Palun kasuta seda identifikaatorit viitamiseks ja linkimiseks:
http://elartu.tntu.edu.ua/handle/lib/36930
Заглавие: | Computer modeling of the stress stress-strain state of thin thin-walled tubular structural elements for predicting the limiting state |
Автори: | Kozbur, Halyna Shkodzinsky, Oleh Kozbur, Ihor Nadiia, Gashchyn |
Affiliation: | Ternopil National Ivan Puluj Technical University, Rus’ka str. 56, 46001, Ternopil, Ukraine |
Bibliographic description (Ukraine): | Computer modeling of the stress stress-strain state of thin thin-walled tubular structural elements for predicting the limiting state / Halyna Kozbur, Oleh Shkodzinsky, Ihor Kozbur, Gashchyn Nadiia // ICAAEIT 2021, 15-17 December 2021. — Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. — P. 81–86. — (Electrical engineering and power electronics). |
Bibliographic description (International): | Kozbur H., Shkodzinsky O., Kozbur I., Nadiia G. (2021) Computer modeling of the stress stress-strain state of thin thin-walled tubular structural elements for predicting the limiting state. ICAAEIT 2021 (Tern., 15-17 December 2021), pp. 81-86. |
Is part of: | Proceedings of the International Conference „Advanced applied energy and information technologies 2021”, 2021 |
Дата на Публикуване: | 15-Дек-2021 |
Date of entry: | 28-Дек-2021 |
Издател: | TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC |
Place of the edition/event: | Ternopil |
Temporal Coverage: | 15-17 December 2021 |
Ключови Думи: | computer modelling large plastic strains true stresses the uniform plastic stability loss complex stress state localization of strains |
Number of pages: | 6 |
Page range: | 81-86 |
Start page: | 81 |
End page: | 86 |
Резюме: | If a thin-walled pipe loaded with internal pressure and axial tension allows the appearance of plastic strains, then the uniform plastic stability loss with the emergence of a local plastic deformation zone is considered the limit state, the corresponding stresses are considered as the limit ones. Correct prediction of the stress-strain state at the moment of strain localization requires taking into account the actual size of the loaded pipe and the calculation of true stresses. The paper proposes the implementation of the methodology of predicting the limit values of true stresses in the pipe at different ratios of internal pressure and axial tension values through the development of an algorithm for its computer modelling. Unlike existing, the methodology takes into account the physical and mechanical properties of the material, the type of stress state and the change in the actual dimensions of the loaded pipe. The algorithm is based on analytical dependences, established by the authors.For two grades of steels (carbon steel 45 and alloy steel 10MnH2MoV), an increase in the calculated strength threshold is shown with an insignificant additional load of a pipe loaded with pressure and axial tension. Analysis of the numerical results showed that it is possible to establish a balance between the actual geometry of the element and the load, which will solve the problem of finding the optimal ratio of «weight-strength», important for practical applications in aircraft, rocket and mechanical engineering. The developed computing modelling algorithm for finding the limit values of actual stresses makes it possible to calculate a realistic safety factor and make improved engineering solutions at the design and operation stages of structural elements; to increase the efficiency and safety of using pipeline and shell-type saving systems. |
URI: | http://elartu.tntu.edu.ua/handle/lib/36930 |
ISBN: | 978-617-8079-60-4 |
Copyright owner: | © Ternopil Ivan Puluj National Technical University, Ukraine, 2021 |
URL for reference material: | https://doi.org/10.33108/visnyk_tntu2017.03.048 |
References (International): | 1. Luchko, J., Ivanyk, E. (2017). Diagnostics of the main gas pipelines and assessment of their residual life under the conditions of long-term operation. Scientific Journal of TNTU, 87(3), 48-63. https://doi.org/10.33108/visnyk_tntu2017.03.048 2. Bony, M., Alamilla, J. L., Vai, R., Flores, E. (2010). Failure pressure in corroded pipelines based on equivalent solutions for undamaged pipe. ASME. J. Pressure Vessel Technol., 132(5). doi:10.1115/1.4001801 3. Hillier, M.J. (1965). Tensile plastic instability of thin tubes–I. International Journal of Mechanical Sciences, 7(8), 531–538, doi: 10.1016/0020-7403(65)90010-X 4. Tomita, Y., Shindo, A., Nagai, M. (1984). Axisymmetric deformation of hoop elastic-plastic tubes under axial tension and internal pressure. International Journal of Mechanical Sciences, 26(6–8), 437–444. doi:10.1016/0020-7403(84)90033-X 5. Dilman, V.L., Ostsemin, A.A. (2000). O vliyanii dvuhosnosti nagrujeniya na nesuschuyu sposobnost trub magistralnyih gazonefteprovodov. Izv. RAN. Mehanika tverdogo tela, 5, 179–185 [in Russian] 6. Dilman, V.L., Ostsemin, A.A. (2000). O potere plasticheskoy ustoychivosti tonkostennyih tsilindricheskih obolochek. Problemyi mashinostroeniya i nadejnosti mashin, 5, 50–57 [in Russian] 7. Degtyarev, V.P. (1987). Deformatsii i razrushenie v vyisokonapryajennyih konstruktsiyah. Moskva: Mashinostroenie [in Russian] 8. Kollinz, Dj. (1984). Povrejdenie materialov v konstruktsiyah. Analiz, predskazanie, predotvraschenie. Moskva: Mir [in Russian] 9. Updike, D.P., Kalnins, A. (1998). Tensile plastic instability of axisymmetric pressure vessels. ASME. J. Pressure Vessel Technol, 120(1), 6–11. doi: 10.1115/1.2841888. 10. Zhu, X.-K., Leis, B., (2011). Evaluation of burst pressure prediction models for line pipes. International Journal of Pressure Vessels and Piping. doi:10.1016/j.ijpvp.2011.09.007 11. Law, M. (2005). Use of the cylindrical instability stress for blunt metal loss defects in linepipe. International Journal of Pressure Vessels and Piping, 82(12), 925–928. doi:10.1016/j.ijpvp.2005.04.002 12. Kozbur, H. (2020). Prediction technique for thin-walled cylindrical tubes boundary state. Scientific Journal of TNTU, 94(2), 145–155. doi: 10.33108/visnyk_tntu2019.02.145 13. Kozbur, H. (2020). Method of predicting necking true stress in a thin-walled tube under a complex stress state. Strojnícky časopis - Journal of Mechanical Engineering, 70(2), 101-116. doi:10.2478/scjme-2020-0024 14. Kaminskiy, A.A., Bastun, V.N. (1985). Deformatsionnoe uprochnenie i razrushenie metallov pri peremennyih protsessah nagrujeniya. Kyiv: Naukova dumka [in Russian]. 15. Lebedev, A.A. (Ed.), Kovalchuk, B.I., Giginyak, F.F., Lamashevskiy, V.P. (2003). Mehanicheskie svoystva konstruktsionnyih materialov pri slojnom napryajennom sostoyanii. Kiev: Izdatelskiy dom “In Yure” [in Russian] 16. Copyright for the work "Computer modeling" The modeling of stress-state-independent deformation curve. Ministry of Economic Development, Trade and Agriculture of Ukraine, copyright registration certificatet т 96585 dated 10.03.2020. (authors – Kozbur H., Gladio O.) 17. Kozbur, H. (2020). Method of predicting necking true stress in a thin-walled tube under a complex stress state. Strojnícky časopis – Journal of Mechanical Engineering, 70(2), 101-116. doi:10.2478/scjme-2020-0024. |
Content type: | Conference Abstract |
Показва се в Колекции: | International conference „Advanced Applied Energy and Information Technologies 2021“, (ICAAEIT 2021) |
Файлове в Този Публикация:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
ICAAEIT_2021_Kozbur_H-Computer_modeling_of_the_stress_81-86.pdf | 1,68 MB | Adobe PDF | Изглед/Отваряне | |
ICAAEIT_2021_Kozbur_H-Computer_modeling_of_the_stress_81-86.djvu | 502,51 kB | DjVu | Изглед/Отваряне | |
ICAAEIT_2021_Kozbur_H-Computer_modeling_of_the_stress_81-86__COVER.png | 573,18 kB | image/png | Изглед/Отваряне |
Публикацияте в DSpace са защитени с авторско право, с всички права запазени, освен ако не е указно друго.