霂瑞霂��撘����迨��辣:
http://elartu.tntu.edu.ua/handle/lib/48071
Title: | Methods and high performance technologies of mathematical modeling of complex multi component systems, multy-dimensional nanostructures and processes |
Authors: | Boyko, I. V. Petryk, M. R. Khimich, O. M. Popov, O. V. |
Affiliation: | National Academy of Sciences of Ukraine: Institute of Cybernetics named after V.M. Glushkov |
Bibliographic description (Ukraine): | Boyko I.V., Petryk M.R., Khimich O.M., Popov O.V. Methods and high-performance technologies of mathematical modeling of complex multi-component systems, multy-dimensional nanostructures and processes: monograph – Kyiv: National Academy of Sciences of Ukraine: Institute of Cybernetics named after V.M. Glushkov, 2024. – 161 p. Ill. 26, Bibliography 148 ref. |
Issue Date: | 2024 |
Date of entry: | 29-一月-2025 |
Publisher: | National Academy of Sciences of Ukraine: Institute of Cybernetics named after V.M. Glushkov |
Country (code): | UA |
UDC: | 519.6 681.3 |
Number of pages: | 148 |
Abstract: | This monograph highlights new approaches to the development of modeling and complex processes in nanostructures and nanoporous media based on high performance parallel computing, supercomputer technologies of computational mathematics tools. The design of the systems under consideration is based on new science-intensive technologies of object description, new computational solutions taking into account the architecture of computer systems and software. For scientists, specialists in the field of applied mathematics, mathematical modeling, high-performance parallel computing and software engineering, teachers of higher educational institutions, postgraduate students, engineers and students |
URI: | http://elartu.tntu.edu.ua/handle/lib/48071 |
ISBN: | 978-617-14-0352-9 |
Copyright owner: | © I.V. Boyko, M.R Petryk, O.M. Khimich. O.V. Popov, 2024 © National Academy of sScienses of Ukraine, V.M. Gluskov Institute of cybernetics, 2024 |
References (Ukraine): | 1. Kazarynov R.F. On the possibility of amplifying electromagnetic waves in semiconductors with a superlattice / R.F. Kazarynov, R.A. Surys // FTP. - 1972. - Vol. 6, No. 7. - P. 1359 - 1365. 2. Kazarynov R.F. To the theory of electrical properties of semiconductors with a superlattice / R.F. Kazarynov, R.A. Surys // FTP. - 1973. - Vol. 7, No. 3. - P. 488 - 499. 3. Faist J. Quantum Cascade Laser / J. Faist, F. Capasso, D. L. Sivco [et al.] // Science. - 1994. - V. 264, no 5158. – P. 533 - 556. 4. Faist J. High-power long wavelength (λ ~ 11.5 μm) quantum cascade lasers operating above room temperature / J. Faist, C. Sirtori, F. Capasso [et al.] // IEEE Photon. Technol. Lett. - 1998. - V. 10, No. 8. – P. 1100 - 1102. 5. Rochat M. Far-infrared (λ = 88 μm) electroluminescence in a quantum cascade structure / M. Rochat, J. Faist, M. Beck [et al.] // Appl. Phys. Lett. - 1998. - V.73, No. 25. – P. 3724 - 3727. 6. Sirtori C. GaAs / Al x Ga 1- x As Quantum Cascade Lasers / C. Sirtori, P. Kruck, S. Barbieri [et al.] // Appl. Phys. Lett. - 1998. - V. 73, No. 24. – P. 3486 - 3489. 7. Hofstetter D. Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers / D. Hofstetter, J. Faist, M. Beck and U. Oesterle // Appl. Phys. Lett. - 1999. V. 7 5, No. 24. – P. 3724 - 3727. 8. Sirtori C. Low-loss Al-free waveguides for unipolar semiconductor lasers / C. Sirtori, P. Kruck, S. Barbieri [et al.] // Appl. Phys. Lett. - 2004. V. 75, No. 25. – P. 3911 - 3914. 9. Sirtori C. Influence of DX Centers on the Performance of Unipolar Semiconductor Lasers Based on GaAs / Al x Ga 1- x As / C. Sirtori, S. Barbieri, P. Kruck [et al.] // IEEE Photon. Technol. Lett. - 1999. – V. 11, No. 9. – P. 1090 - 1092. 10. Hofstetter D. Measurement of semiconductor laser gain and dispersion curves utilizing Fourier transforms of the emission spectra / D. Hofstetter, J. Faist // IEEE Photon. Technol. Lett. - 1999. – V. 11, #11. – P. 1372 - 1374. 