Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/48071
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorBoyko, I. V.-
dc.contributor.authorPetryk, M. R.-
dc.contributor.authorKhimich, O. M.-
dc.contributor.authorPopov, O. V.-
dc.date.accessioned2025-01-29T11:12:25Z-
dc.date.available2025-01-29T11:12:25Z-
dc.date.issued2024-
dc.identifier.citationBoyko I.V., Petryk M.R., Khimich O.M., Popov O.V. Methods and high-performance technologies of mathematical modeling of complex multi-component systems, multy-dimensional nanostructures and processes: monograph – Kyiv: National Academy of Sciences of Ukraine: Institute of Cybernetics named after V.M. Glushkov, 2024. – 161 p. Ill. 26, Bibliography 148 ref.uk_UA
dc.identifier.isbn978-617-14-0352-9-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/48071-
dc.description.abstractThis monograph highlights new approaches to the development of modeling and complex processes in nanostructures and nanoporous media based on high performance parallel computing, supercomputer technologies of computational mathematics tools. The design of the systems under consideration is based on new science-intensive technologies of object description, new computational solutions taking into account the architecture of computer systems and software. For scientists, specialists in the field of applied mathematics, mathematical modeling, high-performance parallel computing and software engineering, teachers of higher educational institutions, postgraduate students, engineers and studentsuk_UA
dc.language.isoenuk_UA
dc.publisherNational Academy of Sciences of Ukraine: Institute of Cybernetics named after V.M. Glushkovuk_UA
dc.titleMethods and high performance technologies of mathematical modeling of complex multi component systems, multy-dimensional nanostructures and processesuk_UA
dc.typeMonographuk_UA
dc.rights.holder© I.V. Boyko, M.R Petryk, O.M. Khimich. O.V. Popov, 2024uk_UA
dc.rights.holder© National Academy of sScienses of Ukraine, V.M. Gluskov Institute of cybernetics, 2024uk_UA
dc.format.pages148-
dc.subject.udc519.6uk_UA
dc.subject.udc681.3uk_UA
dc.relation.references1. Kazarynov R.F. On the possibility of amplifying electromagnetic waves in semiconductors with a superlattice / R.F. Kazarynov, R.A. Surys // FTP. - 1972. - Vol. 6, No. 7. - P. 1359 - 1365.uk_UA
dc.relation.references2. Kazarynov R.F. To the theory of electrical properties of semiconductors with a superlattice / R.F. Kazarynov, R.A. Surys // FTP. - 1973. - Vol. 7, No. 3. - P. 488 - 499.uk_UA
dc.relation.references3. Faist J. Quantum Cascade Laser / J. Faist, F. Capasso, D. L. Sivco [et al.] // Science. - 1994. - V. 264, no 5158. – P. 533 - 556.uk_UA
dc.relation.references4. Faist J. High-power long wavelength (λ ~ 11.5 μm) quantum cascade lasers operating above room temperature / J. Faist, C. Sirtori, F. Capasso [et al.] // IEEE Photon. Technol. Lett. - 1998. - V. 10, No. 8. – P. 1100 - 1102.uk_UA
dc.relation.references5. Rochat M. Far-infrared (λ = 88 μm) electroluminescence in a quantum cascade structure / M. Rochat, J. Faist, M. Beck [et al.] // Appl. Phys. Lett. - 1998. - V.73, No. 25. – P. 3724 - 3727.uk_UA
dc.relation.references6. Sirtori C. GaAs / Al x Ga 1- x As Quantum Cascade Lasers / C. Sirtori, P. Kruck, S. Barbieri [et al.] // Appl. Phys. Lett. - 1998. - V. 73, No. 24. – P. 3486 - 3489.uk_UA
dc.relation.references7. Hofstetter D. Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers / D. Hofstetter, J. Faist, M. Beck and U. Oesterle // Appl. Phys. Lett. - 1999. V. 7 5, No. 24. – P. 3724 - 3727.uk_UA
dc.relation.references8. Sirtori C. Low-loss Al-free waveguides for unipolar semiconductor lasers / C. Sirtori, P. Kruck, S. Barbieri [et al.] // Appl. Phys. Lett. - 2004. V. 75, No. 25. – P. 3911 - 3914.uk_UA
dc.relation.references9. Sirtori C. Influence of DX Centers on the Performance of Unipolar Semiconductor Lasers Based on GaAs / Al x Ga 1- x As / C. Sirtori, S. Barbieri, P. Kruck [et al.] // IEEE Photon. Technol. Lett. - 1999. – V. 11, No. 9. – P. 1090 - 1092.uk_UA
dc.relation.references10. Hofstetter D. Measurement of semiconductor laser gain and dispersion curves utilizing Fourier transforms of the emission spectra / D. Hofstetter, J. Faist // IEEE Photon. Technol. Lett. - 1999. – V. 11, #11. – P. 1372 - 1374.uk_UA
dc.relation.references11. Muller A. Electrically tunable, room-temperature quantum-cascade lasers / A. Müller, M. Beck J. Faist [et al.] // Appl. Phys. Lett. - 1999. - V. 75, No. 11. – P. 1509 - 1512.uk_UA
