Ezzel az azonosítóval hivatkozhat erre a dokumentumra forrásmegjelölésben vagy hiperhivatkozás esetén:
http://elartu.tntu.edu.ua/handle/lib/47020
Title: | Дослідження процесів інтеграції IoT та штучного інтелекту в розумних містах |
Other Titles: | Research on IoT and Artificial Intelligence Integration Processes in Smart Cities |
Authors: | Дубельт, Василь Сергійович Dubelt, Vasyl |
Affiliation: | Тернопільський національний технічний університет імені Івана Пулюя, факультет комп’ютерно-інформаційних систем і програмної інженерії, кафедра комп’ютерних наук, м. Тернопіль, Україна |
Bibliographic description (Ukraine): | Дубельт В. С. Дослідження процесів інтеграції IoT та штучного інтелекту в розумних містах : робота на здобуття кваліфікаційного ступеня магістра : спец. 122 - комп’ютерні науки / наук. кер. Н. Е. Кунанець. Тернопіль : Тернопільський національний технічний університет імені Івана Пулюя, 2024. 73 с. |
Issue Date: | 26-dec-2024 |
Submitted date: | 12-dec-2024 |
Date of entry: | 2-jan-2025 |
Country (code): | UA |
Place of the edition/event: | ТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Україна |
Supervisor: | Кунанець, Наталія Едуардівна |
UDC: | 004.9 |
Keywords: | комп’ютерні науки комунікаційні технології розумне місто штучний інтелект 5G IoT artificial intelligence communication technologie smart city |
Page range: | 73 |
Abstract: | Кваліфікаційна робота присвячена дослідженню процесів інтеграції IoT та штучного інтелекту в розумних містах.
Об’єкт дослідження процеси інтеграції Інтернету речей та штучного інтелекту в системи «розумного міста».
Предмет дослідження. методи штучного інтелекту для опрацювання даних, що отримані на основі Інтернету речей в «розумних містах».
В першому розділі кваліфікаційної роботи описано парадигму «розумного міста». Проаналізовано інформаційні та комунікаційні технології «розумних міст». Подано опис процесу науко метричного пошуку магістерського дослідження. В другому розділі кваліфікаційної роботи досліджено технології штучного інтелекту для IoT-систем розумного міста. Подано розлогий аналіз перспектив розвитку ШІ для IoT-систем «розумного міста». В третьому розділі кваліфікаційної роботи описано прототип інформаційно-технологічної архітектури «розумного міста» на базі IoT та ШІ. Описано перспективні тенденції розвитку «розумних міст» на базі IoT та ШІ. У розділі «Охорона праці та безпека в надзвичайних ситуаціях» розглянуто психологічні чинники небезпеки. Описано контроль за станом охорони праці The qualification work is devoted to the study of the processes of integration of IoT and artificial intelligence in smart cities. The object of the study is the processes of integration of the Internet of Things and artificial intelligence into the systems of a "smart city". The subject of the study. artificial intelligence methods for processing data obtained on the basis of the Internet of Things in "smart cities". The first section of the qualification work describes the paradigm of a "smart city". Information and communication technologies of "smart cities" are analyzed. A description of the process of scientometric analysis of the master's research is given. The second section of the qualification work investigates artificial intelligence technologies for IoT-systems of a smart city. An extensive analysis of the prospects for the development of AI for IoT-systems of a "smart city" is given. The third section of the qualification work describes the prototype of the information and technological architecture of a "smart city" based on IoT and AI. Promising trends in the development of "smart cities" based on IoT and AI are described. The section "Occupational health and safety in emergencies" discusses psychological risk factors. Control over the state of occupational health and safety is described |
Description: | Роботу виконано на кафедрі комп'ютерних наук Тернопільського національного технічного університету імені Івана Пулюя. Захист відбудеться 26.12.2024 р. о 10 год. на засіданні екзаменаційної комісії №35 у Тернопільському національному технічному університеті імені Івана Пулюя |
Content: | ВСТУП 8 1 СТАН ТА ПЕРСПЕКТИВИ ДОСЛІДЖЕНЬ В ГАЛУЗІ ІНТЕРНЕТУ РЕЧЕЙ ТА ШТУЧНОГО ІНТЕЛЕКТУ ДЛЯ «РОЗУМНОГО МІСТА» 10 1.1 Парадигма «розумного міста» 10 1.2 Інформаційні та комунікаційні технології «розумних міст» 12 1.3 Опис процесу наукометричного мошуку магістерського дослідження 21 1.4 Висновок до першого розділу 23 2 ТЕХНОЛОГІЇ ШТУЧНОГО ІНТЕЛЕКТУ ДЛЯ IOT-СИСТЕМ «РОЗУМНОГО МІСТА» ТА ЇХ ПЕРСПЕКТИВИ 24 2.1 Технології штучного інтелекту для IoT-систем розумного міста 24 2.1.1 Машинне навчання для IoT-систем «розумних міст» 25 2.1.2 Глибоке навчання для IoT-пристроїв «розумних міст» 26 2.1.3 Обробка природної мови для IoT-систем «розумних міст» 27 2.1.4 Комп'ютерний зір для IoT-платформ «розумних міст» 28 2.1.5 Навчання з підкріпленням для IoT-систем «розумних міст» 29 2.1.6 Генетичні алгоритми (GA) для IoT «розумних міст» 30 2.2 Перспективи розвитку ШІ для IoT-систем «розумного міста» 31 2.2.1 «Розумна» мобільність 31 2.2.2 «Розумне» управління 32 2.2.3 «Розумна» освіта 33 2.2.4 «Розумна» економіка 34 2.2.5 «Розумна» охорона здоров'я 35 2.2.6 «Розумне» середовище 36 2.2.7 «Розумне» життя 37 2.3 Висновок до другого розділу 39 3 ПОТЕНЦІЙНИЙ ВПЛИВ ШІ НА «РОЗУМНІ МІСТА» 40 3.1 Прототип інформаційно-технологічної архітектури «розумного міста» на базі IoT та ШІ 40 3.1.1 Компоненти сенсорних шарів «розумного міста» 42 3.1.2 Комунікації в багаторівневих архітектурах «розумного міста» для потреб IoT-систем та ШІ 42 3.2 Перспективні тенденції розвитку «розумних міст» на базі IoT та ШІ 47 3.3 Висновок до третього розділу 54 4 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 55 4.1 Питання щодо охорони праці 55 4.2 Питання щодо безпеки в надзвичайних ситуаціях 55 4.3 Висновок до четвертого розділу 56 ВИСНОВКИ 57 ПЕРЕЛІК ДЖЕРЕЛ 58 ДОДАТКИ |
URI: | http://elartu.tntu.edu.ua/handle/lib/47020 |
Copyright owner: | © Дубельт Василь Сергійович, 2024 |
References (Ukraine): | 1 Nikitas, A.; Michalakopoulou, K.; Njoya, E.T.; Karampatzakis, D. Artificial intelligence, transport and the smart city: Definitions and dimensions of a new mobility era. Sustainability 2020, 12, 2789 2 Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, MD, USA, 12–15 June 2011; pp. 282–291 3 O’grady, M.; O’hare, G. How smart is your city? Science 2012, 335, 1581–1582 4 Wang, J.; Jiang, C.; Zhang, K.; Quek, T.Q.; Ren, Y.; Hanzo, L. Vehicular sensing networks in a smart city: Principles, technologies and applications. IEEE Wirel. Commun. 2018, 25, 122–132 5 Ejaz, W.; Anpalagan, A. Internet of Things for Smart Cities: Technologies, Big Data and Security; Springer: Berlin/Heidelberg, Germany, 2019 6 Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H.; Zailani, S. The big picture on the internet of things and the smart city: A review of what we know and what we need to know. Internet Things 2022, 19, 100565 7 Stanko, Andrii, et al. "Artificial Intelligence of Things (AIoT): Integration Challenges and Security Issues." (2024) 8 Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends. Sensors, 23(11), 5206 9 Pasichnyk, Volodymyr. "Information and technological tools for analysis and visualization of open data in smart cities." (2024) 10 Marsal-Llacuna, M.-L.; Colomer-Llinàs, J.; Meléndez-Frigola, J. Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative. Technol. Forecast. Soc. Change 2015, 90, 611–622 11 Petrolo, R.; Loscri, V.; Mitton, N. Towards a smart city based on cloud of things. In Proceedings of the 2014 ACM International Workshop on WIRELESS and Mobile Technologies for Smart Cities, Philadelphia, PA, USA, 11 August 2014 98 Hošek, J. Enabling Technologies and User Perception Within Integrated 5G-IoT Ecosystem; Vysoké ucˇení technické v Brneˇ, nakladatelství VUTIUM: Brno, Czech Republic, 2016; Available online: https://www.vut.cz/vutium/spisy?action=ukazka&id=1489 &publikace_id=14745 99 Akyildiz, I.F.; Nie, S.; Lin, S.-C.; Chandrasekaran, M. 5G roadmap: 10 key enabling technologies. Comput. Netw. 2016, 106, 17–48 100 Ткачук, К. Н., Зацарний, В. В., Зеркалов, Д. В., Полукаров, О. І., Коз'яков, В. С., Мітюк, Л. О., ... & Луц, Т. Є. (2014). Основи охорони праці 101 Левченко, О. Г. (2024). Охорона праці та цивільний захист 102 Березюк, О. В., and М. С. Лемешев. "Безпека життєдіяльності." (2011) 103 Серіков, Я. О., & Коженевські, Л. (2010). БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ-СЕКЮРИТОЛОГІЯ 12 Dmytriv, Dmytro, et al. "Industry 4.0 technologies for smart households." (2024) 13 Theoleyre, F.; Watteyne, T.; Bianchi, G.; Tuna, G.; Gungor, V.C.; Pang, A.-C. Networking and communications for smart cities special issue editorial. Comput. Commun. 2015, 58, 1–3 14 Djahel, S.; Jabeur, N.; Barrett, R.; Murphy, J. Toward V2I communication technology-based solution for reducing road traffic congestion in smart cities. In Proceedings of the Networks, Computers and Communications (ISNCC), 2015 International Symposium on, Yasmine Hammamet, Tunisia, 13–15 May 2015 15 Duda, Oleksii, et al. "Information technology sets formation and" TNTU Smart Campus" services network support." ITTAP. 2023 16 Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21 17 Duda, Oleksii, et al. "Information technology platform for the selection and analytical processing of information on COVID-19." 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT). Vol. 2. IEEE, 2021 18 Statista. Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2021, with Forecasts from 2022 to 2030. Available online: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ 19 Janani, R.; Renuka, K.; Aruna, A. IoT in smart cities: A contemporary survey. Glob. Transit. Proc. 2021, 2, 187–193. 20 Al-Turjman, F. Information-centric framework for the Internet of Things (IoT): Traffic modeling & optimization. Future Gener. Comput. Syst. 2018, 80, 63–75 21 Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91 22 Kapoor, N.; Ahmad, N.; Nayak, S.K.; Singh, S.P.; Ilavarasan, P.V.; Ramamoorthy, P. Identifying infrastructural gap areas for smart and sustainable tribal village development: A data science approach from India. Int. J. Inf. Manag. Data Insights 2021, 1, 100041 23 Cugurullo, F. Urban artificial intelligence: From automation to autonomy in the smart city. Front. Sustain. Cities 2020, 2, 38 24 Al-Turjman, F.M. Information-centric sensor networks for cognitive IoT: An overview. Ann. Telecommun. 2017, 72, 3–18 25 Simjee, F.; Chou, P.H. Everlast: Long-life, supercapacitor-operated wireless sensor node. In Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Tegernsee Bavaria, Germany, 4–6 October 2006 26 Vaishnavi, V.K.; Kuechler, W. Design Science Research Methods and Patterns: Innovating Information and Communication Technology; CRC Press: Boca Raton, FL, USA, 2015 27 Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities 2021, 4, 429–475 28 Ashwini, B.; Savithramma, R.; Sumathi, R. Artificial Intelligence in Smart city applications: An overview. In Proceedings of the 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 25–27 May 2022; pp. 986–993 29 Chang, C.-W.; Lee, H.-W.; Liu, C.-H. A review of artificial intelligence algorithms used for smart machine tools. Inventions 2018, 3, 41 30 Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39 31 Tyagi, A.K.; Chahal, P. Artificial intelligence and machine learning algorithms. In Research Anthology on Machine Learning Techniques, Methods, and Applications; IGI Global: Hershey, PA, USA, 2022; pp. 421–446 32 Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 2020, 154, 313–323 33 Sree, S.R.; Vyshnavi, S.; Jayapandian, N. Real-world application of machine learning and deep learning. In Proceedings of the 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 27–29 November 2019; pp. 1069–1073 34 Singh, S.K.; Jeong, Y.-S.; Park, J.H. A deep learning-based IoT-oriented infrastructure for secure smart city. Sustain. Cities Soc. 2020, 60, 102252 35 Li, X.; Liu, H.; Wang, W.; Zheng, Y.; Lv, H.; Lv, Z. Big data analysis of the internet of things in the digital twins of smart city based on deep learning. Future Gener. Comput. Syst. 2022, 128, 167–177 36 Tyagi, N.; Bhushan, B. Demystifying the Role of Natural Language Processing (NLP) in Smart City Applications: Background, Motivation, Recent Advances, and Future Research Directions. Wirel. Pers. Commun. 2023, 130 37 Chowdhary, K.; Chowdhary, K. Natural language processing. In Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020 38 Wang, J.; Wang, M.; Song, Y. A study on smart city research activity using bibliometric and natural language processing methods. In Proceedings of the 2021 The 9th International Conference on Information Technology: IoT and Smart City, Guangzhou China, 22–25 December 2021; pp. 346–352 39 Parkavi, A.; Sowmya, B.; Jerin Francis, A.; Srikanth, B.; Rohan, N.; Deepak, R. “SmartEval”—Evaluation System for Descriptive Answers in Examinations Using Natural Language Processing and Artificial Neural Networks. In Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications: ICMISC 2021, Hyderabad, India, 28–29 March 2021; pp. 557–567 40 Szeliski, R. Computer vision: Algorithms and applications; Springer Nature: Berlin/Heidelberg, Germany, 2022 41 Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics 2021, 10, 2470 42 Xu, X.; Zuo, L.; Huang, Z. Reinforcement learning algorithms with function approximation: Recent advances and applications. Inf. Sci. 2014, 261, 1–31 43 Cao, D.; Hu, W.; Zhao, J.; Zhang, G.; Zhang, B.; Liu, Z.; Chen, Z.; Blaabjerg, F. Reinforcement learning and its applications in modern power and energy systems: A review. J. Mod. Power Syst. Clean Energy 2020, 8, 1029–1042 44 Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126 45 Chi, H.R.; Radwan, A. Multi-objective optimization of green small cell allocation for IoT applications in smart city. IEEE Access 2020, 8, 101903–101914 46 Herath, H.; Karunasena, G.; Herath, H. Development of an IoT based systems to mitigate the impact of COVID-19 pandemic in smart cities. In Machine Intelligence and Data Analytics for Sustainable Future Smart Cities; Springer: Berlin/Heidelberg, Germany, 2021; pp. 287–309 47 Yang, H.; Du, L.; Zhang, G.; Ma, T. A Traffic Flow Dependency and Dynamics based Deep Learning Aided Approach for Network-Wide Traffic Speed Propagation Prediction. Transp. Res. Part B Methodol. 2023, 167, 99–117 48 Wang, S.; Xie, X.; Huang, K.; Zeng, J.; Cai, Z. Deep Reinforcement Learning-Based Traffic Signal Control Using High-Resolution Event-Based Data. Entropy 2019, 21, 744 49 Hassan, M.; Kanwal, A.; Jarrah, M.; Pradhan, M.; Hussain, A.; Mago, B. Smart City Intelligent Traffic Control for Connected Road Junction Congestion Awareness with Deep Extreme Learning Machine. In Proceedings of the 2022 International Conference on Business Analytics for Technology and Security (ICBATS), Dubai, United Arab Emirates, 16–17 February 2022; pp. 1–4 50 Kaur, P.; Kumar, Y.; Gupta, S. Artificial Intelligence Techniques for the Recognition of Multi-Plate Multi-Vehicle Tracking Systems: A Systematic Review. Arch. Comput. Methods Eng. 2022, 29, 4897–4914 51 Qu, J.; Zhao, Y.; Xie, Y. Artificial intelligence leads the reform of education models. Syst. Res. Behav. Sci. 2022, 39, 581–588 52 Bhutoria, A. Personalized education and Artificial Intelligence in the United States, China, and India: A systematic review using a Human-In-The-Loop model. Comput. Educ. Artif. Intell. 2022, 3, 100068 53 Benotsmane, R.; Kovács, G.; Dudás, L. Economic, Social Impacts and Operation of Smart Factories in Industry 4.0 Focusing on Simulation and Artificial Intelligence of Collaborating Robots. Soc. Sci. 2019, 8, 143 54 Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562 55 Awotunde, J.B.; Folorunso, S.O.; Ajagbe, S.A.; Garg, J.; Ajamu, G.J. AiIoMT: IoMT-Based System-Enabled Artificial Intelligence for Enhanced Smart Healthcare Systems. In Machine Learning for Critical Internet of Medical Things: Applications and Use Cases; Al-Turjman, F., Nayyar, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 229–254 56 Yang, Y.; Siau, K.; Xie, W.; Sun, Y. Smart Health: Intelligent Healthcare Systems in the Metaverse, Artificial Intelligence, and Data Science Era. J. Organ. End User Comput. 2022, 34, 1–14 57 Pereira, G.V.; Parycek, P.; Falco, E.; Kleinhans, R. Smart governance in the context of smart cities: A literature review. Inf. Polity 2018, 23, 143–162 58 Kankanhalli, A.; Charalabidis, Y.; Mellouli, S. IoT and AI for smart government: A research agenda. Gov. Inf. Q. 2019, 36, 304–309 59 Hasan, M.K.; Akhtaruzzaman, M.; Kabir, S.R.; Gadekallu, T.R.; Islam, S.; Magalingam, P.; Hassan, R.; Alazab, M.; Alazab, M.A. Evolution of Industry and Blockchain Era: Monitoring Price Hike and Corruption Using BIoT for Smart Government and Industry 4.0. IEEE Trans. Ind. Inform. 2022, 18, 9153–9161 60 Ni, A.; Cheung, A. Understanding secondary students’ continuance intention to adopt AI-powered intelligent tutoring system for English learning. Educ. Inf. Technol. 2023, 28, 3191–3216 61 Yang, W. Artificial Intelligence education for young children: Why, what, and how in curriculum design and implementation. Comput. Educ. Artif. Intell. 2022, 3, 100061 62 Su, J.; Zhong, Y. Artificial Intelligence (AI) in early childhood education: Curriculum design and future directions. Comput. Educ. Artif. Intell. 2022, 3, 100072 63 Bendiab, G.; Hameurlaine, A.; Germanos, G.; Kolokotronis, N.; Shiaeles, S. Autonomous Vehicles Security: Challenges and Solutions Using Blockchain and Artificial Intelligence. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3614–3637 64 Kussl, S.; Wald, A. Smart Mobility and its Implications for Road Infrastructure Provision: A Systematic Literature Review. Sustainability 2023, 15, 210 65 Van Noordt, C.; Misuraca, G. Artificial intelligence for the public sector: Results of landscaping the use of AI in government across the European Union. Gov. Inf. Q. 2022, 39, 101714 66 Bojovic´, Ž.; Klipa, Ð.; Bojovic´, P.D.; Jovanovic´, I.M.; Šuh, J.; Šenk, V. Interconnected Government Services: An Approach toward Smart Government. Appl. Sci. 2023, 13, 1062 67 Hu, Y.-H.; Fu, J.S.; Yeh, H.-C. Developing an early-warning system through robotic process automation: Are intelligent tutoring robots as effective as human teachers? Interact. Learn. Environ. 2023, 1–14 68 Zhou, Y.; Xia, Q.; Zhang, Z.; Quan, M.; Li, H. Artificial intelligence and machine learning for the green development of agriculture in the emerging manufacturing industry in the IoT platform. Acta Agric. Scand. Sect. B Soil Plant Sci. 2022, 72, 284–299 69 Agarwal, P.; Swami, S.; Malhotra, S.K. Artificial Intelligence Adoption in the Post COVID-19 New-Normal and Role of Smart Technologies in Transforming Business: A Review. J. Sci. Technol. Policy Manag. 2022. ahead-of-print 70 Zhou, B.; Yang, G.; Shi, Z.; Ma, S. Natural Language Processing for Smart Healthcare. IEEE Rev. Biomed. Eng. 2022, 1–17 71 Li, L.; He, Y.; Zhang, H.; Fung, J.C.H.; Lau, A.K.H. Enhancing IAQ, thermal comfort, and energy efficiency through an adaptive multi-objective particle swarm optimizer-grey wolf optimization algorithm for smart environmental control. Build. Environ. 2023, 235, 110235 72 Ahmed, I.; Zhang, Y.; Jeon, G.; Lin, W.; Khosravi, M.R.; Qi, L. A blockchain- and artificial intelligence-enabled smart IoT framework for sustainable city. Int. J. Intell. Syst. 2022, 37, 6493–6507 73 Bharati, R. Future of AI & Generation Alpha: ChatGPT beyond Boundaries. Eduzone Int. Peer Rev./Refereed Multidiscip. J. 2023, 12, 63–68 74 Panahi Rizi, M.H.; Hosseini Seno, S.A. A systematic review of technologies and solutions to improve security and privacy protection of citizens in the smart city. Internet Things 2022, 20, 100584 75 Makroum, M.A.; Adda, M.; Bouzouane, A.; Ibrahim, H. Machine Learning and Smart Devices for Diabetes Management: Systematic Review. Sensors 2022, 22, 1843 76 Chen, L.; Chen, P.; Lin, Z. Artificial Intelligence in Education: A Review. IEEE Access 2020, 8, 75264–75278 77 Yan, M.; Li, X.; Lai, L.L.; Xu, F. Energy internet in smart city review. In Proceedings of the International Conference on Wavelet Analysis & Pattern Recognition, Ningbo, China, 9–12 July 2017 78 Pukkasenung, P.; Lilakiatsakun, W. Improved generic layer model for IoT architecture. J. Inf. Sci. Technol. 2021, 11, 18–29 79 Malee, W.; Ruang-on, S.; Hussain, N.; Tina, F.W. Using a smart watering system for controlling thrips inside mangosteen canopy in Nakhon Si Thammarat province, Southern Thailand. Int. J. Smart Sens. Intell. Syst. 2022, 15 80 Kuhapong, U.; Tina, F.W.; Limsakun, K.; Watthanaphong, S.; Luckban, E.; Piyakun, T. Temporal variations in the air, soil, and fiddler crab (Austruca perplexa) burrow temperatures in southern Thailand. J. Anim. Behav. Biometeorol. 2020 81 Akhter, F.; Alahi, M.E.E.; Siddiquei, H.R.; Gooneratne, C.P.; Mukhopadhyay, S.C. Graphene oxide (GO) coated impedimetric gas sensor for selective detection of carbon dioxide (CO2) with temperature and humidity compensation. IEEE Sens. J. 2020, 21, 4241–4249 82 Alahi, M.E.E.; Nag, A.; Mukhopadhyay, S.C.; Burkitt, L. A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A Phys. 2018, 269, 79–90 83 Singh, R.; Anita, G.; Capoor, S.; Rana, G.; Sharma, R.; Agarwal, S. Internet of things enabled robot based smart room automation and localization system. In Internet of Things and Big Data Analytics for Smart Generation; Springer: Cham, Switzerland, 2019; Volume 154, pp. 105–133 84 Sethi, P.; Sarangi, S.R. Internet of things: Architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, 2017, 9324035 85 Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111 86 Yang, Y. Multi-tier computing networks for intelligent IoT. Nat. Electron. 2019, 2, 4–5 87 Barrachina-Muñoz, S.; Bellalta, B.; Adame, T.; Bel, A. Multi-hop communication in the uplink for LPWANs. Comput. Netw. 2017, 123, 153–168 88 Cesana, M.; Redondi, A.E. Iot communication technologies for smart cities. Des. Dev. Facil. Smart Cities Urban Des. IoT Solut. 2017, 139–162 89 IEEE. IEEE Standard for Low-Rate Wireless Networks. Available online: https://standards.ieee.org/ieee/802.15.4/7029/ 90 Khorov, E.; Lyakhov, A.; Krotov, A.; Guschin, A. A survey on IEEE 802.11 ah: An enabling networking technology for smart cities. Comput. Commun. 2015 91 Jun, J.; Peddabachagari, P.; Sichitiu, M. Theoretical maximum throughput of IEEE 802.11 and its applications. In Proceedings of the Network Computing and Applications, 2003. NCA 2003. Second IEEE International Symposium on, Cambridge, MA, USA, 18 April 2003; pp. 249–256 92 Cordeiro, C.; Akhmetov, D.; Park, M. IEEE 802.11 ad: Introduction and performance evaluation of the first multi-Gbps WiFi technology. In Proceedings of the 2010 ACM International Workshop on mmWave Communications: From Circuits to Networks, Chicago, IL, USA, 24 September 2010; pp. 3–8 93 Adame, T.; Bel, A.; Bellalta, B.; Barcelo, J.; Oliver, M. IEEE 802.11 AH: The WiFi approach for M2M communications. IEEE Wirel. Commun. 2014, 21 94 Duarte, J.M.; Cerqueira, E.; Villas, L.A. Indoor patient monitoring through Wi-Fi and mobile computing. In Proceedings of the New Technologies, Mobility and Security (NTMS), 2015 7th International Conference on, Paris, France, 27–29 July 2015; pp. 1–5 95 Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655 96 Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015, 3, 1206–1232 97 Akyildiz, I.F.; Lee, A.; Wang, P.; Luo, M.; Chou, W. A roadmap for traffic engineering in SDN-OpenFlow networks. Comput. Netw. 2014, 71, 1–30 |
Content type: | Master Thesis |
Ebben a gyűjteményben: | 122 — комп’ютерні науки |
Fájlok a dokumentumban:
Fájl | Leírás | Méret | Formátum | |
---|---|---|---|---|
Mag_2024_SNm_61_Dubelt_VS_v11.pdf | Дипломна робота | 1,86 MB | Adobe PDF | Megtekintés/Megnyitás |
Minden dokumentum, ami a DSpace rendszerben szerepel, szerzői jogokkal védett. Minden jog fenntartva!
Admin Tools