Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/29105
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorBoyko, Igor-
dc.contributor.authorTsupryk, Halyna-
dc.contributor.authorKinakh, Iaroslav-
dc.contributor.authorByts, Taras-
dc.date.accessioned2019-11-10T14:44:30Z-
dc.date.available2019-11-10T14:44:30Z-
dc.date.issued2019-09-
dc.identifier.citationBoyko, I., Tsupryk, H., Kinakh, I., Stoianov, Y., & Byts, T. (2019). Mathematical Modeling of the Acoustic Phonons Spectra Arising in Multilayer Nanostructures. 2019 9th International Conference on Advanced Computer Information Technologiesuk_UA
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/29105-
dc.description.abstractBased on a modification of the elastic continuum model, a mathematical model describing the processes of the emergence and propagation of acoustic phonons in multilayer planar semiconductor nanostructures was constructed. Using the obtained mathematical model, supplemented by the boundary conditions for medium displacements and components of the elastic tensor at the boundaries of the studied nanostructure, the theory of the spectrum was developed and the phonon modes were normalized. Using the geometric and physical parameters of a typical nanostructure, we calculated and simulated the spectral characteristics of acoustic phonons. The obtained results can be used for further research and mathematical modeling of the electron-phonon interaction subsidence in complex semiconductor nanoheterosystems, which are the basic elements of quantum cascade lasers and detectors.uk_UA
dc.description.tableofcontentsI. Introduction II. Statement of the Problem. Components of the Displacement Field For the Media of the Nanosystem Layers III. Boundary Conditions and the Solutions of Equations Describing the Model of Acoustic Phonons In A Multilayer Nanostructure IV. Discussion of the Results V. Conclusionuk_UA
dc.format.extent17-20-
dc.language.isoenuk_UA
dc.publisherIEEEuk_UA
dc.relation.urihttps://ieeexplore.ieee.org/document/8780086uk_UA
dc.subjectMathematical Modelinguk_UA
dc.subjectAcoustic Phononsuk_UA
dc.titleMathematical modeling of the acoustic phonons spectra arising in multilayer nanostructuresuk_UA
dc.typeArticleuk_UA
dc.rights.holderIEEEuk_UA
dc.coverage.placenameIEEEuk_UA
dc.relation.references1. Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, M. Razeghi, "Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy", Applied Physics Letters, vol. 112, no. 14, pp. 141104, 2018.uk_UA
dc.relation.references2. F. Wang, X.G. Guo, J.C. Cao, "Transient energy relaxation in scattering-assisted terahertz quantum cascade lasers", Applied Physics Letters, vol. 110, no. 10, pp. 103505, 2017.uk_UA
dc.relation.references3. W. Rudno-Rudziński, D. Biegańska, J. Misiewicz, F. Lelarge, B. Rousseau, G. S\S k, "Carrier diffusion as a measure of carrier/exciton transfer rate in InAs/InGaAsP/InP hybrid quantum dot-quantum well struuk_UA
dc.relation.references4. L. Zhang, W. Zheng, A. Song, "Adaptive logical stochastic resonance in time-delayed synthetic genetic networks", Chaos, vol. 28, no. 4, pp. 043117, 2018.uk_UA
dc.relation.references5. Q. Liu, M. Li, K. Dai, K. Zhang, G. Xue, X. Tana, H. Yub, Y. Yu, "Extensible 3D architecture for superconducting quantum computing", Applied Physics Letters, vol. 110, no. 23, pp. 232602, 2017.uk_UA
dc.relation.references6. R. Shugayev, P. Bermel, "Core-shell Mie resonant structures for quantum computing applications", Applied Physics Letters, vol. 109, no. 22, pp. 221102, 2016.uk_UA
dc.relation.references7. C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, A. Lyakh, "Two wavelength operation of an acousto-optically tuned quantum cascade laser and direct measurements of quantum cascade laser level lifetimes", Applied Physics Letters, vol. 110, no. 3, pp. 031104, 2017.uk_UA
dc.relation.references8. S. Singh, R. Kamoua, "Scattering assisted injection based injectorless mid infrared quantum cascade laser", Journal of Applied Physics, vol. 115, no. 21, pp. 213106, 2014.uk_UA
dc.relation.references9. E. P.Pokatilov, D. L Nika, A. A. Balandin, "Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures", Superlattices and Microstructures, vol. 33, no. 3, pp. 155-171, 2003.uk_UA
dc.relation.references10. M.V. Tkach, Ju.O. Seti, I.V. Boyko, O.M. Voitsekhivska, "optimization of quantum cascade laser operation by geometric design of cascade active band in open and closed models", Condensed Matter Physics, vol. 16, no. 3, pp. 33701, 2013.uk_UA
dc.relation.referencesen1. Q. Y. Lu, S. Manna, D. H. Wu, S. Slivken, M. Razeghi, "Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy", Applied Physics Letters, vol. 112, no. 14, pp. 141104, 2018.uk_UA
dc.relation.referencesen2. F. Wang, X.G. Guo, J.C. Cao, "Transient energy relaxation in scattering-assisted terahertz quantum cascade lasers", Applied Physics Letters, vol. 110, no. 10, pp. 103505, 2017.uk_UA
dc.relation.referencesen3. W. Rudno-Rudziński, D. Biegańska, J. Misiewicz, F. Lelarge, B. Rousseau, G. S\S k, "Carrier diffusion as a measure of carrier/exciton transfer rate in InAs/InGaAsP/InP hybrid quantum dot-quantum well structures emitting at telecom spectral range", Applied Physics Letters, vol. 112, no. 5, pp. 051103, 2017.uk_UA
dc.relation.referencesen4. L. Zhang, W. Zheng, A. Song, "Adaptive logical stochastic resonance in time-delayed synthetic genetic networks", Chaos, vol. 28, no. 4, pp. 043117, 2018.uk_UA
dc.relation.referencesen5. Q. Liu, M. Li, K. Dai, K. Zhang, G. Xue, X. Tana, H. Yub, Y. Yu, "Extensible 3D architecture for superconducting quantum computing", Applied Physics Letters, vol. 110, no. 23, pp. 232602, 2017.uk_UA
dc.relation.referencesen6. R. Shugayev, P. Bermel, "Core-shell Mie resonant structures for quantum computing applications", Applied Physics Letters, vol. 109, no. 22, pp. 221102, 2016.uk_UA
dc.relation.referencesen7. C. Kumar, N. Patel, R. Barron-Jimenez, I. Dunayevskiy, G. Tsvid, A. Lyakh, "Two wavelength operation of an acousto-optically tuned quantum cascade laser and direct measurements of quantum cascade laser level lifetimes", Applied Physics Letters, vol. 110, no. 3, pp. 031104, 2017.uk_UA
dc.relation.referencesen8. S. Singh, R. Kamoua, "Scattering assisted injection based injectorless mid infrared quantum cascade laser", Journal of Applied Physics, vol. 115, no. 21, pp. 213106, 2014.uk_UA
dc.relation.referencesen9. E. P.Pokatilov, D. L Nika, A. A. Balandin, "Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures", Superlattices and Microstructures, vol. 33, no. 3, pp. 155-171, 2003.uk_UA
dc.relation.referencesen10. M.V. Tkach, Ju.O. Seti, I.V. Boyko, O.M. Voitsekhivska, "optimization of quantum cascade laser operation by geometric design of cascade active band in open and closed models", Condensed Matter Physics, vol. 16, no. 3, pp. 33701, 2013.uk_UA
dc.identifier.citationenBoyko, I., Tsupryk, H., Kinakh, I., Stoianov, Y., & Byts, T. (2019). Mathematical Modeling of the Acoustic Phonons Spectra Arising in Multilayer Nanostructures. 2019 9th International Conference on Advanced Computer Information Technologiesuk_UA
dc.contributor.affiliationTernopil Ivan Puluj National Technical Universityuk_UA
dc.citation.conference2019 9th International Conference on Advanced Computer Information Technologies (ACIT)-
dc.coverage.countryUSuk_UA
Розташовується у зібраннях:Наукові публікації працівників кафедри програмної інженерії

Файли цього матеріалу:
Файл Опис РозмірФормат 
boyko2019.pdf111,09 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора