Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/31309
Назва: Проект 16-поверхового житлового будинку в ужгороді з дослідженням його поведінки при сейсмічних впливах
Інші назви: Project of a 16-storey apartment building in Uzhgorod with a study of its behavior in seismic impacts
Автори: Мбая, Казаді Крістіан
Mbaya, Kazadi
Приналежність: Тернопільський національний технічний університет імені Івана Пулюя
Бібліографічний опис: Мбая К.К. Проект 16-поверхового житлового будинку в ужгороді з дослідженням його поведінки при сейсмічних впливах: дипломна робота магістра за спеціальністю „192 — будівництво та цивільна інженерія“/ К.К. Мбая — Тернопіль: ТНТУ, 2019. — 124 с.
Дата публікації: 28-гру-2019
Дата внесення: 16-січ-2020
Країна (код): UA
Місце видання, проведення: Тернопільський національний технічний університет імені Івана Пулюя
Науковий керівник: Сорочак, Андрій Петрович
УДК: 624.042
Теми: 192
будівництво та цивільна інженерія
Цегляна багатоповерхова будівля
сейсмічний вплив
вібрація
Brick multi-stored building
seismic influence
vibration
Короткий огляд (реферат): Основні архітектурно-конструктивні рішення проекту шістнадцятиповерхового багатоквартирного будинку в Ужгороді були запропоновані на основі розрахунків відповідно до будівельних норм України. Основні технологічні процеси були розроблені, включаючи вимоги безпеки. Проаналізовано існуючі підходи до оцінювання поведінки багатоповерхових будівель при сейсмічних впливах. Розроблено метод моделювання скінченних елементів сейсмічного впливу та створена відповідна імітаційна модель. Деформації проектуваного шістнадцятиповерхового багатоквартирного будинку від вібрації при нормативно-сейсмічному впливі були визначені за допомогою запропонованої моделі.
Main architectural and constructive decisions for a project of sixteen-storey apartment building in Uzhgorod were proposed based on calculations according to relevant building codes of Ukraine. Main technological processes were developed including safety requirements. Existing approaches to multi-stored building behavior evaluation in seismic impacts were analyzed. The method of finite element simulation of seismic influence has been further developed and corresponding simulation model was created. Deformations of designed sixteen-stored apartment building from vibration under normative seismic impact were determined using proposed model.
Зміст: ІNTRODUCTION ...6 1. ARCHITECTURAL AND STRUCTURAL PART...7 1.1. General characteristics of the site...8 1.1.1 Geographical location of the site climatic conditions...8 1.1.2 Transport links...9 1.1.3 Engineering-geological and hydrogeological conditions of the site...9 1.2. Master plan...10 1.2.1. Rationale for the decision... 10 1.2.2. Vertical planning (relief organization)...10 1.2.3. Measures to comply with sanitary and fire protection standards of environmental protection...11 1.2.4. Technical and economic indicators of the master plan...11 1.3. The three-dimensional planning solution... 11 1.3.1. Characteristics of the functional process...11 1.3.2. Description of the decision made and its justification...12 1.3.3. Technical and economic indicators of the three-dimensional planning solution...12 1.4. Design solutions...12 1.4.1. Bearing structures. Rationale for their choice...12 1.4.2. Enclosure structures...13 1.4.3. Thermal calculation of walls...14 1.4.4. Materials for the construction of the building, justification of their choice...17 1.5. Architectural and artistic decision of the building...18 1.6. Sanitary equipment...18 1.6.1. Heating...18 1.6.2. Electricity supply...18 1.6.3. Water supply and drainage...18 1.6.4. Ventilation....19 1.7. Occupational health and safety measures...19 2. DESIGN AND CALCULATION PART...20 2.1 Calculation and construction of precast concrete slab with round hollows... 21 2.1.1 Plate materials... 21 2.1.2 Determination of loads...21 2.1.3 The calculation of the plate by the boundary states of the first group...22 2.1.4 Calculation of the strength of the normal section...24 2.1.5 Calculation of the strength of sections inclined to the longitudinal axis...25 4 2.1.6 Calculation of the plate by the boundary states of the second group... 26 2.1.7 Calculation of the slab for the opening of the cracks inclined to the longitudinal axis ...29 2.1.8 Calculation of deflection of the plate...32 2.1.9 Checking the panel for installation loads...34 2.2 Column calculation...36 2.2.1 Design data...36 2.2.2 Load on the column...36 2.2.3 Calculation of the strength of the sections of the column...37 2.3 Assessment of engineering and geological conditions of constructionаl site...38 2.4. Determination of loads on foundations...40 2.5 Conclusions...49 3. TECHNOLOGICAL AND ORGANIZATIONAL PART...50 3.1. Description of the main technological processes...51 3.2 Land improvement... 