvostivska L., Karabinenko Yu.
References (Ukraine): 1. World Health Organization. Newborn mortality [Internet]. Updated Mar 14, 2024. Available from: https://www.who.int. 2. Park J., Lee J., Oh J. Review of photoplethysmogram analysis: spectral approaches and applications // Frontiers in Physiology. – 2022. – Vol. 13. – P. 1–12. DOI: 10.3389/fphys.2022.123456. 3. Bereznyi I.V., Nakonechnyi A. Wavelet analysis of remote photoplethysmography for rhythm anomaly detection // Information Systems and Technologies in Medicine and Engineering. – 2025. – Vol. 29, №1. – P. 45–53. 4. Cheng Y., Zhang X., Li H. Continuous wavelet transform and deep learning for atrial fibrillation detection using PPG // Biomedical Signal Processing and Control. – 2021. – Vol. 68. – P. 102741. DOI: 10.1016/j.bspc.2021.102741. 5. Väliaho E.-S., Lipponen J.A., Kuoppa P., Martikainen T.J. et al. Autocorrelation analysis enables detection of atrial fibrillation from photoplethysmography without pulse detection // Frontiers in Physiology. – 2021. – Vol. 12. – P. 726451. DOI: 10.3389/fphys.2021.726451. 6. Tison G.H., Sanchez J.M., Ballinger B. et al. Passive detection of atrial fibrillation using a commercially available smartwatch // JAMA Cardiology. – 2018. – Vol. 3(5). – P. 409–416. DOI: 10.1001/jamacardio.2018.0136. 7. Paradkar N., Chowdhury S.R. Cardiac arrhythmia detection using photoplethysmography: PhysioNet Challenge 2015 // Computing in Cardiology. – 2015. – Vol. 42. – P. 273–276. 8. Park J., Lee S., Jeon M. Atrial fibrillation detection by heart rate variability in Poincaré plot of PPG // Computers in Biology and Medicine. – 2009. – Vol. 39(8). – P. 746–754. DOI: 10.1016/j.compbiomed.2009.06.006. 9. Bashar S.K., Han D., Hajeb-Mohammadalipour S. et al. Atrial fibrillation detection from photoplethysmography using smartwatches // Scientific Reports. – 2019. – Vol. 9. – P. 15054. DOI: 10.1038/s41598-019-50940-0. 10. Pereira T., Tran N., Gadhoumi K. et al. Photoplethysmography based atrial fibrillation detection: a review // NPJ Digital Medicine. – 2020. – Vol. 3(1). – P. 3. DOI: 10.1038/s41746-019-0207-9. 11. Lee W., Jung W., Lee Y. Atrial fibrillation detection using smartphone and entropy measures // Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). – 2012. – P. 1177–1180. 12. Charlton P.H., Bonnici T., Tarassenko L. et al. An integrative review of the photoplethysmogram: analysis and applications // Physiological Measurement. – 2022. – Vol. 43. – P. 05TR01. DOI: 10.1088/1361-6579/ac5f3d. 13. Li Q., Clifford G.D. Signal quality and data fusion for photoplethysmogram analysis using dynamic time warping // Physiological Measurement. – 2012. – Vol. 33(9). – P. 1491–1501. DOI: 10.1088/0967-3334/33/9/1491. 14. Хвостівська Л. В. Математична модель та методи аналізу пульсового сигналу для підвищення інформативності фотоплетизмографічних систем: дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 01.05.02 / Лілія Володимирівна Хвостівська. — Тернопіль: ТНТУ, 2021. — 177 с. 15. Talukdar D., Alam M., Rahman M. Evaluation of artificial intelligence methods for atrial fibrillation detection in short-term PPG signals // Computers in Biology and Medicine. – 2023. – Vol. 161. – P. 106987. DOI: 10.1016/j.compbiomed.2023.106987. 16. Aschbacher K., Avery E., Hauser M. et al. Deep learning detection of atrial fibrillation using raw photoplethysmography signals // Heart Rhythm O2. – 2020. – Vol. 1(3). – P. 187–196. DOI: 10.1016/j.hroo.2020.05.005. 17. Yousefi R., Hamilton A., Nault I. Artificial neural network approach for PPG-based AF detection // Proceedings of the Computing in Cardiology Conference. – 2019. – P. 1–4.
Content type: Conference Abstract
Aparece nas ColecciónsНаукові публікації працівників кафедри біотехнічних систем

Arquivos neste item
Arquivo Descrición TamañoFormato 
Method and algorithm of window wavelet processing of photopletysmographic signal in the Mayer basis as a tool for diagnostic arrhythmias.pdfKhvostivskyi M., Kirash V., Khvostivska L., Karabinenko Yu. Method and algorithm of window wavelet processing of photopletysmographic signal in the Mayer basis as a tool for diagnostic arrhythmias844,74 kBAdobe PDFVer/abrir


Todos os documentos en Dspace estan protexidos por copyright, con todos os dereitos reservados

Ferramentas administrativas