11. Muller A. Electrically tunable, room-temperature quantum-cascade lasers / A. Müller, M. Beck J. Faist [et al.] // Appl. Phys. Lett. - 1999. - V. 75, No. 11. – P. 1509 - 1512. 12. Blaser S. Room - temperature, continuous - wave, single - mode quantum - cascade lasers at λ ≃ 5.4 μm / S. Blaser, D. A. Yarekha, L. Hvozdara [et al.] // Appl. Phys. Lett. - 2004. - V. 86, No. 4. – P. 041109-1 - 041109-3. 13. Wittmann A. Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operating frequencies / A. Wittmann, M. Giovannini, J. Faist [et al.] // Appl. Phys. Lett. - 2006. - V. 89, No. 14. – P. 141116-1 - 141116-3. 14. Mohan A. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser / A. Mohan, A. Wittmann, A. Hugi [et al.] // Opt. Lett. - 2007. - V. 32, No. 19. – P. 2792 - 2794. 15. Geiser M. Strong light-matter coupling at terahertz frequencies at room temperature in electronic LC resonators / M. Geiser, C. Walther, G. Scalari [et al.] // Appl. Phys. Lett. - 2010. - V. 97, No. 19. – P. 191107 -1 - 19110 -3. 16. Bismuto A. High power Sb-free quantum cascade laser emitting at 3.3 µm above 350 K / A. Bismuto, M. Beck and J. Faist // Appl. Phys. Lett. - 2011. - V. 98, No. 19. – P. 191104 -1 - 191104 -3. 17. Tombez L. Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature / L. Tombez, J. Di Francesco, S. Schilt [et al.] // Opt. Lett. - 2011. - V. 36, No. 16. – P. 3109 - 3111. 18. Geiser M. Room temperature terahertz polariton emitter / M. Geiser, G. Scalari, F. Castellano, M. Beck and J. Faist // Appl. Phys. Lett. - 2012. - V. 104, No. 14. – P. 141118 -1 - 141118 -4. 19. Hofstetter D. Quantum-cascade-laser structures as photodetectors / D. Hofstetter, M. Beck and J. Faist // Appl. Phys. Lett. - 2002. - V. 81, No. 15. – P. 2683 - 2685. 20. Scalari G. A THz quantum cascade detector in a strong perpendicular magnetic field / G. Scalari, M. Graf, D. Hofstetter [et al.] // Semicond. Sci. Technol.. - 2002. - V. 21, No. 12. – P. 1743 - 1746. 21. Giorgetta FR 16.5 μm quantum cascade detector using miniband transport / F.R. Giorgetta, E. Baumann, M. Graf [et al.] // Appl. Phys. Lett. - 2007. - V. 90, No. 23. – P. 231111 -1 - 231111 -3. 22. Giorgetta FR Short wavelength (4 µm) quantum cascade detector based on strain compensated InGaAs/InAlAs / F.R. Giorgetta, E. Baumann, R. Théron [et al.] // Appl. Phys. Lett. - 2008. - V. 92, No. 12. – P. 121101 -1 - 121101 -3. 23. Schneider H. Room-temperature midinfrared two-photon photodetector / H. Schneider, H. C. Liu, S. Winnerl [et al.] // Appl. Phys. Lett. - 2008. - V. 93, No. 10. – P. 101114 -1 - 101114 -3. 24. Diehl L. Characterization and modeling of quantum cascade lasers based on a photon-assisted tunneling transition / L. Diehl, M. Beck, J. Faist [et al.] // IEEE J. Quantum Electron. – 2001. – V. 37, No. 3. – P. 448 - 455. 25. Willenberg H. Intersubband gain in a Bloch oscillator and quantum cascade laser / H. Willenberg, G. H. Döhler and J. Faist // Phys. Rev. B. - 2003. - V. 67, No. 8. – P. 085315 -1 - 080315 -10. 26. Scalari G. Far-infrared ( λ ~87 µm) bound-to-continuum quantum-cascade lasers operating up to 90 K / G. Scalari, L. Ajili, J. Faist [et al.] // Appl. Phys. Lett. - 2003. - V. 82, No. 19. – P. 3165 - 3167. 27. Sirtori C. The quantum cascade laser. A device based on two-dimensional electronic subbands / C. Sirtori, J. Faist, F. Capasso and A.Y. Cho // Pure. Appl. Opt. - 1998. – V. 7, No. 2. – P. 373 - 381. 28. E. I. Golant, Passage of electrons through potential barriers in high-frequency fields // E. I. Golant, A. B. Pashkovsky, A. S. Tager // FTP. - 1994. - Vol. 28, No. 5. - p. 740 - 751. 29. Geelvych E. A. Laser at interband transitions in quantum wells with coherent electron transport / E. A. Geelvych, A. B. Pashkovsky, E. I. Golant // Letters in ZhTP. - 2002. - Vol. 28, No. 23. – P. 1 - 8. 30. V. F. Elesin Coherent laser on a two-well structure / V. F. Elesin, A. V. Tsukanov // FTP. - 2000. - Vol. 34, No. 11. – P. 1404 - 1407. 31. V. F. Elesin, V. F. Elesin, I. Yu. Kateev, "High-frequency properties of two-chamber nanostructures," FTP. - 2008. - Vol. 42, No. 5. - p. 586 - 590. 32. M. A. Remnev, Influence of spacer layers on the current-current characteristics of a resonant tunnel diode / M. A. Remnev, I. Yu. Kateev, V F. Elesin // FTP. - 2010. - Vol. 44, No. 8. - p. 586 - 590. 33. Dupont E. Simplified density-matrix model applied to three-well terahertz quantum cascade lasers / E. Dupont, S. Fathololoumi, and H.C. Liu // Phys. Rev. B. - 2010. - V. 81, No. 20. – P. 205311 -1 - 205311 - 10. 34. N. V. Tkach, Flat two-barrier resonance-tunnel structures: resonance energies and resonance widths of quasi-stationary electron / N. V. Tkach, Yu. A. Sety // FTP. - 2009. - Vol. 43, No. 10. – P. 1346 - 1355. 35. M. V. Tkach, The S-matrix method in the theory of resonance energies and widths of quasi stationary electron states in an asymmetric two-barrier resonance-tunnel structure / M. IN. Tkach, Yu. AT. Networks // UFJ. – 2009. – Vol. 54, No. 6. – P. 611 - 620. 36. Tkach M. V. Quasi-stationary states of the electron and conductivity of the symmetrical three-barrier resonant tunnel structure / M. IN. Tkach, Yu. AT. Networks // UFJ. - 2009. - Vol. 55, No. 7. - P. 798 - 807. 37. V. F. Elesin Kinetic theory of a semiconductor cascade laser on quantum wells and wires / V. F. Elesin, A. V. Krasheninnikov // ZhETF. - 1997. - Vol. 111, no 2. – P. 681 - 695. 38. V. F. Elesin. Resonant tunneling of electrons interacting with phonons / V. F. Elesin // ZhETF. - 2003. - Vol. 123, No. 5. - P. 1096 - 1005. 39. V. F. Elesin, Reconfigurable terahertz generator on a two-well nanostructure with a coherent electronic subsystem / V. F. Elesin, // ZhETF. - 2005. - Vol. 128, no 5. – p. 922 - 937. 40. A. B. Pashkovsky Suppression of transitions between split levels of three-barrier structures with a variable spatial charge / A. B. Pashkovsky // FTP. - 2009. - Vol. 43, no 10. – P. 1356 - 1361. 41. A. B. Pashkovsky Resonant passage of electrons through three-barrier structures in a two-frequency electric field / A. B. Pashkovsky // FTP. - 2011. - Vol. 45, no 6. – p. 759 - 764. 42. N. V. Tkach, Evolution of spectral parameters of quasiparticles in an open symmetric three-barrier resonance tunnel nanostructure / N. V. Tkach, Yu. A. Sety // FTT. - 2011. - Vol. 53, no 3 – p. 550 - 557. 43. N. V. Tkach, Optimizing the configuration of a symmetric three-barrier resonance tunnel structure as an active element of a quantum cascade detector / N. V. Tkach, Yu. A. Sety // FTP. - 2011. - Vol. 45, no 3 - P. 387 - 395. 44. Liu HC Simplified density-matrix model applied to three-well terahertz quantum cascade lasers / H. C. Liu // Phys. Rev. B. - 1991. - V. 43, No. 15. – P. 12538 - 12548. 45. N. V. Tkach, N. V. Tkach, Yu. A. Sety, Non-resonant channels of transparency of a two-barrier nanosystem in an electromagnetic field of arbitrary voltage / Letters in ZhETF. - 2012. - Vol. 95, no 5 – p. 296 - 301. 46. Keay BJ Photon-Assisted Electric Field Domains and Multiphoton-Assisted Tunneling in Semiconductor Superlattices / B. J. Keay, S. J. Allen Jr., J. Galán [et al.] // Phys. Rev. Lett. - 1995. -V. 75, No. 22. – R. 4098 - 4101. 47. Guimarães PSS Photon-mediated sequential resonant tunneling in intense terahertz electric fields / P. S. S. Guimarães, B. J. Keay, J.P. Kaminski, [et al.] // Phys. Rev. Lett. - 1993. -V. 72, No. 24. – R. 3792 - 3795. 48. Krajewska K. Photon-mediated sequential resonant tunneling in intense terahertz electric fields / K. Krajewska, J.P. Kaminski and R. M. Potvliege // Ann. Phys. - 2008. -V. 323, No. 11. – R. 2639 - 2653 49. Krajewska K. Control of resonance states in crossed magnetic and laser fields / K. Krajewska, J.P. Kaminski // Laser Phys. - 2004. -V. 14, No. 2. – R. 194 - 199. 50. Asada M. Density-Matrix Modeling of Terahertz Photon-Assisted Tunneling and Optical Gain in Resonant Tunneling Structures / M. Asada // Jpn. J. Appl. Phys. – 2001. – V. 40, No. 3. – P. 5251 - 5256. 51. Thorwart M. Correlated sequential tunneling through a double barrier for interacting one dimensional electrons / M. Thorwart, R. Egger, M. Grifoni // Phys. Rev. B. - 2005. – V. 72, No. 3. – P. 035330-1 - 035330-3. 52. Kumar S. Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers / S. Kumar and Q. Hu // Phys. Rev. B. - 2009. - V. 80, No. 24. – P. 245316-1 - 245316-13. 53. Boykin TB Tight-binding model for GaAs/AlAs resonant-tunneling diodes / E. B. Boykin // Phys. Rev. B. - 1990. - V. 43, No. 6. – P. 4777 - 4784. 54. Mendez EE Resonant interband tunneling via Landau levels in polytype heterostructures / E. E. Mendez, H. Ohno, and L. Esaki // Phys. Rev. B. – 1990. – V. 43, No. 6. – P. 5196 - 5199. 55. Fu Y. Transient response in quantum transport of noninteracting electrons in nanostructures / Y. Fu // Phys. Rev. B. - 1991. - V. 44, No. 19. – P. 10884 - 10887 56. Klann. R. Electroluminescence study of resonant tunneling in GaAs-AlAs superlattices / R. Klann, H. T. Grahn, and K. Ploog // Phys. Rev. B. – 199 4. – V. 55, No. 15. – P. 11037 - 11044. 57. Boykin TB Current-voltage calculations for InAs/AlSb resonant-tunneling diodes / E. B. Boykin // Phys. Rev. B. - 1995. - V. 51, No. 7. – P. 4289 - 4295. 58. Taniyama H. Scattering-matrix method for the tight-binding model of heterostructure electronic states / H. Taniyama and A. Yoshii // Phys. Rev. B. - 1996. - V. 53, No. 15. – P. 9993 - 9999. 59. Kindlihagen A. AC response of bipolar double-barrier resonant-tunneling structures / A. Kindlihagen, A. G. Mal'shukov, K. A. Chao, M. Willander // Phys. Rev. B. - 1998. - V. 56, No. 16. – P. 10609 - 10618. 60. Cheianov V. AC response of bipolar double-barrier resonant-tunneling structures / V. Cheianov, P. Rodin andE. Schöll // Phys. Rev. B. – 199 8. – V. 62, No. 15. – P. 9966 - 9968. 61. Beletski N. N. Controlling the spin polarization of the electron current in a semimagnetic resonant tunneling diode / N. N. Beletski, G. P. Berman and S. A. Borysenko // Phys. Rev. B. - 2005. – V. 71, No. 12. – P. 125325-1 - 125325-8. 62. Ganguly M. Layers of semiconductor nanostructure for image processing applications / M. Ganguly and C. K. Sarkar // Semicond. Sci. Technol. - 2009. – V. 24, No. 2. – 035801, 5pp. 63. Rüth M. Zero field spin polarization in a two-dimensional paramagnetic resonant tunneling diode / M. Rüth, C. Gould, L. W. Molenkamp // Phys. Rev. B. – 2011. – V. 83, No. 15. – P. 155408-1 - 155408-7. 64. Essimbi B. Z. Electrical short pulses generation using a resonant tunneling diode nonlinear transmission line / B. Z. Essimbi and D. Jäger // Phys. Scr. - 2012. – V. 85, No. 3. – 025023, 5pp. 65. Davydov A.S. AC Linear and nonlinear resonance electron tunneling through a system of potential barriers / A. S. Davydov, V. N. Ermakov // Physica D. - 1987. – V. 28, No. 1-2. – P. 168 - 180. 66. Elesin V. F. To the theory of coherent resonant tunneling of interacting electrons / V. F. Elesin // ZhETF. - 2001. - Vol. 123, No. 5. - P. 1096 - 1005. 67. Elesin V. F. Theory of a coherent laser on an optimized nanostructure taking into account the interelectron interaction / V. F. Elesin // ZhETF. - 2003. - Vol. 122, No. 1. - P. 131 - 139. 68. V. F. Elesin Nonlinear response of a two-well nanostructure with consideration of interelectron interaction / V. F. Elesin, I. Yu. Kateev, A. I. Podlyvaev // FTP. - 2009. - Vol. 43, no 2. – P. 269 - 273. 69. Kindlihagen. A. AC response of bipolar double-barrier resonant-tunneling structures / A. Kindlihagen, A. G. Mal'shukov, KA Chao, M. Willander // Phys. Rev. B. - 1998. - V. 58, No. 16. – P 10609 - 10618. 70. Kraynov V. P. Resonant reflection of a Bose–Einstein condensate by a double barrier within the Gross–Pitaevskii equation / V. P. Kraynov and H. A. Ishkhanyan // Phys. Scr. - 2010. – V. 140, No. 2010 – 014052, 3pp. 71. Ishkhanyan HA Resonance reflection by the one-dimensional Rosen-Morse potential well in the Gross-Pitaevskii problem / H. A. Ishkhanyan, V. P. Kraynov // JETP. - 2009. - V. 109, No. 4. – P. 585 - 589. 72. Carr LD Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity / L. D. Carr, C. W. Clark and W. P. Reinhardt // Phys. Rev. A. - 2000. – V. 62, No. 6. – P. 063610-1 – 063610-10. 73. Carr LD Stationary solutions of the one-dimensional nonlinear Schrödinger equation. II. Case of attractive nonlinearity / L. D. Carr, C. W. Clark and W. P. Reinhardt // Phys. Rev. A. - 2000. – V. 62, No. 6. – P. 063611-1 - 063611-10. 74. Bronski JC Bose-Einstein Condensates in Standing Waves: The Cubic Nonlinear Schrödinger Equation with a Periodic Potential / J. C. Bronski, L. D. Carr, B. Deconinck and J. N. Kutz // Phys. Rev. Lett. - 2001. -V. 86, No. 8. – R. 1402 - 1405. 75. Bronski JC Stability of repulsive Bose-Einstein condensates in a periodic potential / J. C. Bronski, L. D. Carr, B. Deconinck, J N. Kutz and K. Promislow // Phys. Rev. E.- 2001. – V. 63, No. 3. – P. 036612-1 - 036612-11. 76. Carr LD Stationary solutions of the one-dimensional nonlinear Schrödinger equation. II. Case of attractive nonlinearity / L.D. Carr, J.N. Kutz and W. P. Reinhardt // Phys. Rev. E. - 2001. – V. 63, No. 6. – P. 066604-1 - 066604-9. 77. Seaman BT Effect of a potential step or impurity on the Bose-Einstein condensate mean field / B. T. Seaman, L. D. Carr, and M. J. Holland // Phys. Rev. A. - 2005. – V. 71, No. 3. – P. 033609-1 - 033609-10. 78. Seaman BT Nonlinear band structure in Bose-Einstein condensates: Nonlinear Schrödinger equation with a Kronig-Penney potential / B. T. Seaman, L. D. Carr, and M. J. Holland // Phys. Rev. A. - 2005. – V. 71, No. 3. – P. 033622-1 - 033622-9. 79. Dounas-Frazer DR Ultracold Bosons in a Tilted Multilevel Double-Well Potential / D. R. Dounas Frazer, A. M. Hermundstad and L. D. Carr // Phys. Rev. Lett. - 2007. -V. 99, No. 20. – R. 200402-1 - 200402-4. 80. Snyder VD Hartree-Fock-Bogoliubov model and simulation of attractive and repulsive Bose Einstein condensates / V. D. Snyder, S. J. J. M. F. Kokkelmans and L. D. Carr // Phys. Rev. A. - 2005. – V. 85, No. 3. – P. 033616-1 - 033616-13. 81. Carr LD Nonlinear scattering of a Bose-Einstein condensate on a rectangular barrier / L. D. Carr, R. R. Miller, D. R. Bolton and S. A. Strong // Phys. Rev. A. - 2012. – V. 86, No. 2. – P. 023621-1 - 023621-13. 82. Rapedius K. Analytical study of resonant transport of Bose-Einstein condensates / K. Rapedius, D. Witthaut, and H. J. Korsch // Phys. Rev. A. - 2006. – V. 73, No. 3. – P. 033608-1 - 033608-12. 83. Rapedius K. Barrier transmission for the one-dimensional nonlinear Schrödinger equation: Resonances and transmission profiles / K. Rapedius, and H. J. Korsch // Phys. Rev. A. - 2006. – V. 77, No. 6. – P. 063610-1 - 063610-11. 84. Rapedius K. Barrier transmission for the nonlinear Schrödinger equation: surprises of nonlinear transport / K. Rapedius, and H. J. Korsch // J. Phys. A: Math. Theor. - 2008. – V. 77, No. 2008 – 355001, 6pp. 85. Rapedius K. Resonance solutions of the nonlinear Schrödinger equation in an open double-well potential / K. Rapedius, and H. J. Korsch // J. Phys. B: At. Mol. Opt. Phys - 2009. – V. 42, No. 2009 – 044005, 12pp. 86. Rapedius K. Multi-barrier resonant tunneling for the one-dimensional nonlinear Schrödinger Equation / K. Rapedius, and H. J. Korsch // J. Phys. A: Math. Theor. - 2009. – V. 42, No. 2009 – 425301, 20 pp. 87. Rapedius K. Nonlinear resonant tunneling of Bose-Einstein condensates in tilted optical lattices / K. Rapedius, C. Elsen, D. Witthaut, S. Wimberger and H. J. Korsch // Phys. Rev. A. - 2010. – V. 82, No. 6. – P. 063601-1 - 063601-7. 88. Rapedius K. Calculating resonance positions and widths using the Siegert approximation method / K. Rapidius // Eur. J.Phys. - 2011. – V. 32, No. 5. – P. 1199 - 1211. 89. Abramowitz M. Handbook of Mathematical Functions / M. Abramowitz, I.Stegun. – New York: DoverPublications, 1974. – 1150 p. 90. A. B. Pashkovsky Variable spatial charge and ambiguity of quantum states in two-barrier structures / A. B. Pashkovsky // FTP. - 2000. - Vol. 32, no 3. – p. 340 - 348. 91. Golant. E. I. Two-frequency laser generation in three-barrier heterostructures with coherent electron transport / E. I. Golant, A. A. Kapralova, V. M. Lukashin, A. B. Pashkovsky // Letters in ZhTP. - 2000. - Vol. 36, no 23. – p. 17 - 23. 92. Pashkovsky A.B. Flatness and sharp expansion of resonance levels in three-barrier structures / A.B. Pashkovsky // Letters to ZhETF. - 2002. - Vol. 82, No. 4. – P. 228 - 233. 93. Galiev V. I. Multichannel scattering of charge carriers on heterostructures with quantum wells / V. I. Galiev, A.N. Kruglov, A.F. Polupanov et al. // FTP. – 2002. -. T 36, No. 5. – P. 576 - 581. 94. Golant, E. I. The effect of virtual transitions in a high-frequency field on electronic transport in three-barrier structures/ E. I. Golant // Letters in ZhETF. - 2004. - T. 73, No. 11. - pp. 698 - 701. 95. E. I. Golant Anomalous suppression by plasma oscillations of the resonant interaction of electrons with a high-frequency field in asymmetric two-barrier structures / E. I. Golant, A. B. Pashkovsky // Letters in ZhTP. - 1996. - Vol. 64, No. 12. – P. 829 - 834. 96. Belyaeva I.V. Evaluation of negative dynamic conductivity of two-barrier resonance tunnel structures / I.V. Belyaeva, A.B. Pashkovsky // Letters in ZhTP. - 1995. - Vol. 21, no 6. – p. 46 – 49. 97. E. I. Golant Unusual behavior of the electron reflection coefficient from asymmetric two-barrier quantum structures in a high-frequency field of finite amplitude / E. I. Golant, A. B. Pashkovsky // Letters in ZhETF. - 1996. - Vol. 63, No. 7. – p. 559 - 564. 98. Belyaeva I.V. Peculiarities of resonant interaction of electrons with a high-frequency electric field in two-barrier structures / E.I. Golant, A.B. Pashkovsky, I.V. Belyaeva// FTP. - 1997. - Vol. 31, No. 2. - C. 137 - 144. 99. E. I. Golant, Dependence of resonant conductivity of symmetric two-barrier structures on the amplitude of a high-frequency field / E. I. Golant, A. B. Pashkovsky // FTP. - 1997. - Vol. 31, No. 8. - C. 950 - 953. 100. E. I. Golant Resonant interaction of electrons with a high-frequency electric field in asymmetric two-barrier structures / E. I. Golant, A. B. Pashkovsky // FTP. - 1997. - Vol. 31, No. 9. - C. 1077 - 1082. 101. N. V. Tkach, Evolution and collapse of quasi-stationary electron states in flat symmetric resonance tunnel structures / N. V. Tkach, Yu. A. Sety // FNT. - 2009. - Vol. 35, no 7 – p. 710 - 720. 102. Hu J. The effect of temperature on the resonant tunneling and electric field domain formation in multiple quantum well superlattices / J. Hu, A. Shakouri and A. Yariv // Appl. Phys. Lett. - 1997. - V. 81, No. 4. – P. 2033 - 2035. 103. Miyamoto K. Resonant tunneling in asymmetrical double - barrier structures under an applied electric field. / K. Miyamoto, H. Yamamoto // Appl. Phys. Lett. - 1998. - V. 84, No. 1. – P. 311 - 318. 104. Yong G. Resonant tunneling in step-barrier structures under an applied electric field / G. Yong, B. Gu, J. Yu, Y. Kawazoe // Appl. Phys. Lett. - 1998. - V. 84, No. 2. – P. 918 - 924. 105. Yong G. Resonant tunneling in step-barrier structures under an applied electric field. / G. Yong, B. Gu, J. Yu, Y. Kawazoe // Appl. Phys. Lett. - 1998. - V. 84, No. 2. – P. 918 - 924. 106. Zaslavsky A. Magnetotunneling in double barrier heterostructures / A. Zaslavsky, D. C. Tsui, M. Santos and M. Shayegan // Phys. Rev. B. - 1989. – V. 40, No. 14. – P. 9829 - 9833. 107. Blaser S. Terahertz intersubband emission in strong magnetic fields / S. Blaser, M. Rochat, M. Beck [et al.] // Appl. Phys. Lett. - 1998. - V. 81, No. 67. – P. 67 - 69. 108. Blaser S. Terahertz interminiband emission and magneto - transport measurements from a quantum cascade chirped superlattice / S. Blaser, M. Rochat, L. Ajili [et al.] // Physica E. - 2002. - V. 13, No. 2-4. – P. 854 - 857. 109. Scalari G. Population inversion by resonant magnetic confinement in terahertz quantum-cascade lasers / G. Scalari, L. Ajili [et al.] // Appl. Phys. Lett. - 2003. - V. 83, No. 17. – P. 3453 - 3455. 110. Scalari G. Strong confinement in terahertz intersubband lasers by intense magnetic fields / G. Scalari, C. Walther and L. Sirigu // Phys. Rev. B. - 2007. – V. 76, No. 11. – P. 115305-1 - 115305-7. 111. Johansson P. Tunneling between two-dimensional electron systems in a strong magnetic field / P. Johansson, J.M. Kinaret // Physica B. - 1995. - V. 210, No. 3-4. – P. 446 - 451. 112. Yong G. Comparison of electronic transport through triple electric - barrier structures and triple magnetic - barrier structures / G. Yong, H. Wang, Z. Q. Li, and Y. Kawazoe // Phys. Lett. A. - 1998. - V. 238, No. 2-3. – P. 185 - 191. 113. Yong G. Electron coherent tunneling in low-dimensional magnetic quantum structures / G. Yong, H. Wang, J. Yu, Y. Kawazoe // Physica E. - 2000. - V. 8, No. 2. – P. 146 - 153. 114. Yong G. Electric - field effects he electronic tunneling transport in magnetic barrier structures / G. Yong, H. Wang, B. L. Gu // Phys. Rev. B. – 2000. – V. 61, No. 3. – P. 1728 - 1731. 115. Wang Z.M. Transmission characteristics including the coupling effect between normal and lateral degrees of freedom in step-barrier structures with a longitudinal magnetic field. / Z. M. Wang, M. Zhang, Y. C. Li // Physica E. - 2003. – V. 18, No. 4. – P. 469 - 474. 116. Wang H. The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures / H. Wang, Y. Zhang, H Hu // J. Appl. Phys. - 2007 - V. 101, No. 2. - P. 023712-1 – 023712-5. 117. Zaslavsky A. Transport in transverse magnetic fields in resonant tunneling structures / A. Zaslavsky, J. P. Li, D. C. Tsui, M. Santos and M. Shayegan // Phys. Rev. B.- 1990. - V. 42, No. 2. – P. 1374 - 1380. 118. Blaser S. Long - wavelength ( λ ~10.5 μ m ) quantum cascade lasers based on a photon - assisted tunneling transition in a strong magnetic field. / S. Blaser, L Diehl, M. Beck, J. Faist // Physica E. – 2000 – V. 7, No. 1-2. – P. 33 - 36. 119. Dubrovskii Yu. V. Electron tunneling through single - barrier heterostructures in a magnetic field. / Yu. V. Dubrovskii, Yu. N. Khanin [et al.] // Phys. Rev. B. - 1994. - V. 50, No. 7. – P 4897 - 4900. 120. Serov A. Yu. Resonant tunneling through quantum hole with two barriers in by a transverse magnetic field / A. Yu. Serov, G. G. Zegrya // ZhETF. - 2004. - Vol. 126, no 1. – P. 170 - 180. 121. Belle G. Measurement of the miniband width in a superlattice with interband absorption in a magnetic field parallel to the layers. / G. Belle, G. C. Maan //Solid StateCommun. - 1985. - V. 56, No. 1. – P. 65 - 88. 122. Chung S. K. The effect on currents of anticrossings in the energy spectrum in quantum wells under crossed electric and magnetic fields / S. K. Chung O. Olendski // Semicond. Sci. Technol. - 1997. - V. 12, No. 7. – P. 788 - 795. 123. Elagoz S. Double quantum well electronic energy spectrum within a tilted magnetic field / S. Elagoz, H. Elagoz, H. Sari, Y. Ergün, P. Karasu // Superlattices and Microstr.. - 1999. - V. 26, No. 5. – P. 300 - 305. 124. Hung KM. Transfer - matrix theory of the energy levels and electron tunneling in heterostructures under an in - plane magnetic field. / KM. Hung and G. Y. Wu // Phys. Rev. B. - 1992. - V. 45, No. 7. – P. 3461 - 3464. 125. Yong G. Quantum magnetotransport of electrons in double-barrier resonant-tunneling structures. / G. Yong and YC. Li, X - G. Cong and C - W. Wei // Phys. Rev. B. - 1994. - V. 50, No. 23. – P. 17249 - 17255. 126. Samarsky A. A. Methods of solving grid equations / Samarsky A. A, E. S. Nikolaev. – M.: Nauka, 1978. - 592 p. 127. Ning K. A 10.7 μm InGaAs/InAlAs Quantum Cascade Detector. / K. Ning, QU. Liu, L. Lu [ et al. ] // Chin. Phys. Lett. - 2010. - V. 27, No. 12. – P. 128503-1 - 128503-3. 