Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://elartu.tntu.edu.ua/handle/lib/30747
Tytuł: High-performance computing tehcnologies of modeling and identification of adsorbtion in nanoporous systems with feedbacks for gas purification
Inne tytuły: Високопродуктивні комп'ютерні технології моделювання та ідентифікації дасорбції в нанопористих системах зі зворотними за'язками для оцищення газів.
Authors: Петрик, Михайло Романович
Хіміч, Олександр Миколайович
Михалик, Дмитро Михайлович
Бойко, Ігор Володимирович
Ковбашин, Василь Іванович
Affiliation: Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
Glushkov Institute of Cybernetics of NAS of Ukraine, Kyiv, Ukraine
Bibliographic description (Ukraine): High-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification / Mykhaylo Petryk; Oleksandr Khimich; Dmytro Mykhalyk; Igor Boyko; Vasil Kovbashyn // Scientific Journal of TNTU. — Tern. : TNTU, 2019. — Vol 95. — No 3. — P. 139–145.
Journal/kolekcja: Scientific journal of TNTU
Release/№ : 3 (95)
Data wydania: 2020
Data archiwizacji: 10-lis-2019
Date of entry: 30-sty-2020
Wydawca: Тернопільський національний технічний університет імені Івана Пулюя
Kraj (kod): UA
Place edycja: Тернопільський національний технічний університет імені Івана Пулюя
UDC: 519.7
Słowa kluczowe: high-performance computing technologies, nanoporous systems with feedbacks, adsorption and desorption of gases modelling; Heaviside’s operational method; Laplace integral transform
Zakres stron: 139-145
Główna strona: 139
Strona końcowa: 145
Abstract: The paper deals with high-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification. Analytical solutions to the problem of non-isothermal adsorption and desorption are based on Heaviside’s operational method and Laplace integral transform, but the development of calculations is quite original. Experimental and modeling distributions of moisture and temperatures of gas at the inlet and outlet of the silica beds for each adsorption – desorption phase at different times are presented. The distribution of moisture within the beds for the full dehydration – regeneration cycle is determined.
URI: http://elartu.tntu.edu.ua/handle/lib/30747
ISSN: 2522-4433
Właściciel praw autorskich: © Петрик М.Р., Хіміч О.М., Михалик Д.М., Бойко І.В, Ковбашин В.І., 2019
Związane URL literatura: https://doi.org/10.33108/visnyk_tntu2019.03
http://visnyk.tntu.edu.ua/?art=515
Wykaz piśmiennictwa: Unger N., Bond T. C., Wang J. S., Koch D. M., Menon S., Shindell D. T., Bauer S. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci., 2010. 107 (8). Р. 3382–7.
Euro 5 and Euro 6 standards: reduction of pollutant emissions from light vehicles. URL: europa.eu/legislation_summaries/environment/air_pollution/l28186_es.htm (accessed 5.06.2010).
Gandhidasan P., Al-Farayedhi AA, Al-Mubarak AA. Dehydration of natural gas using solid desiccants. Energy 2001, 26. P. 855–868.
Karimi A., Abdi MA. Selective dehydration of high-pressure natural gas using supersonic nozzles. Chemical Engineering and Processing. 2009. 48. P. 560–568.
Netusil M., Pavel D. Comparison of three methods for natural gas dehydration. Journal of Natural Gas Chemistry. 2011. 20 (5). P. 471–476.
Puertolas B., Navarro M. V., Lopez J. M., Murillo R., Mastral A. M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology. 2012. 86. P. 127–136.
Petryk M., Khimitch A., Petryk M. M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239. P. 1324–1330.
Sergienko I., Petryk M., Khimith O. N., Mykhalyk D., Leclerc S., Fraissard J. Mathematical Modelling of Diffusion Process in Microporous Media (Numerical analysis and application). National Academy of Sciences of Ukraine. Kyiv, 2014. 196 p. [In Ukrainian].
Lavrentiev M. A., Shabat B. V. Methods of theory of functions of a complex variable. M.: Nauka, 1973. 736 p. [In Russian].
References: Unger N., Bond T. C., Wang J. S., Koch D. M., Menon S., Shindell D. T., Bauer S. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci., 2010. 107 (8). Р. 3382–7.
Euro 5 and Euro 6 standards: reduction of pollutant emissions from light vehicles. URL: europa.eu/legislation_summaries/environment/air_pollution/l28186_es.htm (accessed 5.06.2010).
Gandhidasan P., Al-Farayedhi AA, Al-Mubarak AA. Dehydration of natural gas using solid desiccants. Energy 2001, 26. P. 855–868.
Karimi A., Abdi MA. Selective dehydration of high-pressure natural gas using supersonic nozzles. Chemical Engineering and Processing. 2009. 48. P. 560–568.
Netusil M., Pavel D. Comparison of three methods for natural gas dehydration. Journal of Natural Gas Chemistry. 2011. 20 (5). P. 471–476.
Puertolas B., Navarro M. V., Lopez J. M., Murillo R., Mastral A. M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology. 2012. 86. P. 127–136.
Petryk M., Khimitch A., Petryk M. M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239. P. 1324–1330.
Sergienko I., Petryk M., Khimith O. N., Mykhalyk D., Leclerc S., Fraissard J. Mathematical Modelling of Diffusion Process in Microporous Media (Numerical analysis and application). National Academy of Sciences of Ukraine. Kyiv, 2014. 196 p. [In Ukrainian].
Lavrentiev M. A., Shabat B. V. Methods of theory of functions of a complex variable. M.: Nauka, 1973. 736 p. [In Russian].
Typ zawartości: Article
Występuje w kolekcjach:Наукові публікації працівників кафедри програмної інженерії

Pliki tej pozycji:
Plik Opis WielkośćFormat 
High performance... Petryk M.pdf3,13 MBAdobe PDFPrzeglądanie/Otwarcie


Pozycje DSpace są chronione prawami autorskimi

Yönetim Araçları