52 3.3 Labor protection during execution of works...53 3.4 Methods of work execution in winter... 54 3.5 Determining the complexity and timing of construction...55 3.5.1. Determination of the volume of general construction works...55 3.5.2 Defining the complexity of the work...56 3.6. Technological map for the installation of stairs and platforms...58 3.6.1. Scope...58 3.6.2. Technology and organization of the construction process... 59 3.6.3. Technical and economic indicators...63 3.6.4. Logistics resources... 63 3.7. Technological map for arrangement of flat roll roof, device of linoleum floors... 66 3.7.1 Field of application... 66 3.7.2 Organization and technology of construction process...66 3.7.3 Safety recommendations...67 3.7.4 Calculation of labor costs and wages...69 3.7.5 Technical and economic indicators... 69 3.7.6 Schedule of works...69 3.7.7 Statement of need for materials and semi-finished products...70 3.7.8 Equipment, devices, inventory...70 3.7.9. Scheme of operational quality control of the performance of roofing...72 3.7.10. Safety measures when performing roofing works...73 3.8. Definition of the term of construction...73 3.8.1. Calendar of construction...75 5 3.8.2 Determinator of the work and resources of the calendar schedule... 76 3.8.3 Technical and economic indicators of the calendar schedule...80 3.8.4. Consideration of requirements of safety at design calendar plan...80 3.9. Construction master plan...81 3.9.1. Calculation of warehouses and sites...82 3.9.2. Calculation of warehouse areas for construction...84 3.9.3. Calculation of administrative and residential buildings...85 3.9.4 Calculation of temporary water supply object of construction...86 3.9.5 Temporary calculation electrical supply of the construction object...88 3.9.6. Technical and economic indicators on the plan... 89 3.10. Occupational health and safety... 89 3.10.1 Firefighting measures... 90 3.10.2 Environmental protection measures for the period of construction...91 4. ECONOMIC PART...92 5. LABOR PROTECTION...95 5.1. Safety and fire safety at the construction site...96 5.2. Safety measures...99 5.2.1 Safety at drilling operations... 99 5.2.2 Safety measures for waterproofing works...101 5.2.3. Safety measures when performing welding work...103 5.2.4. Safety measures when performing stone work...105 5.2.5. Safety measures during installation work...105 5.2.6. Safety Measures in performing concrete and reinforced concrete works...107 5.3. Industrial sanitation...111 5.4. Protective grounding...111 6. ECOLOGY....113 6.1 The effect of the projected object on the environmental components...114 6.2 Measures to reduce the negative impact of the projected object on the environment ... 114 7. SCIENTIFIC RESEARCH PART... 118 7.1 Seismic forces... 119 7.2 Principles of damage tolerance policy...119 GENERAL CONCLUSIONS...121 LITERATURE...122
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/31309
Власник авторського права: © Мбая Казаді Крістіан, 2019
Перелік літератури: 1. DBN B.2.6-31-2006 "Thermal Insulation of Buildings" – Kyiv: Ministry of Construction of Ukraine, 2006. – 70 p.
2. DBN B.2.6-98: 2009 “Concrete and Reinforced Concrete Structures” – Kyiv: Minregionstroy of Ukraine, 2011. – 71 p.
3. DSTU 3760-2006 "Reinforced concrete rental for reinforced concrete structures" – Kyiv: Derzhspozhyvstandart of Ukraine, 2007. – 28 p.
4. DBN B.1.2-2: 2006 "Loads and Impacts" – Kyiv: Ministry of Construction of Ukraine, 2006. – 78 p.
5. DBN B.2.1-10: 2009 “Foundations and Foundations of Structures” – Kyiv: Minregionstroy of Ukraine, 2009. – 90 p.
6. DBN A.3.1-5-2009 "Organization of Construction Production" – Kyiv: Ministry of Regional Development and Construction of Ukraine, 2011. – 62 p..
7. D. Kachlakev. Finite Element Modelling of Reinforced Concrete Structures Strengthening with FRP Laminates / D. Kachlakev, T. Miller, S. Yim, K. Chansawat, T. Potisuk. Special Report SP316, Oregon Department Of Transportation, USA, May 2001. – 113 p.
8. G. Murali. Flexural Strengthening Of Reinforced Concrete Beams Using Fibre Reinforced Polymer Laminate: A Review / Murali G., Pannirselvam N. ARPN Journal of Engineering and Applied Sciences, 2011. – Vol. 6, No. 11. – P. 41-47.
9. S. F. Brena, R. M. Bramblett, S. L. Wood and M.E. Kreger, Increasing Flexural Capacity of Reinforced Concrete Beams Using Carbon Fiber-Reinforced Polymer Composites, ACI Structural Journal, 2003. – Vol. 100(6). –P. 827-830.