128. Tkach M.V. Quasiparticles in nanoheterosystems. Quantum dots and wires / M. V. Tkach – Chernivtsi: Ruta, 2003. – 312 p. 129. www.top500.org 130. Khimich A.N., Molchanov I.N., Mova V.I. etc. Numerical software of the MIMD computer by Inpark0m. - Kyiv: Nauk. Dumka, 2007. 131. Khimich A.N., Molchanov I.N., Popov A.V., Chistyakova T.V., Yakovlev M.F. Parallel algorithms for solving problems of computational mathematics. - Kyiv: Nauk. dumka, 2008. 132. Nikolaevskaya E., Khimich A., Chistyakova T. Programming with Multiple Precision. Studies in Computational Intelligence.. Springer-Verlag. Berlin, Heidelberg, 2012 133. Khimich О.М., Chistyakova T.V, Sidoruk V.A., Ershov P.S. Adaptive computer technologies for solving problems of computational and applied mathematics. Cybernetics and Systems Analysis, 2021, V. 57(6), 990–997. 134. Khimich O.M., Popov O.V., Chistyakov V.A., Kokhanivskyi V.O. Adaptive Algorithms for Solving Eigenvalue Problems in the Variable Computer Environment of Supercomputers, 2023, V. 59(«3), 480–492. 135. Khimich, A.N. Estimates of the total error in the solution of systems of linear algebraic equations for matrices of arbitrary ranks. Computer mathematics. 2002. No. 2, 41- 49. 136. Khimich, A.N. Perturbation bounds for the least squares problem. Cybernetics and Systems Analysis. 1996. Vol. 32(3). 434–436. doi: 10.1007/BF02366509 137. Khimich, A.N., Popov, A.V., Polyanko, V.V. Algorithms of parallel computations for linear algebra problems with irregularly structured matrices. Cybernetics and Systems Analysis. 2011. Vol. 47(6), 973– 985. doi: 10.1007/s10559-011-9377-4 138. Khimich, A.N., Yakovlev, M.F. On the solution of systems with matrices of incomplete rank. Computer Mathematics. 2003. No. 1, 1–15. 139. Molchanov, I.N., Popov, A.V. & Khimich, A.N. Algorithm to solve the partial eigenvalue problem for large profile matrices. Cybernetics and Systems Analysis. 1992. Vol. 28(3), 281–286. https://doi.org/10.1007/BF01126215 140. Popov, A.V., Khimich, A.N. Research and solution of the first basic problem of the theory of elasticity. Computer Mathematics. 2003. No. 2,105–114. 141. Popov, A.V. On an effective method for solving incorrect problems with sparse matrices. Theory of Optimal Solutions. 2013. P. 77–81. 142. Gorodetsky A.S., Evzerov I.D. Computer models of structures. Kyiv: FACT, 2007. 394 p. 143. Popov A.V., Chistyakov O.V. On the effectiveness of algorithms with multilevel parallelism. // Physico-mathematical modeling and information technologies. 2021. Issue 33, 133–137. doi: 10.15407/fmmit2021.33.133 144. Popov O.V. On parallel algorithms for factorization of sparse matrices. // Computer mathematics. Sat. science labor. 2013. Issue 2, 115–124. http://dspace.nbuv.gov.ua/handle/123456789/84755 145. Khimich O.M., Sydoruk V.A. The use of mixed bit rate in mathematical modeling. // Mathematical and computer modeling. Series: Physical and mathematical sciences. 2019. Issue 19, 180–187. http://dspace.nbuv.gov.ua/handle/123456789/84755 146. Khimich O.M., Sydoruk V.A. A tiling hybrid algorithm for the factorization of structurally symmetric matrices. Theory of optimal solutions. Coll. of science works. 2017, 125–132. 147. Alan George, Joseph W-H Liu Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, 1981. 148. Khimich O.M., Popov A.V. Solving Ill-Posed Problems of the Theory of Elasticity Using High Performance Computing Systems. // Cybernetics and Systems Analysis, Vol. 59(5), 2023, 743–752. doi: 10.1007/s10559-023-00610-1 |
Content type: | Monograph |
�蝷箔����: | Наукові публікації працівників кафедри програмної інженерії |
��辣銝剔�﹝獢�:
獢�獢� | ��膩 | 憭批�� | �撘� | |
---|---|---|---|---|
METHODS_AND_HIGH-PERFORMANCE_TECHNOLOGIES.pdf | 639,62 kB | Adobe PDF | 璉�閫�/撘�� |
�DSpace銝剜�������★��������雿��.
蝞∠�極