dc.relation.references12. Blaser S. Room - temperature, continuous - wave, single - mode quantum - cascade lasers at λ ≃ 5.4 μm / S. Blaser, D. A. Yarekha, L. Hvozdara [et al.] // Appl. Phys. Lett. - 2004. - V. 86, No. 4. – P. 041109-1 - 041109-3.uk_UA
dc.relation.references13. Wittmann A. Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operating frequencies / A. Wittmann, M. Giovannini, J. Faist [et al.] // Appl. Phys. Lett. - 2006. - V. 89, No. 14. – P. 141116-1 - 141116-3.uk_UA
dc.relation.references14. Mohan A. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser / A. Mohan, A. Wittmann, A. Hugi [et al.] // Opt. Lett. - 2007. - V. 32, No. 19. – P. 2792 - 2794.uk_UA
dc.relation.references15. Geiser M. Strong light-matter coupling at terahertz frequencies at room temperature in electronic LC resonators / M. Geiser, C. Walther, G. Scalari [et al.] // Appl. Phys. Lett. - 2010. - V. 97, No. 19. – P. 191107 -1 - 19110 -3.uk_UA
dc.relation.references16. Bismuto A. High power Sb-free quantum cascade laser emitting at 3.3 µm above 350 K / A. Bismuto, M. Beck and J. Faist // Appl. Phys. Lett. - 2011. - V. 98, No. 19. – P. 191104 -1 - 191104 -3.uk_UA
dc.relation.references17. Tombez L. Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature / L. Tombez, J. Di Francesco, S. Schilt [et al.] // Opt. Lett. - 2011. - V. 36, No. 16. – P. 3109 - 3111.uk_UA
dc.relation.references18. Geiser M. Room temperature terahertz polariton emitter / M. Geiser, G. Scalari, F. Castellano, M. Beck and J. Faist // Appl. Phys. Lett. - 2012. - V. 104, No. 14. – P. 141118 -1 - 141118 -4.uk_UA
dc.relation.references19. Hofstetter D. Quantum-cascade-laser structures as photodetectors / D. Hofstetter, M. Beck and J. Faist // Appl. Phys. Lett. - 2002. - V. 81, No. 15. – P. 2683 - 2685.uk_UA
dc.relation.references20. Scalari G. A THz quantum cascade detector in a strong perpendicular magnetic field / G. Scalari, M. Graf, D. Hofstetter [et al.] // Semicond. Sci. Technol.. - 2002. - V. 21, No. 12. – P. 1743 - 1746.uk_UA
dc.relation.references21. Giorgetta FR 16.5 μm quantum cascade detector using miniband transport / F.R. Giorgetta, E. Baumann, M. Graf [et al.] // Appl. Phys. Lett. - 2007. - V. 90, No. 23. – P. 231111 -1 - 231111 -3.uk_UA
dc.relation.references22. Giorgetta FR Short wavelength (4 µm) quantum cascade detector based on strain compensated InGaAs/InAlAs / F.R. Giorgetta, E. Baumann, R. Théron [et al.] // Appl. Phys. Lett. - 2008. - V. 92, No. 12. – P. 121101 -1 - 121101 -3.uk_UA
dc.relation.references23. Schneider H. Room-temperature midinfrared two-photon photodetector / H. Schneider, H. C. Liu, S. Winnerl [et al.] // Appl. Phys. Lett. - 2008. - V. 93, No. 10. – P. 101114 -1 - 101114 -3.uk_UA
dc.relation.references24. Diehl L. Characterization and modeling of quantum cascade lasers based on a photon-assisted tunneling transition / L. Diehl, M. Beck, J. Faist [et al.] // IEEE J. Quantum Electron. – 2001. – V. 37, No. 3. – P. 448 - 455.uk_UA
dc.relation.references25. Willenberg H. Intersubband gain in a Bloch oscillator and quantum cascade laser / H. Willenberg, G. H. Döhler and J. Faist // Phys. Rev. B. - 2003. - V. 67, No. 8. – P. 085315 -1 - 080315 -10.uk_UA
dc.relation.references26. Scalari G. Far-infrared ( λ ~87 µm) bound-to-continuum quantum-cascade lasers operating up to 90 K / G. Scalari, L. Ajili, J. Faist [et al.] // Appl. Phys. Lett. - 2003. - V. 82, No. 19. – P. 3165 - 3167.uk_UA
dc.relation.references27. Sirtori C. The quantum cascade laser. A device based on two-dimensional electronic subbands / C. Sirtori, J. Faist, F. Capasso and A.Y. Cho // Pure. Appl. Opt. - 1998. – V. 7, No. 2. – P. 373 - 381.uk_UA
dc.relation.references28. E. I. Golant, Passage of electrons through potential barriers in high-frequency fields // E. I. Golant, A. B. Pashkovsky, A. S. Tager // FTP. - 1994. - Vol. 28, No. 5. - p. 740 - 751.uk_UA
dc.relation.references29. Geelvych E. A. Laser at interband transitions in quantum wells with coherent electron transport / E. A. Geelvych, A. B. Pashkovsky, E. I. Golant // Letters in ZhTP. - 2002. - Vol. 28, No. 23. – P. 1 - 8.uk_UA
dc.relation.references30. V. F. Elesin Coherent laser on a two-well structure / V. F. Elesin, A. V. Tsukanov // FTP. - 2000. - Vol. 34, No. 11. – P. 1404 - 1407.uk_UA
dc.relation.references31. V. F. Elesin, V. F. Elesin, I. Yu. Kateev, "High-frequency properties of two-chamber nanostructures," FTP. - 2008. - Vol. 42, No. 5. - p. 586 - 590.uk_UA
dc.relation.references32. M. A. Remnev, Influence of spacer layers on the current-current characteristics of a resonant tunnel diode / M. A. Remnev, I. Yu. Kateev, V F. Elesin // FTP. - 2010. - Vol. 44, No. 8. - p. 586 - 590.uk_UA
dc.relation.references33. Dupont E. Simplified density-matrix model applied to three-well terahertz quantum cascade lasers / E. Dupont, S. Fathololoumi, and H.C. Liu // Phys. Rev. B. - 2010. - V. 81, No. 20. – P. 205311 -1 - 205311 - 10.uk_UA
dc.relation.references34. N. V. Tkach, Flat two-barrier resonance-tunnel structures: resonance energies and resonance widths of quasi-stationary electron / N. V. Tkach, Yu. A. Sety // FTP. - 2009. - Vol. 43, No. 10. – P. 1346 - 1355.uk_UA
dc.relation.references35. M. V. Tkach, The S-matrix method in the theory of resonance energies and widths of quasi stationary electron states in an asymmetric two-barrier resonance-tunnel structure / M. IN. Tkach, Yu. AT. Networks // UFJ. – 2009. – Vol. 54, No. 6. – P. 611 - 620.uk_UA
dc.relation.references36. Tkach M. V. Quasi-stationary states of the electron and conductivity of the symmetrical three-barrier resonant tunnel structure / M. IN. Tkach, Yu. AT. Networks // UFJ. - 2009. - Vol. 55, No. 7. - P. 798 - 807.uk_UA
dc.relation.references37. V. F. Elesin Kinetic theory of a semiconductor cascade laser on quantum wells and wires / V. F. Elesin, A. V. Krasheninnikov // ZhETF. - 1997. - Vol. 111, no 2. – P. 681 - 695.uk_UA
dc.relation.references38. V. F. Elesin. Resonant tunneling of electrons interacting with phonons / V. F. Elesin // ZhETF. - 2003. - Vol. 123, No. 5. - P. 1096 - 1005.uk_UA
dc.relation.references39. V. F. Elesin, Reconfigurable terahertz generator on a two-well nanostructure with a coherent electronic subsystem / V. F. Elesin, // ZhETF. - 2005. - Vol. 128, no 5. – p. 922 - 937.uk_UA
dc.relation.references40. A. B. Pashkovsky Suppression of transitions between split levels of three-barrier structures with a variable spatial charge / A. B. Pashkovsky // FTP. - 2009. - Vol. 43, no 10. – P. 1356 - 1361.uk_UA
dc.relation.references41. A. B. Pashkovsky Resonant passage of electrons through three-barrier structures in a two-frequency electric field / A. B. Pashkovsky // FTP. - 2011. - Vol. 45, no 6. – p. 759 - 764.uk_UA
dc.relation.references42. N. V. Tkach, Evolution of spectral parameters of quasiparticles in an open symmetric three-barrier resonance tunnel nanostructure / N. V. Tkach, Yu. A. Sety // FTT. - 2011. - Vol. 53, no 3 – p. 550 - 557.uk_UA
dc.relation.references43. N. V. Tkach, Optimizing the configuration of a symmetric three-barrier resonance tunnel structure as an active element of a quantum cascade detector / N. V. Tkach, Yu. A. Sety // FTP. - 2011. - Vol. 45, no 3 - P. 387 - 395.uk_UA
dc.relation.references44. Liu HC Simplified density-matrix model applied to three-well terahertz quantum cascade lasers / H. C. Liu // Phys. Rev. B. - 1991. - V. 43, No. 15. – P. 12538 - 12548.uk_UA
dc.relation.references45. N. V. Tkach, N. V. Tkach, Yu. A. Sety, Non-resonant channels of transparency of a two-barrier nanosystem in an electromagnetic field of arbitrary voltage / Letters in ZhETF. - 2012. - Vol. 95, no 5 – p. 296 - 301.uk_UA
dc.relation.references46. Keay BJ Photon-Assisted Electric Field Domains and Multiphoton-Assisted Tunneling in Semiconductor Superlattices / B. J. Keay, S. J. Allen Jr., J. Galán [et al.] // Phys. Rev. Lett. - 1995. -V. 75, No. 22. – R. 4098 - 4101.uk_UA
dc.relation.references47. Guimarães PSS Photon-mediated sequential resonant tunneling in intense terahertz electric fields / P. S. S. Guimarães, B. J. Keay, J.P. Kaminski, [et al.] // Phys. Rev. Lett. - 1993. -V. 72, No. 24. – R. 3792 - 3795.uk_UA
dc.relation.references48. Krajewska K. Photon-mediated sequential resonant tunneling in intense terahertz electric fields / K. Krajewska, J.P. Kaminski and R. M. Potvliege // Ann. Phys. - 2008. -V. 323, No. 11. – R. 2639 - 2653uk_UA
dc.relation.references49. Krajewska K. Control of resonance states in crossed magnetic and laser fields / K. Krajewska, J.P. Kaminski // Laser Phys. - 2004. -V. 14, No. 2. – R. 194 - 199.uk_UA
dc.relation.references50. Asada M. Density-Matrix Modeling of Terahertz Photon-Assisted Tunneling and Optical Gain in Resonant Tunneling Structures / M. Asada // Jpn. J. Appl. Phys. – 2001. – V. 40, No. 3. – P. 5251 - 5256.uk_UA
dc.relation.references51. Thorwart M. Correlated sequential tunneling through a double barrier for interacting one dimensional electrons / M. Thorwart, R. Egger, M. Grifoni // Phys. Rev. B. - 2005. – V. 72, No. 3. – P. 035330-1 - 035330-3.uk_UA
dc.relation.references52. Kumar S. Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers / S. Kumar and Q. Hu // Phys. Rev. B. - 2009. - V. 80, No. 24. – P. 245316-1 - 245316-13.uk_UA
dc.relation.references53. Boykin TB Tight-binding model for GaAs/AlAs resonant-tunneling diodes / E. B. Boykin // Phys. Rev. B. - 1990. - V. 43, No. 6. – P. 4777 - 4784.uk_UA
dc.relation.references54. Mendez EE Resonant interband tunneling via Landau levels in polytype heterostructures / E. E. Mendez, H. Ohno, and L. Esaki // Phys. Rev. B. – 1990. – V. 43, No. 6. – P. 5196 - 5199.uk_UA
dc.relation.references55. Fu Y. Transient response in quantum transport of noninteracting electrons in nanostructures / Y. Fu // Phys. Rev. B. - 1991. - V. 44, No. 19. – P. 10884 - 10887uk_UA
dc.relation.references56. Klann. R. Electroluminescence study of resonant tunneling in GaAs-AlAs superlattices / R. Klann, H. T. Grahn, and K. Ploog // Phys. Rev. B. – 199 4. – V. 55, No. 15. – P. 11037 - 11044.uk_UA
dc.relation.references57. Boykin TB Current-voltage calculations for InAs/AlSb resonant-tunneling diodes / E. B. Boykin // Phys. Rev. B. - 1995. - V. 51, No. 7. – P. 4289 - 4295.uk_UA
dc.relation.references58. Taniyama H. Scattering-matrix method for the tight-binding model of heterostructure electronic states / H. Taniyama and A. Yoshii // Phys. Rev. B. - 1996. - V. 53, No. 15. – P. 9993 - 9999.uk_UA
dc.relation.references59. Kindlihagen A. AC response of bipolar double-barrier resonant-tunneling structures / A. Kindlihagen, A. G. Mal'shukov, K. A. Chao, M. Willander // Phys. Rev. B. - 1998. - V. 56, No. 16. – P. 10609 - 10618.uk_UA
dc.relation.references60. Cheianov V. AC response of bipolar double-barrier resonant-tunneling structures / V. Cheianov, P. Rodin andE. Schöll // Phys. Rev. B. – 199 8. – V. 62, No. 15. – P. 9966 - 9968.uk_UA
dc.relation.references61. Beletski N. N. Controlling the spin polarization of the electron current in a semimagnetic resonant tunneling diode / N. N. Beletski, G. P. Berman and S. A. Borysenko // Phys. Rev. B. - 2005. – V. 71, No. 12. – P. 125325-1 - 125325-8.uk_UA
dc.relation.references62. Ganguly M. Layers of semiconductor nanostructure for image processing applications / M. Ganguly and C. K. Sarkar // Semicond. Sci. Technol. - 2009. – V. 24, No. 2. – 035801, 5pp.uk_UA
dc.relation.references63. Rüth M. Zero field spin polarization in a two-dimensional paramagnetic resonant tunneling diode / M. Rüth, C. Gould, L. W. Molenkamp // Phys. Rev. B. – 2011. – V. 83, No. 15. – P. 155408-1 - 155408-7.uk_UA
dc.relation.references64. Essimbi B. Z. Electrical short pulses generation using a resonant tunneling diode nonlinear transmission line / B. Z. Essimbi and D. Jäger // Phys. Scr. - 2012. – V. 85, No. 3. – 025023, 5pp.uk_UA
dc.relation.references65. Davydov A.S. AC Linear and nonlinear resonance electron tunneling through a system of potential barriers / A. S. Davydov, V. N. Ermakov // Physica D. - 1987. – V. 28, No. 1-2. – P. 168 - 180.uk_UA
dc.relation.references66. Elesin V. F. To the theory of coherent resonant tunneling of interacting electrons / V. F. Elesin // ZhETF. - 2001. - Vol. 123, No. 5. - P. 1096 - 1005.uk_UA
dc.relation.references67. Elesin V. F. Theory of a coherent laser on an optimized nanostructure taking into account the interelectron interaction / V. F. Elesin // ZhETF. - 2003. - Vol. 122, No. 1. - P. 131 - 139.uk_UA
dc.relation.references68. V. F. Elesin Nonlinear response of a two-well nanostructure with consideration of interelectron interaction / V. F. Elesin, I. Yu. Kateev, A. I. Podlyvaev // FTP. - 2009. - Vol. 43, no 2. – P. 269 - 273.uk_UA
dc.relation.references69. Kindlihagen. A. AC response of bipolar double-barrier resonant-tunneling structures / A. Kindlihagen, A. G. Mal'shukov, KA Chao, M. Willander // Phys. Rev. B. - 1998. - V. 58, No. 16. – P 10609 - 10618.uk_UA
dc.relation.references70. Kraynov V. P. Resonant reflection of a Bose–Einstein condensate by a double barrier within the Gross–Pitaevskii equation / V. P. Kraynov and H. A. Ishkhanyan // Phys. Scr. - 2010. – V. 140, No. 2010 – 014052, 3pp.uk_UA
