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3aJICKUTh BiJ] TPUBAIOCTI pOOOTH 3 PI3HOIO BEIMYMHOIO 3aBAHTAXKEHHSI, B/l BEIMYUHU Ta
CKJIQTHOCTI MEPEX1THMUX PEKUMIB, BiJl BIUTUBY 30BHIIIHIX aBAPIHHUX PEKUMIB.

JlJiss acCHHXPOHHUX €NEeKTPOJBUTYHIB 3 KOPOTKO3aMKHYTOIO OOMOTKOIO POTOpa
MIPOBOJIUTHCA MPSIME BKIIFOYCHHSI B MEPEXKY, 110 BUKJIMKAE BEJMKI MTyCKOBI CTPYMH 3
neperpiBaHHsAM craropa 1 OOMOTOK poropa. A TOMYy, HEOOXITHUNA KOHTPOJIb
CTAI[IOHAPHOT'O HAaBaHTAXXEHHSI, YK CIIA 1 TPUBAJIOCTI KOXKHOTO MYCKY.

Opranizaiiis peMOHTY €JEKTPOOOJaIHAHHS 3 YypaxyBaHHSM HaIpallOBaHHS
JT03BOJIUTH MIBUIITUTH HOTO HAIIHHICTH 32 paXYHOK CBOEUYACHOTO BUBEICHHS B PEMOHT
(GyHKIIOHATFHUX CKJIAJI0BUX 3 HAUOIBIIT BUCOKOK WMOBIPHICIO BiJIMOBH.
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Cardiovascular diseases, in particular cardiac rhythm abnormalities, remain one
of the leading causes of morbidity and mortality worldwide [1]. This necessitates the
development of new methods of cardiac monitoring that can provide high accuracy and
sensitivity in detecting both short-term and long-term abnormalities.

Photoplethysmography (PPG) or pulse signal is a promising non-invasive method
that allows recording changes in peripheral vascular blood flow and obtaining
information about heart rate, amplitude and time characteristics of pulse waves. Due to
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their availability and ease of registration, PPG signals are increasingly used in medical
research and cardiac monitoring systems. However, their effectiveness largely depends
on the applied methods and algorithms of digital processing.

Among the known methods of processing PPG signals for detecting heart rhythm
anomalies (spectral [2-4], correlation [5], statistical [6-8], entropy [9-11],
morphological [12-13], synphase/component [14], machine learning [15], deep
learning [16, 17]), wavelet processing deserves special attention, which allows for
simultaneous examination of the signal in the time and frequency domains. However,
the classical wavelet approach has limitations in localizing fast rhythm changes.
Therefore, window wavelet processing, which combines adaptive scaling of wavelets
with sliding temporal segmentation of the signal, is particularly promising.

The PPG signal is recorded using an optical sensor that records changes in blood
volume in the tissues. Due to the characteristics of the sensor and electronics, the signal
often contains a constant offset (DC component) - a constant component that does not
carry useful information about pulse activity. For this, it is necessary to perform pre-
processing, in particular centering and amplitude normalization.

Centering of the PPG signal is implemented according to the expression:

N
wlo)=aln]- . w= Y] m

Normalization of the amplitude of the PPG signal is implemented according to
the expression:

) ) )
max(x, 1]

Thus, normalization ensures the stability of the algorithm, makes the processing
results independent of sensory or individual characteristics of the signal, and allows for
the correct identification of dominant frequencies and anomalies.

After centering and normalization, the PPG signal is subjected to bandpass filtering,
which limits its frequency spectrum to physiologically significant components of the
heart rate in the cardio range of 0.5-15 Hz. The bandpass filter passes only frequencies
in a defined range [fiow, frien] and suppresses frequencies outside it:

%oy || = Bandpass\x, 1], o fiven ) @)
where f;,,=0,5Tui f,,=15I'n.
Analysis of the PPG signal as a whole can hide short-term changes in heart rate.

To overcome this problem, it is proposed to divide the signal into overlapping windows
of length L,, and shift step L;:

Lw:wad’ Ls:]—;fd’ (3)
where T, — time window length in seconds, 7, — shift step in seconds.

Then the k-th signal window is formed as:
xk[n]zx[n+(k—1)Ls], n=0,.,L, —1. 4)
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Therefore, the use of overlapping windows in processing the PPG signal provides
local frequency estimation, overlapping for smooth transition, balance of accuracy and
resolution, and stability of statistical estimates.

