Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/29105
Назва: Mathematical modeling of the acoustic phonons spectra arising in multilayer nanostructures
Автори: Boyko, Igor
Tsupryk, Halyna
Kinakh, Iaroslav
Byts, Taras
Приналежність: Ternopil Ivan Puluj National Technical University
Бібліографічний опис: Boyko, I., Tsupryk, H., Kinakh, I., Stoianov, Y., & Byts, T. (2019). Mathematical Modeling of the Acoustic Phonons Spectra Arising in Multilayer Nanostructures. 2019 9th International Conference on Advanced Computer Information Technologies
Bibliographic description: Boyko, I., Tsupryk, H., Kinakh, I., Stoianov, Y., & Byts, T. (2019). Mathematical Modeling of the Acoustic Phonons Spectra Arising in Multilayer Nanostructures. 2019 9th International Conference on Advanced Computer Information Technologies
Конференція/захід: 2019 9th International Conference on Advanced Computer Information Technologies (ACIT)
Дата публікації: вер-2019
Дата внесення: 10-лис-2019
Видавництво: IEEE
Країна (код): US
Місце видання, проведення: IEEE
Теми: Mathematical Modeling
Acoustic Phonons
Діапазон сторінок: 17-20
Короткий огляд (реферат): Based on a modification of the elastic continuum model, a mathematical model describing the processes of the emergence and propagation of acoustic phonons in multilayer planar semiconductor nanostructures was constructed. Using the obtained mathematical model, supplemented by the boundary conditions for medium displacements and components of the elastic tensor at the boundaries of the studied nanostructure, the theory of the spectrum was developed and the phonon modes were normalized. Using the geometric and physical parameters of a typical nanostructure, we calculated and simulated the spectral characteristics of acoustic phonons. The obtained results can be used for further research and mathematical modeling of the electron-phonon interaction subsidence in complex semiconductor nanoheterosystems, which are the basic elements of quantum cascade lasers and detectors.
Зміст: I. Introduction II. Statement of the Problem. Components of the Displacement Field For the Media of the Nanosystem Layers III. Boundary Conditions and the Solutions of Equations Describing the Model of Acoustic Phonons In A Multilayer Nanostructure IV. Discussion of the Results V. Conclusion
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/29105
Власник авторського права: IEEE
URL-посилання пов’язаного матеріалу: https://ieeexplore.ieee.org/document/8780086
Перелік літератури: 1. Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, M. Razeghi, "Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy", Applied Physics Letters, vol. 112, no. 14, pp. 141104, 2018.
2. F. Wang, X.G. Guo, J.C. Cao, "Transient energy relaxation in scattering-assisted terahertz quantum cascade lasers", Applied Physics Letters, vol. 110, no. 10, pp. 103505, 2017.
3. W. Rudno-Rudziński, D. Biegańska, J. Misiewicz, F. Lelarge, B. Rousseau, G. S\S k, "Carrier diffusion as a measure of carrier/exciton transfer rate in InAs/InGaAsP/InP hybrid quantum dot-quantum well stru
4. L. Zhang, W. Zheng, A. Song, "Adaptive logical stochastic resonance in time-delayed synthetic genetic networks", Chaos, vol. 28, no. 4, pp. 043117, 2018.
5. Q. Liu, M. Li, K. Dai, K. Zhang, G. Xue, X. Tana, H. Yub, Y. Yu, "Extensible 3D architecture for superconducting quantum computing", Applied Physics Letters, vol. 110, no. 23, pp. 232602, 2017.
6. R. Shugayev, P. Bermel, "Core-shell Mie resonant structures for quantum computing applications", Applied Physics Letters, vol. 109, no. 22, pp. 221102, 2016.
7. C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, A. Lyakh, "Two wavelength operation of an acousto-optically tuned quantum cascade laser and direct measurements of quantum cascade laser level lifetimes", Applied Physics Letters, vol. 110, no. 3, pp. 031104, 2017.
8. S. Singh, R. Kamoua, "Scattering assisted injection based injectorless mid infrared quantum cascade laser", Journal of Applied Physics, vol. 115, no. 21, pp. 213106, 2014.
9. E. P.Pokatilov, D. L Nika, A. A. Balandin, "Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures", Superlattices and Microstructures, vol. 33, no. 3, pp. 155-171, 2003.
10. M.V. Tkach, Ju.O. Seti, I.V. Boyko, O.M. Voitsekhivska, "optimization of quantum cascade laser operation by geometric design of cascade active band in open and closed models", Condensed Matter Physics, vol. 16, no. 3, pp. 33701, 2013.
References: 1. Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, M. Razeghi, "Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy", Applied Physics Letters, vol. 112, no. 14, pp. 141104, 2018.
2. F. Wang, X.G. Guo, J.C. Cao, "Transient energy relaxation in scattering-assisted terahertz quantum cascade lasers", Applied Physics Letters, vol. 110, no. 10, pp. 103505, 2017.
3. W. Rudno-Rudziński, D. Biegańska, J. Misiewicz, F. Lelarge, B. Rousseau, G. S\S k, "Carrier diffusion as a measure of carrier/exciton transfer rate in InAs/InGaAsP/InP hybrid quantum dot-quantum well structures emitting at telecom spectral range", Applied Physics Letters, vol. 112, no. 5, pp. 051103, 2017.
4. L. Zhang, W. Zheng, A. Song, "Adaptive logical stochastic resonance in time-delayed synthetic genetic networks", Chaos, vol. 28, no. 4, pp. 043117, 2018.
5. Q. Liu, M. Li, K. Dai, K. Zhang, G. Xue, X. Tana, H. Yub, Y. Yu, "Extensible 3D architecture for superconducting quantum computing", Applied Physics Letters, vol. 110, no. 23, pp. 232602, 2017.
6. R. Shugayev, P. Bermel, "Core-shell Mie resonant structures for quantum computing applications", Applied Physics Letters, vol. 109, no. 22, pp. 221102, 2016.
7. C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, A. Lyakh, "Two wavelength operation of an acousto-optically tuned quantum cascade laser and direct measurements of quantum cascade laser level lifetimes", Applied Physics Letters, vol. 110, no. 3, pp. 031104, 2017.
8. S. Singh, R. Kamoua, "Scattering assisted injection based injectorless mid infrared quantum cascade laser", Journal of Applied Physics, vol. 115, no. 21, pp. 213106, 2014.
9. E. P.Pokatilov, D. L Nika, A. A. Balandin, "Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures", Superlattices and Microstructures, vol. 33, no. 3, pp. 155-171, 2003.
10. M.V. Tkach, Ju.O. Seti, I.V. Boyko, O.M. Voitsekhivska, "optimization of quantum cascade laser operation by geometric design of cascade active band in open and closed models", Condensed Matter Physics, vol. 16, no. 3, pp. 33701, 2013.
Тип вмісту: Article
Розташовується у зібраннях:Наукові публікації працівників кафедри програмної інженерії

Файли цього матеріалу:
Файл Опис РозмірФормат 
boyko2019.pdf111,09 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора