Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://elartu.tntu.edu.ua/handle/lib/47204
Tytuł: Detection and classification of DDoS flooding attacks by machine learning method
Authors: Tymoshchuk, Dmytro
Yasniy, Oleh
Mytnyk, Mykola
Zagorodna, Nataliya
Tymoshchuk, Vitaliy
Affiliation: Ternopil Ivan Puluj National Technical University, Ruska str. 56, Ternopil, 46001, Ukraine
Bibliographic description (Ukraine): Tymoshchuk, D., Yasniy, O., Mytnyk, M., Zagorodna, N., Tymoshchuk, V., (2024). Detection and classification of DDoS flooding attacks by machine learning methods. CEUR Workshop Proceedings, 3842, pp. 184-195.
Bibliographic citation (APA): Tymoshchuk, D., Yasniy, O., Mytnyk, M., Zagorodna, N. & Tymoshchuk, V.(2024). Detection and classification of DDoS flooding attacks by machine learning method. CEUR Workshop Proceedings, 3842, 184–195.
Konferencja/wydarzenie: 1st International Workshop on Bioinformatics and Applied Information Technologies, BAIT 2024
Tom: 3842
Data wydania: 2-paź-2024
Date of entry: 5-sty-2025
Wydawca: CEUR Workshop Proceedings
Place edycja: Zboriv, Ukraine, October 02-04, 2024.
Słowa kluczowe: machine learning
neural network
DDoS
flooding
Zakres stron: 184–195
Główna strona: 184
Strona końcowa: 195
Abstract: This study focuses on a method for detecting and classifying distributed denial of service (DDoS) attacks, such as SYN Flooding, ACK Flooding, HTTP Flooding, and UDP Flooding, using neural networks. Machine learning, particularly neural networks, is highly effective in detecting malicious traffic. A dataset containing normal traffic and various DDoS attacks was used to train a neural network model with a 24-106-5 architecture. The model achieved high Accuracy (99.35%), Precision (99.32%), Recall (99.54%), and F-score (0.99) in the classification task. All major attack types were correctly identified. The model was also further tested in the lab using virtual infrastructures to generate normal and DDoS traffic. The results showed that the model can accurately classify attacks under near-real-world conditions, demonstrating 95.05% accuracy and balanced F-score scores for all attack types. This confirms that neural networks are an effective tool for detecting DDoS attacks in modern information security systems.
URI: http://elartu.tntu.edu.ua/handle/lib/47204
ISSN: 1613-0073
Właściciel praw autorskich: © Dmytro Tymoshchuk, Oleh Yasniy, Mykola Mytnyk, Nataliya Zagorodna, Vitaliy Tymoshchuk
Wykaz piśmiennictwa: [1] What is a DDoS attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
[2] Selestine Melchane, Youssef Elmir, Farid Kacimi, Infectious diseases prediction based on machine learning: the impact of data reduction using feature extraction techniques, Procedia Computer Science, Volume 239, 2024, Pages 675-683, ISSN 1877-0509, doi: 10.1016/j.procs.2024.06.223.
[3] Thiago Christiano Silva, Paulo Victor Berri Wilhelm, Diego R. Amancio, Machine learning and economic forecasting: The role of international trade networks, Physica A: Statistical Mechanics and its Applications, Volume 649, 2024, 129977, ISSN 0378-4371, doi: 10.1016/j.physa.2024.129977.
[4] Lyashuk, O., Stashkiv, M., Lytvynenko, I., Sakhno, V., & Khoroshun, R. (2023). Information Technologies Use in the Study of Functional Properties of Wheeled Vehicles. In ITTAP (pp. 500-512).
[5] Yasniy O., Pasternak Ia.M,, Didych I., Fedak S., Tymoshchuk D. Methods of jump-like creep modeling of AMg6 aluminum alloy. Procedia Structural Integrity 2023, 48: 149–154. doi:10.1016/j.prostr.2023.07.141.
[6] Didych, I. S., Pastukh, O., Pyndus, Y., Yasniy, O. The evaluation of durability of structural elements using neural networks. Acta Metallurgica Slovaca, 2018, 24(1), 82-87. doi:10.12776/ams.v24i1.966
[7] Okipnyi, I.B., Maruschak, P.O., Zakiev, V.I. et al. Fracture Mechanism Analysis of the Heat-Resistant Steel 15Kh2MFA(II) After Laser Shock-Wave Processing. J Fail. Anal. and Preven. 14, 668–674 (2014). doi:10.1007/s11668-014-9869-4.
[8] Y. Klots, N. Petliak and V. Titova, "Evaluation of the efficiency of the system for detecting malicious outgoing traffic in public networks," 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, 2023, pp. 1-5, doi: 10.1109/DESSERT61349.2023.10416502.
[9] Petliak, N., Klots, Y., Titova, V., Cheshun, V., Boyarchuk, A. Signature-based Approach to Detecting Malicious Outgoing Traffic. 4th International Workshop on Intelligent Information Technologies and Systems of Information Security, IntellTSIS 2023. CEUR Workshop Proceedings, 2023, 3373, pp. 486–506
[10] Gebrye, Hayelom; Wang, Yong; Li, Fagen (2024), “Flooding-Based-DDoS-Muleticlass-Dataset”, Mendeley Data, V1, doi: 10.17632/w24hc4vy7t.1
[11] Hyunjae Kang, Dong Hyun Ahn, Gyung Min Lee, Jeong Do Yoo, Kyung Ho Park, Huy Kang Kim, September 27, 2019, "IoT network intrusion dataset", IEEE Dataport, doi: 10.21227/q70p-q449
[12] SYN flood attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
[13] What is an ACK flood DDoS attack?, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/what-is-an-ack-flood/
[14] HTTP flood attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
[15] UDP flood attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/udp-flood-ddos-attack/
[16] Haykin, S. Neural networks and learning machines. 3rd ed, Prentice Hall. Hamilton, Ontario, 2009, p. 936.
Typ zawartości: Article
Występuje w kolekcjach:Наукові публікації працівників кафедри кібербезпеки

Pliki tej pozycji:
Plik Opis WielkośćFormat 
BAIT_2024_3842_paper11_tntu.pdf648,06 kBAdobe PDFPrzeglądanie/Otwarcie


Pozycje DSpace są chronione prawami autorskimi

Administrationswerkzeuge