The PPG signal is non-stationary, 1.e. its frequency characteristics change over
time due to natural heart rate variability, motion artifacts, or changes in peripheral
blood circulation. Traditional spectral methods, such as discrete or fast Fourier
transforms, do not allow for simultaneous determination of frequency characteristics
and their temporal evolution. In this case, the continuous wavelet transform is used,
which is an effective method of local time-frequency analysis for each window x[n]
of the signals:

c(f.k)=3 xk[n]w(i,f], )
n=0 fd

where C( f ,k) — complex wavelet transform coefficients, 1//(t, f ) — Meyer basis:

1 sin £v3a)—1 e/, 2—”S‘a)‘34—7[
27 2 27 3 3
1 o : 47 &
J W)= sin| —v —1l/?, ZZ<|o<>=, 6
y/Meyer( ) \/ﬂ [ 2 27 ) 3 ‘ ‘ 3 ( )
0 IHaKuwe
where v(x) — smooth transition function:
0, x<0
v(x)=4{x, 0<x<I. (7)
1, x>1
Time form:
1 5. o
l//Meyer (t) = g J.l//Meyer (a))eJ lda) . (8)

Meyer wavelet allows to accurately distinguish the dominant frequency of heart
rate oscillations (0.5-5 Hz). Smooth spectral shape minimizes the influence of high-
frequency noise and trends. Complex waveform allows to determine local features of
the signal in each window.

Calculating energy by frequencies in windowed wavelet processing of the PPG
signal is a key step for isolating the dominant heart rate frequency in local signal
segments according to the expression:

E(fatk): g‘c(fath' (9)

The maximum energy corresponds to the frequency at which the signal has the
greatest contribution — that is, the dominant heart rate frequency in the cardio range
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[0.5-5 Hz] (corresponds to the physiological limits of pulse rate (30-300 beats/min)),
which is calculated according to the expression:

folt,)=arg max, E (f.1)- (10)

s

The dominant frequency f;(¢,) in each window allows us to estimate the local
period of the heart thythm Tz, )=1/f;(z, ).

Rhythm anomalies are determined based on physiologically justified local period
boundaries:
T. <T(t)<T

m max ?

.. =06¢cek, I =1.2cex (11)

Windows in which the local period falls outside this range are classified as
anomalous. The algorithm for window wavelet processing of the PPG signal is shown
in Fig. 1.

C Stirt ) CWT calculation

Downloading v
FPG signal

Energy spectrum calculation

Pre-processing: — *_
Average subtraction, normalization, Finding the dominant frequency

band-pass filtering (0.5-15 Hz) f0 in the range (0.5-5 Hz)

v
v Calculation of the period (T = 1/10)
Windowing settings:

1) Select window length (Tw = 8 sec) ®< ‘
2) Select shift step (Ts = 2 sec) L—®
3) Calculate number of segments

Identification of anomalies (comparison
of the period with the norm (0.6-1.2 s)

' 6129,
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segments k=1,K adjacent anomaly zones)

Sub-signal isolation

o . Vlsuahzatlon of
within the k-th window results (zones of
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evolution, beginning
and end of zones)
>

( End

Fig. 1. Algorithm for window wavelet processing of a PPG signal

The proposed algorithm for window wavelet processing of the PPG signal
involves pre-filtering, signal segmentation in overlapping windows, and the application
of continuous wavelet transform in the Meyer basis to determine the dominant
frequency and detect heart rate deviations from the norm. Its relevance lies in the
possibility of accurate, non-invasive, and noise-resistant diagnosis of tachycardia and
bradycardia in real time, which is especially important for medical monitoring systems.
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Currently, the drainage and irrigation systems of Polissia demonstrate a growing
demand for reliable, energy-independent, and cost-effective automation of water level
regulation. This need is further reinforced by the considerable length of canal networks,
seasonal fluctuations in inflow, and the limited financial resources available for system
operation.

At the same time, the automation of processes in drainage and irrigation systems
requires the application of precise and technologically advanced water level sensors
that are integrated into the functionality of hydro-regulators. Consequently, there is a
necessity to implement such devices in existing facilities as part of the modernization
and reconstruction of outdated infrastructure.

At present, electric water level sensors remain in high demand on the market.
However, alongside the progress of science and engineering, hydromechanical sensors
have undergone significant improvement, offering an energy-efficient alternative to
electrical devices.

Hydro-automatic regulators (such as the ARU-200C type) have proven their
effectiveness due to their structural simplicity and energy independence. Nevertheless,
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