Please use this identifier to cite or link to this item: http://elartu.tntu.edu.ua/handle/lib/47020
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorКунанець, Наталія Едуардівна-
dc.contributor.authorДубельт, Василь Сергійович-
dc.contributor.authorDubelt, Vasyl-
dc.date.accessioned2025-01-02T16:54:10Z-
dc.date.available2025-01-02T16:54:10Z-
dc.date.issued2024-12-26-
dc.date.submitted2024-12-12-
dc.identifier.citationДубельт В. С. Дослідження процесів інтеграції IoT та штучного інтелекту в розумних містах : робота на здобуття кваліфікаційного ступеня магістра : спец. 122 - комп’ютерні науки / наук. кер. Н. Е. Кунанець. Тернопіль : Тернопільський національний технічний університет імені Івана Пулюя, 2024. 73 с.uk_UA
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/47020-
dc.descriptionРоботу виконано на кафедрі комп'ютерних наук Тернопільського національного технічного університету імені Івана Пулюя. Захист відбудеться 26.12.2024 р. о 10 год. на засіданні екзаменаційної комісії №35 у Тернопільському національному технічному університеті імені Івана Пулюяuk_UA
dc.description.abstractКваліфікаційна робота присвячена дослідженню процесів інтеграції IoT та штучного інтелекту в розумних містах. Об’єкт дослідження процеси інтеграції Інтернету речей та штучного інтелекту в системи «розумного міста». Предмет дослідження. методи штучного інтелекту для опрацювання даних, що отримані на основі Інтернету речей в «розумних містах». В першому розділі кваліфікаційної роботи описано парадигму «розумного міста». Проаналізовано інформаційні та комунікаційні технології «розумних міст». Подано опис процесу науко метричного пошуку магістерського дослідження. В другому розділі кваліфікаційної роботи досліджено технології штучного інтелекту для IoT-систем розумного міста. Подано розлогий аналіз перспектив розвитку ШІ для IoT-систем «розумного міста». В третьому розділі кваліфікаційної роботи описано прототип інформаційно-технологічної архітектури «розумного міста» на базі IoT та ШІ. Описано перспективні тенденції розвитку «розумних міст» на базі IoT та ШІ. У розділі «Охорона праці та безпека в надзвичайних ситуаціях» розглянуто психологічні чинники небезпеки. Описано контроль за станом охорони праціuk_UA
dc.description.abstractThe qualification work is devoted to the study of the processes of integration of IoT and artificial intelligence in smart cities. The object of the study is the processes of integration of the Internet of Things and artificial intelligence into the systems of a "smart city". The subject of the study. artificial intelligence methods for processing data obtained on the basis of the Internet of Things in "smart cities". The first section of the qualification work describes the paradigm of a "smart city". Information and communication technologies of "smart cities" are analyzed. A description of the process of scientometric analysis of the master's research is given. The second section of the qualification work investigates artificial intelligence technologies for IoT-systems of a smart city. An extensive analysis of the prospects for the development of AI for IoT-systems of a "smart city" is given. The third section of the qualification work describes the prototype of the information and technological architecture of a "smart city" based on IoT and AI. Promising trends in the development of "smart cities" based on IoT and AI are described. The section "Occupational health and safety in emergencies" discusses psychological risk factors. Control over the state of occupational health and safety is describeduk_UA
