Empreu aquest identificador per citar o enllaçar aquest ítem:
http://elartu.tntu.edu.ua/handle/lib/34365
Títol: | Проблема аналізу повідомлень з метою виявлення екстремістської інформації в мережі інтернет |
Altres títols: | The problem of analysis of messages for the purpose of detecting extremistic information on the internet |
Autor: | Жаврук, Р. А. Zhavruk, R. |
Affiliation: | Тернопільський національний технічний університет імені Івана Пулюя |
Bibliographic description (Ukraine): | Жаврук Р. А. Проблема аналізу повідомлень з метою виявлення екстремістської інформації в мережі інтернет / Р. А. Жаврук // Матеріали Ⅷ науково-технічної конференції „Інформаційні моделі, системи та технології“, 9-10 грудня 2020 року. — Т. : ТНТУ, 2020. — С. 35. — (Інформаційні системи та технології). |
Bibliographic description (International): | Zhavruk R. (2020) Problema analizu povidomlen z metoiu vyiavlennia ekstremistskoi informatsii v merezhi internet [The problem of analysis of messages for the purpose of detecting extremistic information on the internet]. Materialy Ⅷ naukovo-tekhnichnoi konferentsii "Informatsiini modeli, systemy ta tekhnolohii" (Tern., 9-10 December 2020), pp. 35 [in Ukrainian]. |
Is part of: | Матеріали Ⅷ науково-технічної конференції „Інформаційні моделі, системи та технології“, 2020 |
Conference/Event: | Ⅷ науково-технічна конференція „Інформаційні моделі, системи та технології“ |
Journal/Collection: | Матеріали Ⅷ науково-технічної конференції „Інформаційні моделі, системи та технології“ |
Data de publicació: | 9-de -2020 |
Date of entry: | 3-de -2021 |
Editorial: | ТНТУ TNTU |
Place of the edition/event: | Тернопіль Ternopil |
Temporal Coverage: | 9-10 грудня 2020 року 9-10 December 2020 |
UDC: | 004.912 |
Number of pages: | 1 |
Page range: | 35 |
Start page: | 35 |
End page: | 35 |
URI: | http://elartu.tntu.edu.ua/handle/lib/34365 |
Copyright owner: | © Тернопільський національний технічний університет імені Івана Пулюя, 2020 |
References (Ukraine): | 1. B. O. Bliznyuk, L. V. Vasiliev, I. D. Strelnikov, D. S. Tkachuk. Modern methods of natural language processing. Bulletin of Kharkiv National University named after V. N. Karazin, 2017. 2. A.Yu. Perevalova. The use of clustering method for information resource classification. Siberian State Aerospace University named after academician M. F. Reshetnev, 2013. 3. Адуенко А. А., Кузьмин А. А., Стрижов В. В. Выбор признаков и оптимизация метрики при кластеризации коллекции документов //Известия Тульского государственного университета. Естественные науки. – 2012. – №. 3. 4. Milos Ilic, Petar Spalevic, Mladen Veinovic. Suffix Tree Clustering – Data mining algorithm. Faculty of Technical Science Kosovska Mitrovica, University of Pristina-temporally seated in Kosovska Mitrovica Faculty of Informatics and Computing, Singidunum University, Belgrade, 2014. 5. Пархоменко П. А., Григорьев А. А., Астраханцев Н. А. Обзор и экспериментальное сравнение методов кластеризации текстов //Труды Института системного программирования РАН. – 2017. – Т. 29. – №. 2. 6. Чугаинов К. В. Методы тематической кластеризации новостных статей //Научно-практические исследования. – 2017. – №. 2. – С. 295-298. 7. Han H., Jung H., Eom H., Yeom H.Y. Scatter-Gather-Merge: An Efficient Star-join Query Processing Algorithm for Data-parallel Frameworks. Cluster Computing, 2011. 8. Андреев А. М., Березкин Д. В., Козлов И. А. Подход к автоматизированному мониторингу тем на основе обнаружения событий в потоке текстовых документов //Информационно-измерительные и управляющие системы. – 2017. – Т. 15. – №. 3. – С. 49-60. 9. Antropov V. V.. Application of k-means and g-means clustering algorithms in objects recognition. St. Petersburg Mining University, 2017 |
References (International): | 1. B. O. Bliznyuk, L. V. Vasiliev, I. D. Strelnikov, D. S. Tkachuk. Modern methods of natural language processing. Bulletin of Kharkiv National University named after V. N. Karazin, 2017. 2. A.Yu. Perevalova. The use of clustering method for information resource classification. Siberian State Aerospace University named after academician M. F. Reshetnev, 2013. 3. Aduenko A. A., Kuzmin A. A., Strizhov V. V. Vybor priznakov i optimizatsiia metriki pri klasterizatsii kollektsii dokumentov //Izvestiia Tulskoho hosudarstvennoho universiteta. Estestvennye nauki, 2012, №. 3. 4. Milos Ilic, Petar Spalevic, Mladen Veinovic. Suffix Tree Clustering – Data mining algorithm. Faculty of Technical Science Kosovska Mitrovica, University of Pristina-temporally seated in Kosovska Mitrovica Faculty of Informatics and Computing, Singidunum University, Belgrade, 2014. 5. Parkhomenko P. A., Hrihorev A. A., Astrakhantsev N. A. Obzor i eksperimentalnoe sravnenie metodov klasterizatsii tekstov //Trudy Instituta sistemnoho prohrammirovaniia RAN, 2017, V. 29, №. 2. 6. Chuhainov K. V. Metody tematicheskoi klasterizatsii novostnykh statei //Nauchno-prakticheskie issledovaniia, 2017, №. 2, P. 295-298. 7. Han H., Jung H., Eom H., Yeom H.Y. Scatter-Gather-Merge: An Efficient Star-join Query Processing Algorithm for Data-parallel Frameworks. Cluster Computing, 2011. 8. Andreev A. M., Berezkin D. V., Kozlov I. A. Podkhod k avtomatizirovannomu monitorinhu tem na osnove obnaruzheniia sobytii v potoke tekstovykh dokumentov //Informatsionno-izmeritelnye i upravliaiushchie sistemy, 2017, V. 15, №. 3, P. 49-60. 9. Antropov V. V.. Application of k-means and g-means clustering algorithms in objects recognition. St. Petersburg Mining University, 2017 |
Content type: | Conference Abstract |
Apareix a les col·leccions: | VIII науково-технічна конференція „Інформаційні моделі, системи та технології“ (2020) |
Arxius per aquest ítem:
Arxiu | Descripció | Mida | Format | |
---|---|---|---|---|
VIII_NTK_2020_Zhavruk_R-The_problem_of_analysis_of_messages_35.pdf | 280,74 kB | Adobe PDF | Veure/Obrir | |
VIII_NTK_2020_Zhavruk_R-The_problem_of_analysis_of_messages_35.djvu | 20,41 kB | DjVu | Veure/Obrir | |
VIII_NTK_2020_Zhavruk_R-The_problem_of_analysis_of_messages_35__COVER.png | 466,15 kB | image/png | Veure/Obrir |
Els ítems de DSpace es troben protegits per copyright, amb tots els drets reservats, sempre i quan no s’indiqui el contrari.