Utilize este identificador para referenciar este registo:
http://elartu.tntu.edu.ua/handle/lib/48075
Título: | Heart Disease Prediction Using Machine Learning Alghorithms |
Autor: | Naadu, Ali Zulaikha |
Affiliation: | Тернопільський національний технічний університет імені Івана Пулюя, факультет комп’ютерно-інформаційних систем і програмної інженерії, кафедра комп’ютерних наук, м. Тернопіль, Україна |
Bibliographic description (Ukraine): | Naadu A. Z Heart Disease Prediction Using Machine Learning Alghorithms : work towards a master's degree : spec. 124 - system analysis / supervisor R. Z. Zolotyi. Ternopil : Ternopil Ivan Puluj National Technical University, 2025. 75 p. |
Data: | 30-Jan-2025 |
Submitted date: | 16-Jan-2025 |
Date of entry: | 30-Jan-2025 |
Editora: | Тернопільський національний технічний університет імені Івана Пулюя |
Country (code): | UA |
Place of the edition/event: | ТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Україна |
Supervisor: | Золотий, Роман Захарійович Zolotyi, Roman Z. |
UDC: | 004.04 |
Palavras-chave: | system analysis ssz learning pytorch program code |
Page range: | 75 |
Resumo: | During the course of the thesis, a fully functional software for generating crosswords was obtained, which runs on the Windows operating system. The interface of the created program is convenient, simple, and intuitive improves its capabilities The developed application is a tool for interactively creating crossword forms and filling them in. In other words, it is a crossword generator. Similar applications can be used by various publications that either specialize in publishing crosswords or sometimes decorate their products with them. The developed software satisfies all the requirements set at the task formulation stage. |
Content: | INTRODUCTION 6 1. ANALYSIS OF DEVELOPMENTS ON THE TOPIC OF THE WORK 8 1.1. Justification of the relevance of the chosen topic 8 1.2. Areas of application 10 1.3. Justification of the feasibility of improving existing solutions 12 1.4. Problem statement 13 2. PRINCIPLES OF MACHINE LEARNING AND DATA PROCESSING ALGORITHMS 15 2.1. History of machine learning 15 2.2. Application areas and frameworks 19 2.3. Working principles and methods 23 3. DEVELOPMENT OF PROGRAM STRUCTURE AND ALGORITHMS 32 3.1. Model 32 3.2. Materials and methods 36 3.3. Results of work 43 3.4. Software 50 3.5. Auxiliary devices 51 3.6. Work scheme 60 4 SAFETY OF LIFE, BASIC LABOR PROTECTION 64 4.1. Effects of electromagnetic radiation on the human body 64 4.2 Types of hazards 67 4.3 Road Transport Safety 70 4.4 Conclusions 70 CONCLUSIONS 72 REFERNCES 73 |
URI: | http://elartu.tntu.edu.ua/handle/lib/48075 |
Copyright owner: | © Ali Zulaikha Naadu, 2025 |
References (Ukraine): | 1. Mancia, S. Oparil, PK Whelton, M. McKee, A. Dominiczak, FC Lu ft, K. AlHabib, F. Lanas, A. Damasceno, D. Prabhakaran, G. La Torre The technical report on sodium intake and cardiovascular disease in low-and middle-income countries by the joint working group of the World Heart Federation, the European Society of Hypertension and the European Public Health Association Eur Heart J, 38 [Text], (10) (2017). 712-719 p. 2. AND. Coronary Heart disease [Text], (2020), 468 p. 3. AND. D'Souza To predict cardiac disease, data mining techniques are applied 74-77 Int. J.Res.Eng.Sci., 3 (3) [Text], (2015) 75 p. 4. Sanjiv, JS (2015), [Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction], Circulation, #131, [Text], pp. 269–279. 5. Choi E. (2017) [Using recurrent neural network models for early detection of heart failure onset], Journal of the American Medical Informatics Association, No. 24, [Text], pp. 361–370. 6. Koelio LP, Richard V. (2016) [Construction of machine learning systems in Python], DMK Publishing House, [Text], 303 p. 7. WJ Loesche Periodontal disease as a risk factor for heart disease Compendium, 15 (8) [Text], (1994), 976-978 p. 8. SK Sen Using machine learning methods in heart disease detection and prediction Int. J.Eng.Comput. Sci., 6 (6) [Text], (2017), pp. 21623-21631. 9. R. Hertel, R. Benlamri A deep learning segmentation-classification pipeline for x-ray-based covid-19 diagnosis” Biomedical Engineering Advances (2022), Article 100041. 10. Chattopadhyay, M. Maitra MRI-Based brain tumor image detection using CNN based deep learning method Neurosci.Inf. (2022), Article 100060. 11. SK Mamatha, HK Krishnappa, N. Shalini Graph theory based segmentation of magnetic resonance images for brain tumor detection Pattern Recogn Image Anal, 32 (1) [Text], (2022), pp. 153-161. 12. GN Ahmad, H. Fatima, AS Saidi Efficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCV IEEE Access [Text], (2022), 576-596 p. 13. MM Rahman, MR Rana, Nur-A-Alam, MSI Khan, KMM Uddin A web-based heart disease prediction system using machine learning algorithms Netw. Biol., 12 (2) [Text], (2022), pp. 64-81. 14. SK Dey, MM Rahman, A. Howlader, UR Siddiqi, KMM Uddin, R. Borhan, EU Rahman Prediction of dengue incidents using hospitalized patients, metrological and socio-economic data in Bangladesh: a machine learning approach PLoS One, 17 (7) (2022), Article e0270933. 15. DVB Oliveira, JF da Silva, TA de Sousa Araújo, UP Albuquerque Influence of religiosity and spirituality on the adoption of behaviors of epidemiological relevance in emerging and re-emerging diseases: the case of dengue fever J Relig Health, 61 (1) [Text], (2022), pp. 564-585. 16. Vrakina K. P. Proceedings of XII International Scientific and Practical Conference. 2022. C. 161-164. URL: EURASIAN-SCIENTIFIC-DISCUSSIONS-18-20.12.2022.pdf (sci-conf.com.ua). 17. Y. Leshchyshyn, L. Scherbak, O. Nazarevych, V. Gotovych, P. Tymkiv and G. Shymchuk, «Multicomponent Model of the Heart Rate Variability Change-point,» 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Polyana, Ukraine, 2019, pp. 110-113, doi: 10.1109/MEMSTECH.2019.8817379. 18. Lytvynenko, S. Lupenko, O. Nazarevych, G. Shymchuk and V. Hotovych, «Mathematical model of gas consumption process in the form of cyclic random process,» 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), LVIV, Ukraine, 2021, pp. 232-235, doi: 10.1109/CSIT52700.2021.9648621. 19. V. Kozlovskyi, Y. Balanyuk, H. Martyniuk, O. Nazarevych, L. Scherbak and G. Shymchuk, «Information Technology for Estimating City Gas Consumption During the Year,» 2022 International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 2022, pp. 1-4, doi: 10.1109/SIST54437.2022.9945786. 20. I. Lytvynenko, S. Lupenko, N. Kunanets, O. Nazarevych, G. Shymchuk and V. Hotovych, "Simulation of gas consumption process based on the mathematical model in the form of cyclic random process considering the scale factors", 1st International Workshop on Information Technologies: Theoretical and Applied Problems ITTAP 2021, 16–18 November 2021. 21. Approach to gas consumption process forecasting on the basis of a mathematical model in the form of a random cyclic process / Serhii Lupenko, Iaroslav Lytvynenko, Oleg Nazarevych, Grigorii Shymchuk, Volodymyr Hotovych // ICAAEIT 2021, 15-17 December 2021. – Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. – P. 213–219. – (Mathematical modeling in power engineering and information technologies). 22. Конспект лекцій з дисципліни «Грід-системи та технології хмарних обчислень» для студентів освітніх рівнів «бакалавр», «магістр» / Укладачі : Шимчук Г.В., Маєвський О.В., Назаревич О.Б., Стадник М.А. – Тернопіль : Тернопільський національний технічний університет імені Івана Пулюя, 2016 – 340 с. |
Content type: | Master Thesis |
Aparece nas colecções: | 124 — системний аналіз |
Ficheiros deste registo:
Ficheiro | Descrição | Tamanho | Formato | |
---|---|---|---|---|
1_NAADU_MAG_KN.pdf | Дипломна робота | 2,79 MB | Adobe PDF | Ver/Abrir |
Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.
Ferramentas administrativas