dc.description.tableofcontentsВСТУП 8 1 СТАН ТА ПЕРСПЕКТИВИ ДОСЛІДЖЕНЬ В ГАЛУЗІ ІНТЕРНЕТУ РЕЧЕЙ ТА ШТУЧНОГО ІНТЕЛЕКТУ ДЛЯ «РОЗУМНОГО МІСТА» 10 1.1 Парадигма «розумного міста» 10 1.2 Інформаційні та комунікаційні технології «розумних міст» 12 1.3 Опис процесу наукометричного мошуку магістерського дослідження 21 1.4 Висновок до першого розділу 23 2 ТЕХНОЛОГІЇ ШТУЧНОГО ІНТЕЛЕКТУ ДЛЯ IOT-СИСТЕМ «РОЗУМНОГО МІСТА» ТА ЇХ ПЕРСПЕКТИВИ 24 2.1 Технології штучного інтелекту для IoT-систем розумного міста 24 2.1.1 Машинне навчання для IoT-систем «розумних міст» 25 2.1.2 Глибоке навчання для IoT-пристроїв «розумних міст» 26 2.1.3 Обробка природної мови для IoT-систем «розумних міст» 27 2.1.4 Комп'ютерний зір для IoT-платформ «розумних міст» 28 2.1.5 Навчання з підкріпленням для IoT-систем «розумних міст» 29 2.1.6 Генетичні алгоритми (GA) для IoT «розумних міст» 30 2.2 Перспективи розвитку ШІ для IoT-систем «розумного міста» 31 2.2.1 «Розумна» мобільність 31 2.2.2 «Розумне» управління 32 2.2.3 «Розумна» освіта 33 2.2.4 «Розумна» економіка 34 2.2.5 «Розумна» охорона здоров'я 35 2.2.6 «Розумне» середовище 36 2.2.7 «Розумне» життя 37 2.3 Висновок до другого розділу 39 3 ПОТЕНЦІЙНИЙ ВПЛИВ ШІ НА «РОЗУМНІ МІСТА» 40 3.1 Прототип інформаційно-технологічної архітектури «розумного міста» на базі IoT та ШІ 40 3.1.1 Компоненти сенсорних шарів «розумного міста» 42 3.1.2 Комунікації в багаторівневих архітектурах «розумного міста» для потреб IoT-систем та ШІ 42 3.2 Перспективні тенденції розвитку «розумних міст» на базі IoT та ШІ 47 3.3 Висновок до третього розділу 54 4 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 55 4.1 Питання щодо охорони праці 55 4.2 Питання щодо безпеки в надзвичайних ситуаціях 55 4.3 Висновок до четвертого розділу 56 ВИСНОВКИ 57 ПЕРЕЛІК ДЖЕРЕЛ 58 ДОДАТКИuk_UA
dc.format.extent73-
dc.language.isoukuk_UA
dc.subjectкомп’ютерні наукиuk_UA
dc.subjectкомунікаційні технологіїuk_UA
dc.subjectрозумне містоuk_UA
dc.subjectштучний інтелектuk_UA
dc.subject5Guk_UA
dc.subjectIoTuk_UA
dc.subjectartificial intelligenceuk_UA
dc.subjectcommunication technologieuk_UA
dc.subjectsmart cityuk_UA
dc.titleДослідження процесів інтеграції IoT та штучного інтелекту в розумних містахuk_UA
dc.title.alternativeResearch on IoT and Artificial Intelligence Integration Processes in Smart Citiesuk_UA
dc.typeMaster Thesisuk_UA
dc.rights.holder© Дубельт Василь Сергійович, 2024uk_UA
dc.coverage.placenameТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Українаuk_UA
dc.subject.udc004.9uk_UA
dc.relation.references1 Nikitas, A.; Michalakopoulou, K.; Njoya, E.T.; Karampatzakis, D. Artificial intelligence, transport and the smart city: Definitions and dimensions of a new mobility era. Sustainability 2020, 12, 2789uk_UA
dc.relation.references2 Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, MD, USA, 12–15 June 2011; pp. 282–291uk_UA
dc.relation.references3 O’grady, M.; O’hare, G. How smart is your city? Science 2012, 335, 1581–1582uk_UA
dc.relation.references4 Wang, J.; Jiang, C.; Zhang, K.; Quek, T.Q.; Ren, Y.; Hanzo, L. Vehicular sensing networks in a smart city: Principles, technologies and applications. IEEE Wirel. Commun. 2018, 25, 122–132uk_UA
dc.relation.references5 Ejaz, W.; Anpalagan, A. Internet of Things for Smart Cities: Technologies, Big Data and Security; Springer: Berlin/Heidelberg, Germany, 2019uk_UA
dc.relation.references6 Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H.; Zailani, S. The big picture on the internet of things and the smart city: A review of what we know and what we need to know. Internet Things 2022, 19, 100565uk_UA
dc.relation.references7 Stanko, Andrii, et al. "Artificial Intelligence of Things (AIoT): Integration Challenges and Security Issues." (2024)uk_UA
dc.relation.references8 Alahi, M. E. E., Sukkuea, A., Tina, F. W., Nag, A., Kurdthongmee, W., Suwannarat, K., & Mukhopadhyay, S. C. (2023). Integration of IoT-enabled technologies and artificial intelligence (AI) for smart city scenario: recent advancements and future trends. Sensors, 23(11), 5206uk_UA
dc.relation.references9 Pasichnyk, Volodymyr. "Information and technological tools for analysis and visualization of open data in smart cities." (2024)uk_UA
dc.relation.references10 Marsal-Llacuna, M.-L.; Colomer-Llinàs, J.; Meléndez-Frigola, J. Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative. Technol. Forecast. Soc. Change 2015, 90, 611–622uk_UA
dc.relation.references11 Petrolo, R.; Loscri, V.; Mitton, N. Towards a smart city based on cloud of things. In Proceedings of the 2014 ACM International Workshop on WIRELESS and Mobile Technologies for Smart Cities, Philadelphia, PA, USA, 11 August 2014uk_UA
dc.relation.references98 Hošek, J. Enabling Technologies and User Perception Within Integrated 5G-IoT Ecosystem; Vysoké ucˇení technické v Brneˇ, nakladatelství VUTIUM: Brno, Czech Republic, 2016; Available online: https://www.vut.cz/vutium/spisy?action=ukazka&id=1489 &publikace_id=14745uk_UA
dc.relation.references99 Akyildiz, I.F.; Nie, S.; Lin, S.-C.; Chandrasekaran, M. 5G roadmap: 10 key enabling technologies. Comput. Netw. 2016, 106, 17–48uk_UA
dc.relation.references100 Ткачук, К. Н., Зацарний, В. В., Зеркалов, Д. В., Полукаров, О. І., Коз'яков, В. С., Мітюк, Л. О., ... & Луц, Т. Є. (2014). Основи охорони праціuk_UA
dc.relation.references101 Левченко, О. Г. (2024). Охорона праці та цивільний захистuk_UA
dc.relation.references102 Березюк, О. В., and М. С. Лемешев. "Безпека життєдіяльності." (2011)uk_UA
dc.relation.references103 Серіков, Я. О., & Коженевські, Л. (2010). БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ-СЕКЮРИТОЛОГІЯuk_UA
dc.relation.references12 Dmytriv, Dmytro, et al. "Industry 4.0 technologies for smart households." (2024)uk_UA
dc.relation.references13 Theoleyre, F.; Watteyne, T.; Bianchi, G.; Tuna, G.; Gungor, V.C.; Pang, A.-C. Networking and communications for smart cities special issue editorial. Comput. Commun. 2015, 58, 1–3uk_UA
dc.relation.references14 Djahel, S.; Jabeur, N.; Barrett, R.; Murphy, J. Toward V2I communication technology-based solution for reducing road traffic congestion in smart cities. In Proceedings of the Networks, Computers and Communications (ISNCC), 2015 International Symposium on, Yasmine Hammamet, Tunisia, 13–15 May 2015uk_UA
dc.relation.references15 Duda, Oleksii, et al. "Information technology sets formation and" TNTU Smart Campus" services network support." ITTAP. 2023uk_UA
dc.relation.references16 Albino, V.; Berardi, U.; Dangelico, R.M. Smart cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 2015, 22, 3–21uk_UA
dc.relation.references17 Duda, Oleksii, et al. "Information technology platform for the selection and analytical processing of information on COVID-19." 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT). Vol. 2. IEEE, 2021uk_UA
dc.relation.references18 Statista. Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2021, with Forecasts from 2022 to 2030. Available online: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/uk_UA
dc.relation.references19 Janani, R.; Renuka, K.; Aruna, A. IoT in smart cities: A contemporary survey. Glob. Transit. Proc. 2021, 2, 187–193. 20 Al-Turjman, F. Information-centric framework for the Internet of Things (IoT): Traffic modeling & optimization. Future Gener. Comput. Syst. 2018, 80, 63–75uk_UA
dc.relation.references21 Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91uk_UA
dc.relation.references22 Kapoor, N.; Ahmad, N.; Nayak, S.K.; Singh, S.P.; Ilavarasan, P.V.; Ramamoorthy, P. Identifying infrastructural gap areas for smart and sustainable tribal village development: A data science approach from India. Int. J. Inf. Manag. Data Insights 2021, 1, 100041uk_UA
dc.relation.references23 Cugurullo, F. Urban artificial intelligence: From automation to autonomy in the smart city. Front. Sustain. Cities 2020, 2, 38uk_UA
dc.relation.references24 Al-Turjman, F.M. Information-centric sensor networks for cognitive IoT: An overview. Ann. Telecommun. 2017, 72, 3–18uk_UA
dc.relation.references25 Simjee, F.; Chou, P.H. Everlast: Long-life, supercapacitor-operated wireless sensor node. In Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Tegernsee Bavaria, Germany, 4–6 October 2006uk_UA
dc.relation.references26 Vaishnavi, V.K.; Kuechler, W. Design Science Research Methods and Patterns: Innovating Information and Communication Technology; CRC Press: Boca Raton, FL, USA, 2015uk_UA
dc.relation.references27 Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities 2021, 4, 429–475uk_UA
dc.relation.references28 Ashwini, B.; Savithramma, R.; Sumathi, R. Artificial Intelligence in Smart city applications: An overview. In Proceedings of the 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 25–27 May 2022; pp. 986–993uk_UA
dc.relation.references29 Chang, C.-W.; Lee, H.-W.; Liu, C.-H. A review of artificial intelligence algorithms used for smart machine tools. Inventions 2018, 3, 41uk_UA
dc.relation.references30 Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39uk_UA
dc.relation.references31 Tyagi, A.K.; Chahal, P. Artificial intelligence and machine learning algorithms. In Research Anthology on Machine Learning Techniques, Methods, and Applications; IGI Global: Hershey, PA, USA, 2022; pp. 421–446uk_UA
dc.relation.references32 Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 2020, 154, 313–323uk_UA
dc.relation.references33 Sree, S.R.; Vyshnavi, S.; Jayapandian, N. Real-world application of machine learning and deep learning. In Proceedings of the 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 27–29 November 2019; pp. 1069–1073uk_UA
dc.relation.references34 Singh, S.K.; Jeong, Y.-S.; Park, J.H. A deep learning-based IoT-oriented infrastructure for secure smart city. Sustain. Cities Soc. 2020, 60, 102252uk_UA
dc.relation.references35 Li, X.; Liu, H.; Wang, W.; Zheng, Y.; Lv, H.; Lv, Z. Big data analysis of the internet of things in the digital twins of smart city based on deep learning. Future Gener. Comput. Syst. 2022, 128, 167–177uk_UA
dc.relation.references36 Tyagi, N.; Bhushan, B. Demystifying the Role of Natural Language Processing (NLP) in Smart City Applications: Background, Motivation, Recent Advances, and Future Research Directions. Wirel. Pers. Commun. 2023, 130uk_UA
dc.relation.references37 Chowdhary, K.; Chowdhary, K. Natural language processing. In Fundamentals of Artificial Intelligence; Springer: New Delhi, India, 2020uk_UA
dc.relation.references38 Wang, J.; Wang, M.; Song, Y. A study on smart city research activity using bibliometric and natural language processing methods. In Proceedings of the 2021 The 9th International Conference on Information Technology: IoT and Smart City, Guangzhou China, 22–25 December 2021; pp. 346–352uk_UA
dc.relation.references39 Parkavi, A.; Sowmya, B.; Jerin Francis, A.; Srikanth, B.; Rohan, N.; Deepak, R. “SmartEval”—Evaluation System for Descriptive Answers in Examinations Using Natural Language Processing and Artificial Neural Networks. In Proceedings of the 2nd International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications: ICMISC 2021, Hyderabad, India, 28–29 March 2021; pp. 557–567uk_UA
dc.relation.references40 Szeliski, R. Computer vision: Algorithms and applications; Springer Nature: Berlin/Heidelberg, Germany, 2022uk_UA
dc.relation.references41 Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics 2021, 10, 2470uk_UA
dc.relation.references42 Xu, X.; Zuo, L.; Huang, Z. Reinforcement learning algorithms with function approximation: Recent advances and applications. Inf. Sci. 2014, 261, 1–31uk_UA
dc.relation.references43 Cao, D.; Hu, W.; Zhao, J.; Zhang, G.; Zhang, B.; Liu, Z.; Chen, Z.; Blaabjerg, F. Reinforcement learning and its applications in modern power and energy systems: A review. J. Mod. Power Syst. Clean Energy 2020, 8, 1029–1042uk_UA
dc.relation.references44 Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126uk_UA
dc.relation.references45 Chi, H.R.; Radwan, A. Multi-objective optimization of green small cell allocation for IoT applications in smart city. IEEE Access 2020, 8, 101903–101914uk_UA
dc.relation.references46 Herath, H.; Karunasena, G.; Herath, H. Development of an IoT based systems to mitigate the impact of COVID-19 pandemic in smart cities. In Machine Intelligence and Data Analytics for Sustainable Future Smart Cities; Springer: Berlin/Heidelberg, Germany, 2021; pp. 287–309uk_UA
dc.relation.references47 Yang, H.; Du, L.; Zhang, G.; Ma, T. A Traffic Flow Dependency and Dynamics based Deep Learning Aided Approach for Network-Wide Traffic Speed Propagation Prediction. Transp. Res. Part B Methodol. 2023, 167, 99–117uk_UA
dc.relation.references48 Wang, S.; Xie, X.; Huang, K.; Zeng, J.; Cai, Z. Deep Reinforcement Learning-Based Traffic Signal Control Using High-Resolution Event-Based Data. Entropy 2019, 21, 744uk_UA
dc.relation.references49 Hassan, M.; Kanwal, A.; Jarrah, M.; Pradhan, M.; Hussain, A.; Mago, B. Smart City Intelligent Traffic Control for Connected Road Junction Congestion Awareness with Deep Extreme Learning Machine. In Proceedings of the 2022 International Conference on Business Analytics for Technology and Security (ICBATS), Dubai, United Arab Emirates, 16–17 February 2022; pp. 1–4uk_UA
dc.relation.references50 Kaur, P.; Kumar, Y.; Gupta, S. Artificial Intelligence Techniques for the Recognition of Multi-Plate Multi-Vehicle Tracking Systems: A Systematic Review. Arch. Comput. Methods Eng. 2022, 29, 4897–4914uk_UA
dc.relation.references51 Qu, J.; Zhao, Y.; Xie, Y. Artificial intelligence leads the reform of education models. Syst. Res. Behav. Sci. 2022, 39, 581–588uk_UA
dc.relation.references52 Bhutoria, A. Personalized education and Artificial Intelligence in the United States, China, and India: A systematic review using a Human-In-The-Loop model. Comput. Educ. Artif. Intell. 2022, 3, 100068uk_UA
dc.relation.references53 Benotsmane, R.; Kovács, G.; Dudás, L. Economic, Social Impacts and Operation of Smart Factories in Industry 4.0 Focusing on Simulation and Artificial Intelligence of Collaborating Robots. Soc. Sci. 2019, 8, 143uk_UA
dc.relation.references54 Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562uk_UA
dc.relation.references55 Awotunde, J.B.; Folorunso, S.O.; Ajagbe, S.A.; Garg, J.; Ajamu, G.J. AiIoMT: IoMT-Based System-Enabled Artificial Intelligence for Enhanced Smart Healthcare Systems. In Machine Learning for Critical Internet of Medical Things: Applications and Use Cases; Al-Turjman, F., Nayyar, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 229–254uk_UA
dc.relation.references56 Yang, Y.; Siau, K.; Xie, W.; Sun, Y. Smart Health: Intelligent Healthcare Systems in the Metaverse, Artificial Intelligence, and Data Science Era. J. Organ. End User Comput. 2022, 34, 1–14uk_UA
dc.relation.references57 Pereira, G.V.; Parycek, P.; Falco, E.; Kleinhans, R. Smart governance in the context of smart cities: A literature review. Inf. Polity 2018, 23, 143–162uk_UA
dc.relation.references58 Kankanhalli, A.; Charalabidis, Y.; Mellouli, S. IoT and AI for smart government: A research agenda. Gov. Inf. Q. 2019, 36, 304–309uk_UA
dc.relation.references59 Hasan, M.K.; Akhtaruzzaman, M.; Kabir, S.R.; Gadekallu, T.R.; Islam, S.; Magalingam, P.; Hassan, R.; Alazab, M.; Alazab, M.A. Evolution of Industry and Blockchain Era: Monitoring Price Hike and Corruption Using BIoT for Smart Government and Industry 4.0. IEEE Trans. Ind. Inform. 2022, 18, 9153–9161uk_UA
dc.relation.references60 Ni, A.; Cheung, A. Understanding secondary students’ continuance intention to adopt AI-powered intelligent tutoring system for English learning. Educ. Inf. Technol. 2023, 28, 3191–3216uk_UA
dc.relation.references61 Yang, W. Artificial Intelligence education for young children: Why, what, and how in curriculum design and implementation. Comput. Educ. Artif. Intell. 2022, 3, 100061uk_UA
dc.relation.references62 Su, J.; Zhong, Y. Artificial Intelligence (AI) in early childhood education: Curriculum design and future directions. Comput. Educ. Artif. Intell. 2022, 3, 100072uk_UA
dc.relation.references63 Bendiab, G.; Hameurlaine, A.; Germanos, G.; Kolokotronis, N.; Shiaeles, S. Autonomous Vehicles Security: Challenges and Solutions Using Blockchain and Artificial Intelligence. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3614–3637uk_UA
dc.relation.references64 Kussl, S.; Wald, A. Smart Mobility and its Implications for Road Infrastructure Provision: A Systematic Literature Review. Sustainability 2023, 15, 210uk_UA
dc.relation.references65 Van Noordt, C.; Misuraca, G. Artificial intelligence for the public sector: Results of landscaping the use of AI in government across the European Union. Gov. Inf. Q. 2022, 39, 101714uk_UA
dc.relation.references66 Bojovic´, Ž.; Klipa, Ð.; Bojovic´, P.D.; Jovanovic´, I.M.; Šuh, J.; Šenk, V. Interconnected Government Services: An Approach toward Smart Government. Appl. Sci. 2023, 13, 1062uk_UA
dc.relation.references67 Hu, Y.-H.; Fu, J.S.; Yeh, H.-C. Developing an early-warning system through robotic process automation: Are intelligent tutoring robots as effective as human teachers? Interact. Learn. Environ. 2023, 1–14uk_UA
dc.relation.references68 Zhou, Y.; Xia, Q.; Zhang, Z.; Quan, M.; Li, H. Artificial intelligence and machine learning for the green development of agriculture in the emerging manufacturing industry in the IoT platform. Acta Agric. Scand. Sect. B Soil Plant Sci. 2022, 72, 284–299uk_UA
dc.relation.references69 Agarwal, P.; Swami, S.; Malhotra, S.K. Artificial Intelligence Adoption in the Post COVID-19 New-Normal and Role of Smart Technologies in Transforming Business: A Review. J. Sci. Technol. Policy Manag. 2022. ahead-of-printuk_UA
dc.relation.references70 Zhou, B.; Yang, G.; Shi, Z.; Ma, S. Natural Language Processing for Smart Healthcare. IEEE Rev. Biomed. Eng. 2022, 1–17uk_UA
dc.relation.references71 Li, L.; He, Y.; Zhang, H.; Fung, J.C.H.; Lau, A.K.H. Enhancing IAQ, thermal comfort, and energy efficiency through an adaptive multi-objective particle swarm optimizer-grey wolf optimization algorithm for smart environmental control. Build. Environ. 2023, 235, 110235uk_UA
dc.relation.references72 Ahmed, I.; Zhang, Y.; Jeon, G.; Lin, W.; Khosravi, M.R.; Qi, L. A blockchain- and artificial intelligence-enabled smart IoT framework for sustainable city. Int. J. Intell. Syst. 2022, 37, 6493–6507uk_UA
dc.relation.references73 Bharati, R. Future of AI & Generation Alpha: ChatGPT beyond Boundaries. Eduzone Int. Peer Rev./Refereed Multidiscip. J. 2023, 12, 63–68uk_UA
dc.relation.references74 Panahi Rizi, M.H.; Hosseini Seno, S.A. A systematic review of technologies and solutions to improve security and privacy protection of citizens in the smart city. Internet Things 2022, 20, 100584uk_UA
dc.relation.references75 Makroum, M.A.; Adda, M.; Bouzouane, A.; Ibrahim, H. Machine Learning and Smart Devices for Diabetes Management: Systematic Review. Sensors 2022, 22, 1843uk_UA
dc.relation.references76 Chen, L.; Chen, P.; Lin, Z. Artificial Intelligence in Education: A Review. IEEE Access 2020, 8, 75264–75278uk_UA
dc.relation.references77 Yan, M.; Li, X.; Lai, L.L.; Xu, F. Energy internet in smart city review. In Proceedings of the International Conference on Wavelet Analysis & Pattern Recognition, Ningbo, China, 9–12 July 2017uk_UA
dc.relation.references78 Pukkasenung, P.; Lilakiatsakun, W. Improved generic layer model for IoT architecture. J. Inf. Sci. Technol. 2021, 11, 18–29uk_UA
dc.relation.references79 Malee, W.; Ruang-on, S.; Hussain, N.; Tina, F.W. Using a smart watering system for controlling thrips inside mangosteen canopy in Nakhon Si Thammarat province, Southern Thailand. Int. J. Smart Sens. Intell. Syst. 2022, 15uk_UA
dc.relation.references80 Kuhapong, U.; Tina, F.W.; Limsakun, K.; Watthanaphong, S.; Luckban, E.; Piyakun, T. Temporal variations in the air, soil, and fiddler crab (Austruca perplexa) burrow temperatures in southern Thailand. J. Anim. Behav. Biometeorol. 2020uk_UA
dc.relation.references81 Akhter, F.; Alahi, M.E.E.; Siddiquei, H.R.; Gooneratne, C.P.; Mukhopadhyay, S.C. Graphene oxide (GO) coated impedimetric gas sensor for selective detection of carbon dioxide (CO2) with temperature and humidity compensation. IEEE Sens. J. 2020, 21, 4241–4249uk_UA
dc.relation.references82 Alahi, M.E.E.; Nag, A.; Mukhopadhyay, S.C.; Burkitt, L. A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens. Actuators A Phys. 2018, 269, 79–90uk_UA
dc.relation.references83 Singh, R.; Anita, G.; Capoor, S.; Rana, G.; Sharma, R.; Agarwal, S. Internet of things enabled robot based smart room automation and localization system. In Internet of Things and Big Data Analytics for Smart Generation; Springer: Cham, Switzerland, 2019; Volume 154, pp. 105–133uk_UA
dc.relation.references84 Sethi, P.; Sarangi, S.R. Internet of things: Architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, 2017, 9324035uk_UA
dc.relation.references85 Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111uk_UA
dc.relation.references86 Yang, Y. Multi-tier computing networks for intelligent IoT. Nat. Electron. 2019, 2, 4–5uk_UA
dc.relation.references87 Barrachina-Muñoz, S.; Bellalta, B.; Adame, T.; Bel, A. Multi-hop communication in the uplink for LPWANs. Comput. Netw. 2017, 123, 153–168uk_UA
dc.relation.references88 Cesana, M.; Redondi, A.E. Iot communication technologies for smart cities. Des. Dev. Facil. Smart Cities Urban Des. IoT Solut. 2017, 139–162uk_UA
dc.relation.references89 IEEE. IEEE Standard for Low-Rate Wireless Networks. Available online: https://standards.ieee.org/ieee/802.15.4/7029/uk_UA
dc.relation.references90 Khorov, E.; Lyakhov, A.; Krotov, A.; Guschin, A. A survey on IEEE 802.11 ah: An enabling networking technology for smart cities. Comput. Commun. 2015uk_UA
dc.relation.references91 Jun, J.; Peddabachagari, P.; Sichitiu, M. Theoretical maximum throughput of IEEE 802.11 and its applications. In Proceedings of the Network Computing and Applications, 2003. NCA 2003. Second IEEE International Symposium on, Cambridge, MA, USA, 18 April 2003; pp. 249–256uk_UA
dc.relation.references92 Cordeiro, C.; Akhmetov, D.; Park, M. IEEE 802.11 ad: Introduction and performance evaluation of the first multi-Gbps WiFi technology. In Proceedings of the 2010 ACM International Workshop on mmWave Communications: From Circuits to Networks, Chicago, IL, USA, 24 September 2010; pp. 3–8uk_UA
dc.relation.references93 Adame, T.; Bel, A.; Bellalta, B.; Barcelo, J.; Oliver, M. IEEE 802.11 AH: The WiFi approach for M2M communications. IEEE Wirel. Commun. 2014, 21uk_UA
dc.relation.references94 Duarte, J.M.; Cerqueira, E.; Villas, L.A. Indoor patient monitoring through Wi-Fi and mobile computing. In Proceedings of the New Technologies, Mobility and Security (NTMS), 2015 7th International Conference on, Paris, France, 27–29 July 2015; pp. 1–5uk_UA
dc.relation.references95 Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655uk_UA
dc.relation.references96 Gupta, A.; Jha, R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015, 3, 1206–1232uk_UA
dc.relation.references97 Akyildiz, I.F.; Lee, A.; Wang, P.; Luo, M.; Chou, W. A roadmap for traffic engineering in SDN-OpenFlow networks. Comput. Netw. 2014, 71, 1–30uk_UA
dc.contributor.affiliationТернопільський національний технічний університет імені Івана Пулюя, факультет комп’ютерно-інформаційних систем і програмної інженерії, кафедра комп’ютерних наук, м. Тернопіль, Українаuk_UA
dc.coverage.countryUAuk_UA
Appears in Collections:122 — комп’ютерні науки

Files in This Item:
File Description SizeFormat 
Mag_2024_SNm_61_Dubelt_VS_v11.pdfДипломна робота1,86 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools