กรุณาใช้ตัวระบุนี้เพื่ออ้างอิงหรือเชื่อมต่อรายการนี้: http://elartu.tntu.edu.ua/handle/lib/30747
ชื่อเรื่อง: High-performance computing tehcnologies of modeling and identification of adsorbtion in nanoporous systems with feedbacks for gas purification
ชื่อเรื่องอื่นๆ: Високопродуктивні комп'ютерні технології моделювання та ідентифікації дасорбції в нанопористих системах зі зворотними за'язками для оцищення газів.
ผู้แต่ง: Петрик, Михайло Романович
Хіміч, Олександр Миколайович
Михалик, Дмитро Михайлович
Бойко, Ігор Володимирович
Ковбашин, Василь Іванович
Affiliation: Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
Glushkov Institute of Cybernetics of NAS of Ukraine, Kyiv, Ukraine
Bibliographic description (Ukraine): High-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification / Mykhaylo Petryk; Oleksandr Khimich; Dmytro Mykhalyk; Igor Boyko; Vasil Kovbashyn // Scientific Journal of TNTU. — Tern. : TNTU, 2019. — Vol 95. — No 3. — P. 139–145.
Journal/Collection: Scientific journal of TNTU
Issue: 3 (95)
วันที่เผยแพร่: 2020
Submitted date: 10-พฤศ-2019
Date of entry: 30-มกร-2020
สำนักพิมพ์: Тернопільський національний технічний університет імені Івана Пулюя
Country (code): UA
Place of the edition/event: Тернопільський національний технічний університет імені Івана Пулюя
UDC: 519.7
คำสำคัญ: high-performance computing technologies, nanoporous systems with feedbacks, adsorption and desorption of gases modelling; Heaviside’s operational method; Laplace integral transform
Page range: 139-145
Start page: 139
End page: 145
บทคัดย่อ: The paper deals with high-performance computing technologies of modeling and identification of adsorption in nanoporous systems with feedbacks for gas purification. Analytical solutions to the problem of non-isothermal adsorption and desorption are based on Heaviside’s operational method and Laplace integral transform, but the development of calculations is quite original. Experimental and modeling distributions of moisture and temperatures of gas at the inlet and outlet of the silica beds for each adsorption – desorption phase at different times are presented. The distribution of moisture within the beds for the full dehydration – regeneration cycle is determined.
URI: http://elartu.tntu.edu.ua/handle/lib/30747
ISSN: 2522-4433
Copyright owner: © Петрик М.Р., Хіміч О.М., Михалик Д.М., Бойко І.В, Ковбашин В.І., 2019
URL for reference material: https://doi.org/10.33108/visnyk_tntu2019.03
http://visnyk.tntu.edu.ua/?art=515
References (Ukraine): Unger N., Bond T. C., Wang J. S., Koch D. M., Menon S., Shindell D. T., Bauer S. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci., 2010. 107 (8). Р. 3382–7.
Euro 5 and Euro 6 standards: reduction of pollutant emissions from light vehicles. URL: europa.eu/legislation_summaries/environment/air_pollution/l28186_es.htm (accessed 5.06.2010).
Gandhidasan P., Al-Farayedhi AA, Al-Mubarak AA. Dehydration of natural gas using solid desiccants. Energy 2001, 26. P. 855–868.
Karimi A., Abdi MA. Selective dehydration of high-pressure natural gas using supersonic nozzles. Chemical Engineering and Processing. 2009. 48. P. 560–568.
Netusil M., Pavel D. Comparison of three methods for natural gas dehydration. Journal of Natural Gas Chemistry. 2011. 20 (5). P. 471–476.
Puertolas B., Navarro M. V., Lopez J. M., Murillo R., Mastral A. M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology. 2012. 86. P. 127–136.
Petryk M., Khimitch A., Petryk M. M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239. P. 1324–1330.
Sergienko I., Petryk M., Khimith O. N., Mykhalyk D., Leclerc S., Fraissard J. Mathematical Modelling of Diffusion Process in Microporous Media (Numerical analysis and application). National Academy of Sciences of Ukraine. Kyiv, 2014. 196 p. [In Ukrainian].
Lavrentiev M. A., Shabat B. V. Methods of theory of functions of a complex variable. M.: Nauka, 1973. 736 p. [In Russian].
References (International): Unger N., Bond T. C., Wang J. S., Koch D. M., Menon S., Shindell D. T., Bauer S. Attribution of climate forcing to economic sectors. Proc. Natl. Acad. Sci., 2010. 107 (8). Р. 3382–7.
Euro 5 and Euro 6 standards: reduction of pollutant emissions from light vehicles. URL: europa.eu/legislation_summaries/environment/air_pollution/l28186_es.htm (accessed 5.06.2010).
Gandhidasan P., Al-Farayedhi AA, Al-Mubarak AA. Dehydration of natural gas using solid desiccants. Energy 2001, 26. P. 855–868.
Karimi A., Abdi MA. Selective dehydration of high-pressure natural gas using supersonic nozzles. Chemical Engineering and Processing. 2009. 48. P. 560–568.
Netusil M., Pavel D. Comparison of three methods for natural gas dehydration. Journal of Natural Gas Chemistry. 2011. 20 (5). P. 471–476.
Puertolas B., Navarro M. V., Lopez J. M., Murillo R., Mastral A. M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite. Separation and Purification Technology. 2012. 86. P. 127–136.
Petryk M., Khimitch A., Petryk M. M., Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel. 2019. Vol. 239. P. 1324–1330.
Sergienko I., Petryk M., Khimith O. N., Mykhalyk D., Leclerc S., Fraissard J. Mathematical Modelling of Diffusion Process in Microporous Media (Numerical analysis and application). National Academy of Sciences of Ukraine. Kyiv, 2014. 196 p. [In Ukrainian].
Lavrentiev M. A., Shabat B. V. Methods of theory of functions of a complex variable. M.: Nauka, 1973. 736 p. [In Russian].
Content type: Article
ปรากฏในกลุ่มข้อมูล:Наукові публікації працівників кафедри програмної інженерії

แฟ้มในรายการข้อมูลนี้:
แฟ้ม รายละเอียด ขนาดรูปแบบ 
High performance... Petryk M.pdf3,13 MBAdobe PDFดู/เปิด


รายการทั้งหมดในระบบคิดีได้รับการคุ้มครองลิขสิทธิ์ มีการสงวนสิทธิ์เว้นแต่ที่ระบุไว้เป็นอื่น

เครื่องมือสำหรับผู้ดูแลระบบ