Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam:
http://elartu.tntu.edu.ua/handle/lib/47204
Název: | Detection and classification of DDoS flooding attacks by machine learning method |
Autoři: | Tymoshchuk, Dmytro Yasniy, Oleh Mytnyk, Mykola Zagorodna, Nataliya Tymoshchuk, Vitaliy |
Affiliation: | Ternopil Ivan Puluj National Technical University, Ruska str. 56, Ternopil, 46001, Ukraine |
Bibliographic description (Ukraine): | Tymoshchuk, D., Yasniy, O., Mytnyk, M., Zagorodna, N., Tymoshchuk, V., (2024). Detection and classification of DDoS flooding attacks by machine learning methods. CEUR Workshop Proceedings, 3842, pp. 184-195. |
Bibliographic citation (APA): | Tymoshchuk, D., Yasniy, O., Mytnyk, M., Zagorodna, N. & Tymoshchuk, V.(2024). Detection and classification of DDoS flooding attacks by machine learning method. CEUR Workshop Proceedings, 3842, 184–195. |
Conference/Event: | 1st International Workshop on Bioinformatics and Applied Information Technologies, BAIT 2024 |
Volume: | 3842 |
Datum vydání: | 2-říj-2024 |
Date of entry: | 5-led-2025 |
Nakladatel: | CEUR Workshop Proceedings |
Place of the edition/event: | Zboriv, Ukraine, October 02-04, 2024. |
Klíčová slova: | machine learning neural network DDoS flooding |
Page range: | 184–195 |
Start page: | 184 |
End page: | 195 |
Abstrakt: | This study focuses on a method for detecting and classifying distributed denial of service (DDoS) attacks, such as SYN Flooding, ACK Flooding, HTTP Flooding, and UDP Flooding, using neural networks. Machine learning, particularly neural networks, is highly effective in detecting malicious traffic. A dataset containing normal traffic and various DDoS attacks was used to train a neural network model with a 24-106-5 architecture. The model achieved high Accuracy (99.35%), Precision (99.32%), Recall (99.54%), and F-score (0.99) in the classification task. All major attack types were correctly identified. The model was also further tested in the lab using virtual infrastructures to generate normal and DDoS traffic. The results showed that the model can accurately classify attacks under near-real-world conditions, demonstrating 95.05% accuracy and balanced F-score scores for all attack types. This confirms that neural networks are an effective tool for detecting DDoS attacks in modern information security systems. |
URI: | http://elartu.tntu.edu.ua/handle/lib/47204 |
ISSN: | 1613-0073 |
Copyright owner: | © Dmytro Tymoshchuk, Oleh Yasniy, Mykola Mytnyk, Nataliya Zagorodna, Vitaliy Tymoshchuk |
References (Ukraine): | [1] What is a DDoS attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/ [2] Selestine Melchane, Youssef Elmir, Farid Kacimi, Infectious diseases prediction based on machine learning: the impact of data reduction using feature extraction techniques, Procedia Computer Science, Volume 239, 2024, Pages 675-683, ISSN 1877-0509, doi: 10.1016/j.procs.2024.06.223. [3] Thiago Christiano Silva, Paulo Victor Berri Wilhelm, Diego R. Amancio, Machine learning and economic forecasting: The role of international trade networks, Physica A: Statistical Mechanics and its Applications, Volume 649, 2024, 129977, ISSN 0378-4371, doi: 10.1016/j.physa.2024.129977. [4] Lyashuk, O., Stashkiv, M., Lytvynenko, I., Sakhno, V., & Khoroshun, R. (2023). Information Technologies Use in the Study of Functional Properties of Wheeled Vehicles. In ITTAP (pp. 500-512). [5] Yasniy O., Pasternak Ia.M,, Didych I., Fedak S., Tymoshchuk D. Methods of jump-like creep modeling of AMg6 aluminum alloy. Procedia Structural Integrity 2023, 48: 149–154. doi:10.1016/j.prostr.2023.07.141. [6] Didych, I. S., Pastukh, O., Pyndus, Y., Yasniy, O. The evaluation of durability of structural elements using neural networks. Acta Metallurgica Slovaca, 2018, 24(1), 82-87. doi:10.12776/ams.v24i1.966 [7] Okipnyi, I.B., Maruschak, P.O., Zakiev, V.I. et al. Fracture Mechanism Analysis of the Heat-Resistant Steel 15Kh2MFA(II) After Laser Shock-Wave Processing. J Fail. Anal. and Preven. 14, 668–674 (2014). doi:10.1007/s11668-014-9869-4. [8] Y. Klots, N. Petliak and V. Titova, "Evaluation of the efficiency of the system for detecting malicious outgoing traffic in public networks," 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, 2023, pp. 1-5, doi: 10.1109/DESSERT61349.2023.10416502. [9] Petliak, N., Klots, Y., Titova, V., Cheshun, V., Boyarchuk, A. Signature-based Approach to Detecting Malicious Outgoing Traffic. 4th International Workshop on Intelligent Information Technologies and Systems of Information Security, IntellTSIS 2023. CEUR Workshop Proceedings, 2023, 3373, pp. 486–506 [10] Gebrye, Hayelom; Wang, Yong; Li, Fagen (2024), “Flooding-Based-DDoS-Muleticlass-Dataset”, Mendeley Data, V1, doi: 10.17632/w24hc4vy7t.1 [11] Hyunjae Kang, Dong Hyun Ahn, Gyung Min Lee, Jeong Do Yoo, Kyung Ho Park, Huy Kang Kim, September 27, 2019, "IoT network intrusion dataset", IEEE Dataport, doi: 10.21227/q70p-q449 [12] SYN flood attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/ [13] What is an ACK flood DDoS attack?, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/what-is-an-ack-flood/ [14] HTTP flood attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/ [15] UDP flood attack, Accessed: Aug. 25, 2024. URL: https://www.cloudflare.com/learning/ddos/udp-flood-ddos-attack/ [16] Haykin, S. Neural networks and learning machines. 3rd ed, Prentice Hall. Hamilton, Ontario, 2009, p. 936. |
Content type: | Article |
Vyskytuje se v kolekcích: | Наукові публікації працівників кафедри кібербезпеки |
Soubory připojené k záznamu:
Soubor | Popis | Velikost | Formát | |
---|---|---|---|---|
BAIT_2024_3842_paper11_tntu.pdf | 648,06 kB | Adobe PDF | Zobrazit/otevřít |
Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.
Nástroje administrátora