dc.relation.references71. Ishkhanyan HA Resonance reflection by the one-dimensional Rosen-Morse potential well in the Gross-Pitaevskii problem / H. A. Ishkhanyan, V. P. Kraynov // JETP. - 2009. - V. 109, No. 4. – P. 585 - 589.uk_UA
dc.relation.references72. Carr LD Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity / L. D. Carr, C. W. Clark and W. P. Reinhardt // Phys. Rev. A. - 2000. – V. 62, No. 6. – P. 063610-1 – 063610-10.uk_UA
dc.relation.references73. Carr LD Stationary solutions of the one-dimensional nonlinear Schrödinger equation. II. Case of attractive nonlinearity / L. D. Carr, C. W. Clark and W. P. Reinhardt // Phys. Rev. A. - 2000. – V. 62, No. 6. – P. 063611-1 - 063611-10.uk_UA
dc.relation.references74. Bronski JC Bose-Einstein Condensates in Standing Waves: The Cubic Nonlinear Schrödinger Equation with a Periodic Potential / J. C. Bronski, L. D. Carr, B. Deconinck and J. N. Kutz // Phys. Rev. Lett. - 2001. -V. 86, No. 8. – R. 1402 - 1405.uk_UA
dc.relation.references75. Bronski JC Stability of repulsive Bose-Einstein condensates in a periodic potential / J. C. Bronski, L. D. Carr, B. Deconinck, J N. Kutz and K. Promislow // Phys. Rev. E.- 2001. – V. 63, No. 3. – P. 036612-1 - 036612-11.uk_UA
dc.relation.references76. Carr LD Stationary solutions of the one-dimensional nonlinear Schrödinger equation. II. Case of attractive nonlinearity / L.D. Carr, J.N. Kutz and W. P. Reinhardt // Phys. Rev. E. - 2001. – V. 63, No. 6. – P. 066604-1 - 066604-9.uk_UA
dc.relation.references77. Seaman BT Effect of a potential step or impurity on the Bose-Einstein condensate mean field / B. T. Seaman, L. D. Carr, and M. J. Holland // Phys. Rev. A. - 2005. – V. 71, No. 3. – P. 033609-1 - 033609-10.uk_UA
dc.relation.references78. Seaman BT Nonlinear band structure in Bose-Einstein condensates: Nonlinear Schrödinger equation with a Kronig-Penney potential / B. T. Seaman, L. D. Carr, and M. J. Holland // Phys. Rev. A. - 2005. – V. 71, No. 3. – P. 033622-1 - 033622-9.uk_UA
dc.relation.references79. Dounas-Frazer DR Ultracold Bosons in a Tilted Multilevel Double-Well Potential / D. R. Dounas Frazer, A. M. Hermundstad and L. D. Carr // Phys. Rev. Lett. - 2007. -V. 99, No. 20. – R. 200402-1 - 200402-4.uk_UA
dc.relation.references80. Snyder VD Hartree-Fock-Bogoliubov model and simulation of attractive and repulsive Bose Einstein condensates / V. D. Snyder, S. J. J. M. F. Kokkelmans and L. D. Carr // Phys. Rev. A. - 2005. – V. 85, No. 3. – P. 033616-1 - 033616-13.uk_UA
dc.relation.references81. Carr LD Nonlinear scattering of a Bose-Einstein condensate on a rectangular barrier / L. D. Carr, R. R. Miller, D. R. Bolton and S. A. Strong // Phys. Rev. A. - 2012. – V. 86, No. 2. – P. 023621-1 - 023621-13.uk_UA
dc.relation.references82. Rapedius K. Analytical study of resonant transport of Bose-Einstein condensates / K. Rapedius, D. Witthaut, and H. J. Korsch // Phys. Rev. A. - 2006. – V. 73, No. 3. – P. 033608-1 - 033608-12.uk_UA
dc.relation.references83. Rapedius K. Barrier transmission for the one-dimensional nonlinear Schrödinger equation: Resonances and transmission profiles / K. Rapedius, and H. J. Korsch // Phys. Rev. A. - 2006. – V. 77, No. 6. – P. 063610-1 - 063610-11.uk_UA
dc.relation.references84. Rapedius K. Barrier transmission for the nonlinear Schrödinger equation: surprises of nonlinear transport / K. Rapedius, and H. J. Korsch // J. Phys. A: Math. Theor. - 2008. – V. 77, No. 2008 – 355001, 6pp.uk_UA
dc.relation.references85. Rapedius K. Resonance solutions of the nonlinear Schrödinger equation in an open double-well potential / K. Rapedius, and H. J. Korsch // J. Phys. B: At. Mol. Opt. Phys - 2009. – V. 42, No. 2009 – 044005, 12pp.uk_UA
dc.relation.references86. Rapedius K. Multi-barrier resonant tunneling for the one-dimensional nonlinear Schrödinger Equation / K. Rapedius, and H. J. Korsch // J. Phys. A: Math. Theor. - 2009. – V. 42, No. 2009 – 425301, 20 pp.uk_UA
dc.relation.references87. Rapedius K. Nonlinear resonant tunneling of Bose-Einstein condensates in tilted optical lattices / K. Rapedius, C. Elsen, D. Witthaut, S. Wimberger and H. J. Korsch // Phys. Rev. A. - 2010. – V. 82, No. 6. – P. 063601-1 - 063601-7.uk_UA
dc.relation.references88. Rapedius K. Calculating resonance positions and widths using the Siegert approximation method / K. Rapidius // Eur. J.Phys. - 2011. – V. 32, No. 5. – P. 1199 - 1211.uk_UA
dc.relation.references89. Abramowitz M. Handbook of Mathematical Functions / M. Abramowitz, I.Stegun. – New York: DoverPublications, 1974. – 1150 p.uk_UA
dc.relation.references90. A. B. Pashkovsky Variable spatial charge and ambiguity of quantum states in two-barrier structures / A. B. Pashkovsky // FTP. - 2000. - Vol. 32, no 3. – p. 340 - 348.uk_UA
dc.relation.references91. Golant. E. I. Two-frequency laser generation in three-barrier heterostructures with coherent electron transport / E. I. Golant, A. A. Kapralova, V. M. Lukashin, A. B. Pashkovsky // Letters in ZhTP. - 2000. - Vol. 36, no 23. – p. 17 - 23.uk_UA
dc.relation.references92. Pashkovsky A.B. Flatness and sharp expansion of resonance levels in three-barrier structures / A.B. Pashkovsky // Letters to ZhETF. - 2002. - Vol. 82, No. 4. – P. 228 - 233.uk_UA
dc.relation.references93. Galiev V. I. Multichannel scattering of charge carriers on heterostructures with quantum wells / V. I. Galiev, A.N. Kruglov, A.F. Polupanov et al. // FTP. – 2002. -. T 36, No. 5. – P. 576 - 581.uk_UA
dc.relation.references94. Golant, E. I. The effect of virtual transitions in a high-frequency field on electronic transport in three-barrier structures/ E. I. Golant // Letters in ZhETF. - 2004. - T. 73, No. 11. - pp. 698 - 701.uk_UA
dc.relation.references95. E. I. Golant Anomalous suppression by plasma oscillations of the resonant interaction of electrons with a high-frequency field in asymmetric two-barrier structures / E. I. Golant, A. B. Pashkovsky // Letters in ZhTP. - 1996. - Vol. 64, No. 12. – P. 829 - 834.uk_UA
dc.relation.references96. Belyaeva I.V. Evaluation of negative dynamic conductivity of two-barrier resonance tunnel structures / I.V. Belyaeva, A.B. Pashkovsky // Letters in ZhTP. - 1995. - Vol. 21, no 6. – p. 46 – 49.uk_UA
dc.relation.references97. E. I. Golant Unusual behavior of the electron reflection coefficient from asymmetric two-barrier quantum structures in a high-frequency field of finite amplitude / E. I. Golant, A. B. Pashkovsky // Letters in ZhETF. - 1996. - Vol. 63, No. 7. – p. 559 - 564.uk_UA
dc.relation.references98. Belyaeva I.V. Peculiarities of resonant interaction of electrons with a high-frequency electric field in two-barrier structures / E.I. Golant, A.B. Pashkovsky, I.V. Belyaeva// FTP. - 1997. - Vol. 31, No. 2. - C. 137 - 144.uk_UA
dc.relation.references99. E. I. Golant, Dependence of resonant conductivity of symmetric two-barrier structures on the amplitude of a high-frequency field / E. I. Golant, A. B. Pashkovsky // FTP. - 1997. - Vol. 31, No. 8. - C. 950 - 953.uk_UA
dc.relation.references100. E. I. Golant Resonant interaction of electrons with a high-frequency electric field in asymmetric two-barrier structures / E. I. Golant, A. B. Pashkovsky // FTP. - 1997. - Vol. 31, No. 9. - C. 1077 - 1082.uk_UA
dc.relation.references101. N. V. Tkach, Evolution and collapse of quasi-stationary electron states in flat symmetric resonance tunnel structures / N. V. Tkach, Yu. A. Sety // FNT. - 2009. - Vol. 35, no 7 – p. 710 - 720.uk_UA
dc.relation.references102. Hu J. The effect of temperature on the resonant tunneling and electric field domain formation in multiple quantum well superlattices / J. Hu, A. Shakouri and A. Yariv // Appl. Phys. Lett. - 1997. - V. 81, No. 4. – P. 2033 - 2035.uk_UA
dc.relation.references103. Miyamoto K. Resonant tunneling in asymmetrical double - barrier structures under an applied electric field. / K. Miyamoto, H. Yamamoto // Appl. Phys. Lett. - 1998. - V. 84, No. 1. – P. 311 - 318.uk_UA
dc.relation.references104. Yong G. Resonant tunneling in step-barrier structures under an applied electric field / G. Yong, B. Gu, J. Yu, Y. Kawazoe // Appl. Phys. Lett. - 1998. - V. 84, No. 2. – P. 918 - 924.uk_UA
dc.relation.references105. Yong G. Resonant tunneling in step-barrier structures under an applied electric field. / G. Yong, B. Gu, J. Yu, Y. Kawazoe // Appl. Phys. Lett. - 1998. - V. 84, No. 2. – P. 918 - 924.uk_UA
dc.relation.references106. Zaslavsky A. Magnetotunneling in double barrier heterostructures / A. Zaslavsky, D. C. Tsui, M. Santos and M. Shayegan // Phys. Rev. B. - 1989. – V. 40, No. 14. – P. 9829 - 9833.uk_UA
dc.relation.references107. Blaser S. Terahertz intersubband emission in strong magnetic fields / S. Blaser, M. Rochat, M. Beck [et al.] // Appl. Phys. Lett. - 1998. - V. 81, No. 67. – P. 67 - 69.uk_UA
dc.relation.references108. Blaser S. Terahertz interminiband emission and magneto - transport measurements from a quantum cascade chirped superlattice / S. Blaser, M. Rochat, L. Ajili [et al.] // Physica E. - 2002. - V. 13, No. 2-4. – P. 854 - 857.uk_UA
dc.relation.references109. Scalari G. Population inversion by resonant magnetic confinement in terahertz quantum-cascade lasers / G. Scalari, L. Ajili [et al.] // Appl. Phys. Lett. - 2003. - V. 83, No. 17. – P. 3453 - 3455.uk_UA
dc.relation.references110. Scalari G. Strong confinement in terahertz intersubband lasers by intense magnetic fields / G. Scalari, C. Walther and L. Sirigu // Phys. Rev. B. - 2007. – V. 76, No. 11. – P. 115305-1 - 115305-7.uk_UA
dc.relation.references111. Johansson P. Tunneling between two-dimensional electron systems in a strong magnetic field / P. Johansson, J.M. Kinaret // Physica B. - 1995. - V. 210, No. 3-4. – P. 446 - 451.uk_UA
dc.relation.references112. Yong G. Comparison of electronic transport through triple electric - barrier structures and triple magnetic - barrier structures / G. Yong, H. Wang, Z. Q. Li, and Y. Kawazoe // Phys. Lett. A. - 1998. - V. 238, No. 2-3. – P. 185 - 191.uk_UA
dc.relation.references113. Yong G. Electron coherent tunneling in low-dimensional magnetic quantum structures / G. Yong, H. Wang, J. Yu, Y. Kawazoe // Physica E. - 2000. - V. 8, No. 2. – P. 146 - 153.uk_UA
dc.relation.references114. Yong G. Electric - field effects he electronic tunneling transport in magnetic barrier structures / G. Yong, H. Wang, B. L. Gu // Phys. Rev. B. – 2000. – V. 61, No. 3. – P. 1728 - 1731.uk_UA
dc.relation.references115. Wang Z.M. Transmission characteristics including the coupling effect between normal and lateral degrees of freedom in step-barrier structures with a longitudinal magnetic field. / Z. M. Wang, M. Zhang, Y. C. Li // Physica E. - 2003. – V. 18, No. 4. – P. 469 - 474.uk_UA
dc.relation.references116. Wang H. The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures / H. Wang, Y. Zhang, H Hu // J. Appl. Phys. - 2007 - V. 101, No. 2. - P. 023712-1 – 023712-5.uk_UA
dc.relation.references117. Zaslavsky A. Transport in transverse magnetic fields in resonant tunneling structures / A. Zaslavsky, J. P. Li, D. C. Tsui, M. Santos and M. Shayegan // Phys. Rev. B.- 1990. - V. 42, No. 2. – P. 1374 - 1380.uk_UA
dc.relation.references118. Blaser S. Long - wavelength ( λ ~10.5 μ m ) quantum cascade lasers based on a photon - assisted tunneling transition in a strong magnetic field. / S. Blaser, L Diehl, M. Beck, J. Faist // Physica E. – 2000 – V. 7, No. 1-2. – P. 33 - 36.uk_UA
dc.relation.references119. Dubrovskii Yu. V. Electron tunneling through single - barrier heterostructures in a magnetic field. / Yu. V. Dubrovskii, Yu. N. Khanin [et al.] // Phys. Rev. B. - 1994. - V. 50, No. 7. – P 4897 - 4900.uk_UA
dc.relation.references120. Serov A. Yu. Resonant tunneling through quantum hole with two barriers in by a transverse magnetic field / A. Yu. Serov, G. G. Zegrya // ZhETF. - 2004. - Vol. 126, no 1. – P. 170 - 180.uk_UA
dc.relation.references121. Belle G. Measurement of the miniband width in a superlattice with interband absorption in a magnetic field parallel to the layers. / G. Belle, G. C. Maan //Solid StateCommun. - 1985. - V. 56, No. 1. – P. 65 - 88.uk_UA
dc.relation.references122. Chung S. K. The effect on currents of anticrossings in the energy spectrum in quantum wells under crossed electric and magnetic fields / S. K. Chung O. Olendski // Semicond. Sci. Technol. - 1997. - V. 12, No. 7. – P. 788 - 795.uk_UA
dc.relation.references123. Elagoz S. Double quantum well electronic energy spectrum within a tilted magnetic field / S. Elagoz, H. Elagoz, H. Sari, Y. Ergün, P. Karasu // Superlattices and Microstr.. - 1999. - V. 26, No. 5. – P. 300 - 305.uk_UA
dc.relation.references124. Hung KM. Transfer - matrix theory of the energy levels and electron tunneling in heterostructures under an in - plane magnetic field. / KM. Hung and G. Y. Wu // Phys. Rev. B. - 1992. - V. 45, No. 7. – P. 3461 - 3464.uk_UA
dc.relation.references125. Yong G. Quantum magnetotransport of electrons in double-barrier resonant-tunneling structures. / G. Yong and YC. Li, X - G. Cong and C - W. Wei // Phys. Rev. B. - 1994. - V. 50, No. 23. – P. 17249 - 17255.uk_UA
dc.relation.references126. Samarsky A. A. Methods of solving grid equations / Samarsky A. A, E. S. Nikolaev. – M.: Nauka, 1978. - 592 p.uk_UA
dc.relation.references127. Ning K. A 10.7 μm InGaAs/InAlAs Quantum Cascade Detector. / K. Ning, QU. Liu, L. Lu [ et al. ] // Chin. Phys. Lett. - 2010. - V. 27, No. 12. – P. 128503-1 - 128503-3.uk_UA
dc.relation.references128. Tkach M.V. Quasiparticles in nanoheterosystems. Quantum dots and wires / M. V. Tkach – Chernivtsi: Ruta, 2003. – 312 p.uk_UA
dc.relation.references129. www.top500.orguk_UA
dc.relation.references130. Khimich A.N., Molchanov I.N., Mova V.I. etc. Numerical software of the MIMD computer by Inpark0m. - Kyiv: Nauk. Dumka, 2007.uk_UA
dc.relation.references131. Khimich A.N., Molchanov I.N., Popov A.V., Chistyakova T.V., Yakovlev M.F. Parallel algorithms for solving problems of computational mathematics. - Kyiv: Nauk. dumka, 2008.uk_UA
dc.relation.references132. Nikolaevskaya E., Khimich A., Chistyakova T. Programming with Multiple Precision. Studies in Computational Intelligence.. Springer-Verlag. Berlin, Heidelberg, 2012uk_UA
dc.relation.references133. Khimich О.М., Chistyakova T.V, Sidoruk V.A., Ershov P.S. Adaptive computer technologies for solving problems of computational and applied mathematics. Cybernetics and Systems Analysis, 2021, V. 57(6), 990–997.uk_UA
dc.relation.references134. Khimich O.M., Popov O.V., Chistyakov V.A., Kokhanivskyi V.O. Adaptive Algorithms for Solving Eigenvalue Problems in the Variable Computer Environment of Supercomputers, 2023, V. 59(«3), 480–492.uk_UA
dc.relation.references135. Khimich, A.N. Estimates of the total error in the solution of systems of linear algebraic equations for matrices of arbitrary ranks. Computer mathematics. 2002. No. 2, 41- 49.uk_UA
dc.relation.references136. Khimich, A.N. Perturbation bounds for the least squares problem. Cybernetics and Systems Analysis. 1996. Vol. 32(3). 434–436. doi: 10.1007/BF02366509uk_UA
dc.relation.references137. Khimich, A.N., Popov, A.V., Polyanko, V.V. Algorithms of parallel computations for linear algebra problems with irregularly structured matrices. Cybernetics and Systems Analysis. 2011. Vol. 47(6), 973– 985. doi: 10.1007/s10559-011-9377-4uk_UA
dc.relation.references138. Khimich, A.N., Yakovlev, M.F. On the solution of systems with matrices of incomplete rank. Computer Mathematics. 2003. No. 1, 1–15.uk_UA
dc.relation.references139. Molchanov, I.N., Popov, A.V. & Khimich, A.N. Algorithm to solve the partial eigenvalue problem for large profile matrices. Cybernetics and Systems Analysis. 1992. Vol. 28(3), 281–286. https://doi.org/10.1007/BF01126215uk_UA
dc.relation.references140. Popov, A.V., Khimich, A.N. Research and solution of the first basic problem of the theory of elasticity. Computer Mathematics. 2003. No. 2,105–114.uk_UA
dc.relation.references141. Popov, A.V. On an effective method for solving incorrect problems with sparse matrices. Theory of Optimal Solutions. 2013. P. 77–81.uk_UA
dc.relation.references142. Gorodetsky A.S., Evzerov I.D. Computer models of structures. Kyiv: FACT, 2007. 394 p.uk_UA
dc.relation.references143. Popov A.V., Chistyakov O.V. On the effectiveness of algorithms with multilevel parallelism. // Physico-mathematical modeling and information technologies. 2021. Issue 33, 133–137. doi: 10.15407/fmmit2021.33.133uk_UA
dc.relation.references144. Popov O.V. On parallel algorithms for factorization of sparse matrices. // Computer mathematics. Sat. science labor. 2013. Issue 2, 115–124. http://dspace.nbuv.gov.ua/handle/123456789/84755uk_UA
dc.relation.references145. Khimich O.M., Sydoruk V.A. The use of mixed bit rate in mathematical modeling. // Mathematical and computer modeling. Series: Physical and mathematical sciences. 2019. Issue 19, 180–187. http://dspace.nbuv.gov.ua/handle/123456789/84755uk_UA
dc.relation.references146. Khimich O.M., Sydoruk V.A. A tiling hybrid algorithm for the factorization of structurally symmetric matrices. Theory of optimal solutions. Coll. of science works. 2017, 125–132.uk_UA
dc.relation.references147. Alan George, Joseph W-H Liu Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, 1981.uk_UA
dc.relation.references148. Khimich O.M., Popov A.V. Solving Ill-Posed Problems of the Theory of Elasticity Using High Performance Computing Systems. // Cybernetics and Systems Analysis, Vol. 59(5), 2023, 743–752. doi: 10.1007/s10559-023-00610-1uk_UA
dc.contributor.affiliationNational Academy of Sciences of Ukraine: Institute of Cybernetics named after V.M. Glushkovuk_UA
dc.coverage.countryUAuk_UA
Розташовується у зібраннях:Наукові публікації працівників кафедри програмної інженерії

Файли цього матеріалу:
Файл Опис РозмірФормат 
METHODS_AND_HIGH-PERFORMANCE_TECHNOLOGIES.pdf639,62 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора