Ezzel az azonosítóval hivatkozhat erre a dokumentumra forrásmegjelölésben vagy hiperhivatkozás esetén: http://elartu.tntu.edu.ua/handle/lib/36930

Összes dokumentumadat
DC mezőÉrtékNyelv
dc.contributor.authorKozbur, Halyna
dc.contributor.authorShkodzinsky, Oleh
dc.contributor.authorKozbur, Ihor
dc.contributor.authorNadiia, Gashchyn
dc.coverage.temporal15-17 December 2021
dc.date.accessioned2021-12-28T20:03:13Z-
dc.date.available2021-12-28T20:03:13Z-
dc.date.created2021-12-15
dc.date.issued2021-12-15
dc.identifier.citationComputer modeling of the stress stress-strain state of thin thin-walled tubular structural elements for predicting the limiting state / Halyna Kozbur, Oleh Shkodzinsky, Ihor Kozbur, Gashchyn Nadiia // ICAAEIT 2021, 15-17 December 2021. — Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. — P. 81–86. — (Electrical engineering and power electronics).
dc.identifier.isbn978-617-8079-60-4
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/36930-
dc.description.abstractIf a thin-walled pipe loaded with internal pressure and axial tension allows the appearance of plastic strains, then the uniform plastic stability loss with the emergence of a local plastic deformation zone is considered the limit state, the corresponding stresses are considered as the limit ones. Correct prediction of the stress-strain state at the moment of strain localization requires taking into account the actual size of the loaded pipe and the calculation of true stresses. The paper proposes the implementation of the methodology of predicting the limit values of true stresses in the pipe at different ratios of internal pressure and axial tension values through the development of an algorithm for its computer modelling. Unlike existing, the methodology takes into account the physical and mechanical properties of the material, the type of stress state and the change in the actual dimensions of the loaded pipe. The algorithm is based on analytical dependences, established by the authors.For two grades of steels (carbon steel 45 and alloy steel 10MnH2MoV), an increase in the calculated strength threshold is shown with an insignificant additional load of a pipe loaded with pressure and axial tension. Analysis of the numerical results showed that it is possible to establish a balance between the actual geometry of the element and the load, which will solve the problem of finding the optimal ratio of «weight-strength», important for practical applications in aircraft, rocket and mechanical engineering. The developed computing modelling algorithm for finding the limit values of actual stresses makes it possible to calculate a realistic safety factor and make improved engineering solutions at the design and operation stages of structural elements; to increase the efficiency and safety of using pipeline and shell-type saving systems.
dc.format.extent81-86
dc.language.isoen
dc.publisherTNTU, Zhytomyr «Publishing house „Book-Druk“» LLC
dc.relation.ispartofProceedings of the International Conference „Advanced applied energy and information technologies 2021”, 2021
dc.relation.urihttps://doi.org/10.33108/visnyk_tntu2017.03.048
dc.subjectcomputer modelling
dc.subjectlarge plastic strains
dc.subjecttrue stresses
dc.subjectthe uniform plastic stability loss
dc.subjectcomplex stress state
dc.subjectlocalization of strains
dc.titleComputer modeling of the stress stress-strain state of thin thin-walled tubular structural elements for predicting the limiting state
dc.typeConference Abstract
dc.rights.holder© Ternopil Ivan Puluj National Technical University, Ukraine, 2021
dc.coverage.placenameTernopil
dc.format.pages6
dc.relation.referencesen1. Luchko, J., Ivanyk, E. (2017). Diagnostics of the main gas pipelines and assessment of their residual life under the conditions of long-term operation. Scientific Journal of TNTU, 87(3), 48-63. https://doi.org/10.33108/visnyk_tntu2017.03.048
dc.relation.referencesen2. Bony, M., Alamilla, J. L., Vai, R., Flores, E. (2010). Failure pressure in corroded pipelines based on equivalent solutions for undamaged pipe. ASME. J. Pressure Vessel Technol., 132(5). doi:10.1115/1.4001801
dc.relation.referencesen3. Hillier, M.J. (1965). Tensile plastic instability of thin tubes–I. International Journal of Mechanical Sciences, 7(8), 531–538, doi: 10.1016/0020-7403(65)90010-X
dc.relation.referencesen4. Tomita, Y., Shindo, A., Nagai, M. (1984). Axisymmetric deformation of hoop elastic-plastic tubes under axial tension and internal pressure. International Journal of Mechanical Sciences, 26(6–8), 437–444. doi:10.1016/0020-7403(84)90033-X
dc.relation.referencesen5. Dilman, V.L., Ostsemin, A.A. (2000). O vliyanii dvuhosnosti nagrujeniya na nesuschuyu sposobnost trub magistralnyih gazonefteprovodov. Izv. RAN. Mehanika tverdogo tela, 5, 179–185 [in Russian]
dc.relation.referencesen6. Dilman, V.L., Ostsemin, A.A. (2000). O potere plasticheskoy ustoychivosti tonkostennyih tsilindricheskih obolochek. Problemyi mashinostroeniya i nadejnosti mashin, 5, 50–57 [in Russian]
dc.relation.referencesen7. Degtyarev, V.P. (1987). Deformatsii i razrushenie v vyisokonapryajennyih konstruktsiyah. Moskva: Mashinostroenie [in Russian]
dc.relation.referencesen8. Kollinz, Dj. (1984). Povrejdenie materialov v konstruktsiyah. Analiz, predskazanie, predotvraschenie. Moskva: Mir [in Russian]
dc.relation.referencesen9. Updike, D.P., Kalnins, A. (1998). Tensile plastic instability of axisymmetric pressure vessels. ASME. J. Pressure Vessel Technol, 120(1), 6–11. doi: 10.1115/1.2841888.
dc.relation.referencesen10. Zhu, X.-K., Leis, B., (2011). Evaluation of burst pressure prediction models for line pipes. International Journal of Pressure Vessels and Piping. doi:10.1016/j.ijpvp.2011.09.007
dc.relation.referencesen11. Law, M. (2005). Use of the cylindrical instability stress for blunt metal loss defects in linepipe. International Journal of Pressure Vessels and Piping, 82(12), 925–928. doi:10.1016/j.ijpvp.2005.04.002
dc.relation.referencesen12. Kozbur, H. (2020). Prediction technique for thin-walled cylindrical tubes boundary state. Scientific Journal of TNTU, 94(2), 145–155. doi: 10.33108/visnyk_tntu2019.02.145
dc.relation.referencesen13. Kozbur, H. (2020). Method of predicting necking true stress in a thin-walled tube under a complex stress state. Strojnícky časopis - Journal of Mechanical Engineering, 70(2), 101-116. doi:10.2478/scjme-2020-0024
dc.relation.referencesen14. Kaminskiy, A.A., Bastun, V.N. (1985). Deformatsionnoe uprochnenie i razrushenie metallov pri peremennyih protsessah nagrujeniya. Kyiv: Naukova dumka [in Russian].
dc.relation.referencesen15. Lebedev, A.A. (Ed.), Kovalchuk, B.I., Giginyak, F.F., Lamashevskiy, V.P. (2003). Mehanicheskie svoystva konstruktsionnyih materialov pri slojnom napryajennom sostoyanii. Kiev: Izdatelskiy dom “In Yure” [in Russian]
dc.relation.referencesen16. Copyright for the work "Computer modeling" The modeling of stress-state-independent deformation curve. Ministry of Economic Development, Trade and Agriculture of Ukraine, copyright registration certificatet т 96585 dated 10.03.2020. (authors – Kozbur H., Gladio O.)
dc.relation.referencesen17. Kozbur, H. (2020). Method of predicting necking true stress in a thin-walled tube under a complex stress state. Strojnícky časopis – Journal of Mechanical Engineering, 70(2), 101-116. doi:10.2478/scjme-2020-0024.
dc.identifier.citationenKozbur H., Shkodzinsky O., Kozbur I., Nadiia G. (2021) Computer modeling of the stress stress-strain state of thin thin-walled tubular structural elements for predicting the limiting state. ICAAEIT 2021 (Tern., 15-17 December 2021), pp. 81-86.
dc.contributor.affiliationTernopil National Ivan Puluj Technical University, Rus’ka str. 56, 46001, Ternopil, Ukraine
dc.citation.spage81
dc.citation.epage86
Ebben a gyűjteményben:International conference „Advanced Applied Energy and Information Technologies 2021“, (ICAAEIT 2021)



Minden dokumentum, ami a DSpace rendszerben szerepel, szerzői jogokkal védett. Minden jog fenntartva!