Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://elartu.tntu.edu.ua/handle/lib/47204
Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.contributor.authorTymoshchuk, Dmytro-
dc.contributor.authorYasniy, Oleh-
dc.contributor.authorMytnyk, Mykola-
dc.contributor.authorZagorodna, Nataliya-
dc.contributor.authorTymoshchuk, Vitaliy-
dc.date.accessioned2025-01-05T21:26:32Z-
dc.date.available2025-01-05T21:26:32Z-
dc.date.issued2024-10-02-
dc.identifier.citationTymoshchuk, D., Yasniy, O., Mytnyk, M., Zagorodna, N., Tymoshchuk, V., (2024). Detection and classification of DDoS flooding attacks by machine learning methods. CEUR Workshop Proceedings, 3842, pp. 184-195.uk_UA
dc.identifier.issn1613-0073-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/47204-
dc.description.abstractThis study focuses on a method for detecting and classifying distributed denial of service (DDoS) attacks, such as SYN Flooding, ACK Flooding, HTTP Flooding, and UDP Flooding, using neural networks. Machine learning, particularly neural networks, is highly effective in detecting malicious traffic. A dataset containing normal traffic and various DDoS attacks was used to train a neural network model with a 24-106-5 architecture. The model achieved high Accuracy (99.35%), Precision (99.32%), Recall (99.54%), and F-score (0.99) in the classification task. All major attack types were correctly identified. The model was also further tested in the lab using virtual infrastructures to generate normal and DDoS traffic. The results showed that the model can accurately classify attacks under near-real-world conditions, demonstrating 95.05% accuracy and balanced F-score scores for all attack types. This confirms that neural networks are an effective tool for detecting DDoS attacks in modern information security systems.uk_UA
dc.format.extent184–195-
dc.publisherCEUR Workshop Proceedingsuk_UA
dc.subjectmachine learninguk_UA
dc.subjectneural networkuk_UA
dc.subjectDDoSuk_UA
dc.subjectfloodinguk_UA
dc.titleDetection and classification of DDoS flooding attacks by machine learning methoduk_UA
dc.typeArticleuk_UA
dc.rights.holder© Dmytro Tymoshchuk, Oleh Yasniy, Mykola Mytnyk, Nataliya Zagorodna, Vitaliy Tymoshchukuk_UA
dc.coverage.placenameZboriv, Ukraine, October 02-04, 2024.uk_UA
dc.relation.references[1] What is a DDoS attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/uk_UA
dc.relation.references[2] Selestine Melchane, Youssef Elmir, Farid Kacimi, Infectious diseases prediction based on machine learning: the impact of data reduction using feature extraction techniques, Procedia Computer Science, Volume 239, 2024, Pages 675-683, ISSN 1877-0509, doi: 10.1016/j.procs.2024.06.223.uk_UA
dc.relation.references[3] Thiago Christiano Silva, Paulo Victor Berri Wilhelm, Diego R. Amancio, Machine learning and economic forecasting: The role of international trade networks, Physica A: Statistical Mechanics and its Applications, Volume 649, 2024, 129977, ISSN 0378-4371, doi: 10.1016/j.physa.2024.129977.uk_UA
dc.relation.references[4] Lyashuk, O., Stashkiv, M., Lytvynenko, I., Sakhno, V., & Khoroshun, R. (2023). Information Technologies Use in the Study of Functional Properties of Wheeled Vehicles. In ITTAP (pp. 500-512).uk_UA
dc.relation.references[5] Yasniy O., Pasternak Ia.M,, Didych I., Fedak S., Tymoshchuk D. Methods of jump-like creep modeling of AMg6 aluminum alloy. Procedia Structural Integrity 2023, 48: 149–154. doi:10.1016/j.prostr.2023.07.141.uk_UA
dc.relation.references[6] Didych, I. S., Pastukh, O., Pyndus, Y., Yasniy, O. The evaluation of durability of structural elements using neural networks. Acta Metallurgica Slovaca, 2018, 24(1), 82-87. doi:10.12776/ams.v24i1.966uk_UA
dc.relation.references[7] Okipnyi, I.B., Maruschak, P.O., Zakiev, V.I. et al. Fracture Mechanism Analysis of the Heat-Resistant Steel 15Kh2MFA(II) After Laser Shock-Wave Processing. J Fail. Anal. and Preven. 14, 668–674 (2014). doi:10.1007/s11668-014-9869-4.uk_UA
dc.relation.references[8] Y. Klots, N. Petliak and V. Titova, "Evaluation of the efficiency of the system for detecting malicious outgoing traffic in public networks," 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, 2023, pp. 1-5, doi: 10.1109/DESSERT61349.2023.10416502.uk_UA
dc.relation.references[9] Petliak, N., Klots, Y., Titova, V., Cheshun, V., Boyarchuk, A. Signature-based Approach to Detecting Malicious Outgoing Traffic. 4th International Workshop on Intelligent Information Technologies and Systems of Information Security, IntellTSIS 2023. CEUR Workshop Proceedings, 2023, 3373, pp. 486–506uk_UA
dc.relation.references[10] Gebrye, Hayelom; Wang, Yong; Li, Fagen (2024), “Flooding-Based-DDoS-Muleticlass-Dataset”, Mendeley Data, V1, doi: 10.17632/w24hc4vy7t.1uk_UA
dc.relation.references[11] Hyunjae Kang, Dong Hyun Ahn, Gyung Min Lee, Jeong Do Yoo, Kyung Ho Park, Huy Kang Kim, September 27, 2019, "IoT network intrusion dataset", IEEE Dataport, doi: 10.21227/q70p-q449uk_UA
dc.relation.references[12] SYN flood attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/uk_UA
dc.relation.references[13] What is an ACK flood DDoS attack?, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/what-is-an-ack-flood/uk_UA
dc.relation.references[14] HTTP flood attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/uk_UA
dc.relation.references[15] UDP flood attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/udp-flood-ddos-attack/uk_UA
dc.relation.references[16] Haykin, S. Neural networks and learning machines. 3rd ed, Prentice Hall. Hamilton, Ontario, 2009, p. 936.uk_UA
dc.contributor.affiliationTernopil Ivan Puluj National Technical University, Ruska str. 56, Ternopil, 46001, Ukraineuk_UA
dc.citation.volume3842-
dc.citation.spage184-
dc.citation.epage195-
dc.citation.conference1st International Workshop on Bioinformatics and Applied Information Technologies, BAIT 2024-
dc.identifier.citationenAPATymoshchuk, D., Yasniy, O., Mytnyk, M., Zagorodna, N. & Tymoshchuk, V.(2024). Detection and classification of DDoS flooding attacks by machine learning method. CEUR Workshop Proceedings, 3842, 184–195.uk_UA
Koleksiyonlarda Görünür:Наукові публікації працівників кафедри кібербезпеки

Bu öğenin dosyaları:
Dosya Açıklama BoyutBiçim 
BAIT_2024_3842_paper11_tntu.pdf648,06 kBAdobe PDFGöster/Aç


DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.

Yönetim Araçları