10. Tenic map of the material. Identification No. 02040101 System Sika® CarboDur® Plates. Edition UA_YS_04 / 2011.
11. I. Saifullah. Experimental and Analytical Investigation of Flexural Behavior of Reinforced Concrete Beam / I. Saifullah, M. Nasir-uz-Zaman, S.M.K. Uddin, M.A. Hossain, M.H. Rashid // International Journal of Engineering & Technology. – IJETIJENS, 2011. – Vol 11, № 1. – p. 146-153.
12. Borysyuk O.P. Stress-deformed state of normal sections of bending reinforced concrete elements, reinforced by carbon fiber plastics under the action of low-cycle loading / О.P. Borisyuk, O.P. Kononchuk // Monography. – Rivne: NSUPP, 2014. – 136 p.
13. Kachlakev D, McCurry D. Behavior of full-scale reinforced concrete beams retrofitted for shear and flexural with FRP laminates. Compos J, 2000. – Vol. 1. – P. 445- 452.
14. Valivonis J, Skuturna T. Cracking and strength of reinforced concrete structures in flexure strengthened with carbon fibre laminates. Civ Eng Manage J, 2006. – Vol 13 (4). – P. 317–333.
15. Yeongsoo S, Chadon L. Flexural behavior of reinforced concrete beams strengthened with carbon fiber-reinforced polymer laminates at different levels of sustaining load. ACI Struct J, 2003. – Vol. 100. – P. 231–240.
16. Aram M.R., Gzaderski C., Motavalli M. Debonding failure modes of flexural FRP-strengthened RC beam. Compos Part B, 2008. – Vol. 39. – P. 826–841.
17. Ashour A.F., El-Refaie S.A., Garrity S.W. Flexural strengthening of RC continuous beams using CFRP laminates. Cement Concr Compos, 2004. – Vol. 26. – P. 765–775.
18. Ai-hui Z., Wei-Liang J., Gui-bing L. Behaviour of preloaded RC beams strengthened with CFRP laminates. J Zhejiang Univ Sci A, 2006. – Vol. 436. – P. 44.
19. Wenwei W., Guo L. Experimental study of RC beams strengthened with CFRP sheets under sustaining loads. Wuhan Univ Technol, Mater Sci Ed J, 2006. – Vol. 21(3). – P. 124-128.
20. Esfahani M., Kianoush M., Tajari A. Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets. Eng Struct, 2007. – Vol. 29. – P. 2428–2444.
21. Teng J.G., Smith S.T., Yao J., Chen J.F. Intermediate crack-introduced debonding in beams and slabs. Construct Build Mater J, 2003. – Vol. 17(6-7). – P. 447– 462.
22. Ebead U., Marzouk H. Tension–stiffening model for FRP strengthened RC concrete two-way slab. Mater Struct, 2004. – Vol. 1. – P. 193–200.
23. Hu H-T, Lin F-M, Jan Y-Y. Nonlinear finite element analysis of reinforced concrete beams strengthened by fibre-reinforced plastic. Compos Struct J, 2004. – Vol. 63. – P. 271-281.
24. DSTU B D 1.1-1: 2013 “Rules for determining construction cost” – Kyiv: Ministry of Construction of Ukraine, 2013. – 91 p.
25. DSTU B В.2.8-43:2011 «Enclosures for inventory of construction sites and sections of construction and assembly works. Specifications ” – Kyiv: Ministry of Regional Development of Ukraine, 2011. – 85 p.
26. DSTU 2272: 2006 Fire Safety - Kyiv: State Standard of Ukraine, 2006. – 27 p.
27. DBN A.3.2-2-2009 “Occupational Safety and Industrial Safety” – Kyiv: Ministry of Regional Development and Construction of Ukraine, 2012. – 116 p.
28. DBN B.1.2-4-2006 "Engineering and technical measures of civil defense (civil defense)" – Kyiv: Ministry of Construction of Ukraine, 2006. – 36 p.
29. DBN B.2.5-28-2006 "Natural and artificial lighting" – Kyiv: Ministry of Construction of Ukraine, 2006. – 96 p.
30. Technique of estimation of losses from the consequences of the National Assembly of anthropogenic and natural character, approved by the Resolution of the CM of Ukraine of February 15, 2002, #175.
31. DBN 360-92 * Urban development. Planning and development of urban and rural settlements / Ministry of Investments of Ukraine. – K .: Ministry of Investment and Construction of Ukraine, 1996. – 112 p.
Тип вмісту: Master Thesis
Розташовується у зібраннях:192 — будівництво та цивільна інженерія

Файли цього матеріалу:
Файл Опис РозмірФормат 
autoreferat_Mbaya.pdfАвтореферат216,43 kBAdobe PDFПереглянути/відкрити
dyplom_Mbaya.pdfДипломна робота1,02 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора