Empreu aquest identificador per citar o enllaçar aquest ítem: http://elartu.tntu.edu.ua/handle/lib/51487

Registre complet de metadades
Camp DCValorLengua/Idioma
dc.contributor.authorТимощук, Дмитро
dc.contributor.authorЯсній, Олег Петрович
dc.contributor.authorTymoshchuk, Dmytro
dc.contributor.authorYasniy, Oleh
dc.date.accessioned2026-02-09T15:51:56Z-
dc.date.available2026-02-09T15:51:56Z-
dc.date.created2025-08-29
dc.date.issued2025-08-29
dc.date.submitted2025-07-15
dc.identifier.citationTymoshchuk D. Information technology for predicting the hysteresis behavior of shape memory alloys based on a stacking ensemble machine learning model / Dmytro Tymoshchuk, Oleh Yasniy // Scientific Journal of TNTU. — Tern. : TNTU, 2025. — Vol 119. — No 3. — P. 134–146.
dc.identifier.issn2522-4433
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/51487-
dc.description.abstractСплави з пам’яттю форми (СПФ) характеризуються нелінійною гістерезисною поведінкою на діаграмі деформування (σ–ε), площа петлі якої визначає енергію, розсіяну за цикл. Запропоновано ансамблеву Stacking-модель машинного навчання для прогнозування гістерезисної поведінки СПФ за умов циклічного навантаження з різними частотами (0,5; 1; 3 та 5 Гц). Для побудови моделі використано експериментальні дані 100–250 циклів навантаження. У якості базових алгоритмів застосовано Random Forest, Gradient Boosting, Extra Trees, kNN, SVR та MLP. За метамодель вибрано ElasticNet, яку налаштовано за допомогою GridSearchCV з GroupKFold-валідацією. Такий підхід забезпечив поєднання стабільності ансамблю з адаптивним відбором найінформативніших прогнозів базових моделей. Отримані результати показали високу точність відтворення залежності напруження-деформація. Для тестових даних R2 > 0,995, MSE < 0,0007, MAE < 0,02, MAPE < 1,3 %. Перевірка на незалежних циклах 251 та 300 підтвердила узагальнювальну здатність моделі, зокрема R² > 0,974, MSE < 0,007, MAE < 0,06, MAPE < 4.8 %. Інтерпретованість моделі забезпечено методом SHAP, який кількісно визначає внесок кожної вхідної ознаки у формування прогнозу. Встановлено, що Stress є головним чинником формування прогнозу, тоді як ознака UpDown визначає фазу навантаження-розвантаження, а Cycle відображає накопичення циклічних ефектів. Розроблена ансамблева Stacking-модель є складовою інформаційної технології прогнозування гістерезисної поведінки сплавів з пам’яттю форми із застосуванням методів машинного навчання. Запропонований підхід забезпечує не лише високу точність прогнозування, але й фізично обґрунтовану інтерпретованість результатів
dc.description.abstractShape Memory Alloys are characterized by a nonlinear hysteretic behavior on the stress–strain (σ–ε) diagram, where the loop area determines the amount of energy dissipated per cycle. In this work, an ensemble Stacking machine learning model was developed to predict the hysteresis behavior of SMAs under cyclic loading at different frequencies (0.5, 1, 3, and 5 Hz). The model was constructed using experimental data from 100–250 loading cycles. Random Forest, Gradient Boosting, Extra Trees, k-Nearest Neighbors (kNN), Support Vector Regression (SVR), and Multilayer Perceptron (MLP) were employed as base algorithms. The ElasticNet model was selected as the meta-learner and tuned using GridSearchCV with GroupKFold validation. This approach ensured the combination of ensemble stability with adaptive selection of the most informative predictions from the base models. The obtained results showed a high accuracy in reproducing the stress–strain relationship: R2 > 0.995, MSE < 0.0007, MAE < 0.02, and MAPE < 1.3 % on the test data. Validation on independent cycles 251 and 300 confirmed the model’s generalization ability, achieving R2 > 0.974, MSE < 0.007, MAE < 0.06, and MAPE < 4.8 %. The interpretability of the model was provided by the SHAP method, which quantitatively determines the contribution of each input feature to the prediction. It was found that Stress is the dominant factor influencing the prediction, while UpDown defines the loading–unloading phase, and Cycle reflects the accumulation of cyclic effects. The developed ensemble Stacking model is an integral component of an information technology framework for predicting the hysteresis behavior of shape memory alloys using machine learning methods. The proposed approach provides not only high prediction accuracy but also a physically grounded interpretability of the results
dc.format.extent134-146
dc.language.isoen
dc.publisherТНТУ
dc.publisherTNTU
dc.relation.ispartofВісник Тернопільського національного технічного університету, 3 (119), 2025
dc.relation.ispartofScientific Journal of the Ternopil National Technical University, 3 (119), 2025
dc.relation.urihttps://doi.org/10.1016/j.matpr.2019.10.115
dc.relation.urihttps://doi.org/10.3390/biomimetics10060378
dc.relation.urihttps://doi.org/10.3390/act13100425
dc.relation.urihttps://doi.org/10.1016/B978-0-12-819264-1.00024-8
dc.relation.urihttps://doi.org/10.3390/buildings14020483
dc.relation.urihttps://doi.org/10.1111/ffe.14331
dc.relation.urihttps://doi.org/10.3390/computers13120339
dc.relation.urihttps://www.ibm.com/think/topics/explainable-ai
dc.relation.urihttps://doi.org/10.3390/s22155610
dc.relation.urihttps://doi.org/10.1016/j.matdes.2022.111513
dc.relation.urihttps://doi.org/10.1007/s11665-025-11236-z
dc.relation.urihttps://doi.org/10.1016/j.commatsci.2023.112578
dc.relation.urihttps://doi.org/10.3390/ma17194754
dc.relation.urihttps://doi.org/10.1016/j.mtcomm.2024.110720
dc.relation.urihttps://doi.org/10.33108/visnyk_tntu2022.03.045
dc.relation.urihttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html
dc.relation.urihttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
dc.relation.urihttps://www.ibm.com/think/topics/gradient-boosting
dc.relation.urihttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
dc.relation.urihttps://scikit-learn.org/stable/modules/neighbors.html
dc.relation.urihttps://scikit-learn.org/stable/modules/svm.html
dc.relation.urihttps://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html
dc.relation.urihttps://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation
dc.relation.urihttps://github.com/shap/shap
dc.subjectSMA
dc.subjectгістерезис
dc.subjectмашинне навчання
dc.subjectансамблева модель
dc.subjectStacking Regressor
dc.subjectElasticNet
dc.subjectExplainable AI (XAI)
dc.subjectSHAP-аналіз
dc.subjectпрогнозування деформації
dc.subjectциклічне навантаження
dc.subjectSMA
dc.subjecthysteresis
dc.subjectmachine learning
dc.subjectensemble model
dc.subjectStacking Regressor
dc.subjectElasticNet
dc.subjectExplainable AI (XAI)
dc.subjectSHAP analysis
dc.subjectstrain prediction
dc.subjectinformation technology
dc.titleInformation technology for predicting the hysteresis behavior of shape memory alloys based on a stacking ensemble machine learning model
dc.title.alternativeІнформаційна технологія прогнозування гістерезисної поведінки сплавів з пам’яттю форми на основі ансамблевої stacking-моделі машинного навчання
dc.typeArticle
dc.rights.holder© Ternopil Ivan Puluj National Technical University, 2025
dc.coverage.placenameТернопіль
dc.coverage.placenameTernopil
dc.format.pages13
dc.subject.udc004.9
dc.subject.udc006.3
dc.relation.referencesen1. Sharma K., & Srinivas G. (2020Flying smart: Smart materials used in aviation industry. Materials Today: Proceedings, 27, pp. 244–250. https://doi.org/10.1016/j.matpr.2019.10.115
dc.relation.referencesen2. Niu X., Yao X., & Dong E. (2025) Design and control of bio-inspired joints for legged robots driven by shape memory alloy wires. Biomimetics, 10 (6), pp. 378. https://doi.org/10.3390/biomimetics10060378
dc.relation.referencesen3. Schmelter T., Bade L., & Kuhlenkötter B. (2024) A two-finger gripper actuated by shape memory alloy for applications in automation technology with minimized installation space. Actuators, 13 (10), p. 425. https://doi.org/10.3390/act13100425
dc.relation.referencesen4. Riccio A., Sellitto A., Ameduri S., Concilio A., & Arena M. (2021). Shape memory alloys (SMA) for automotive applications and challenges. In Shape Memory Alloy Engineering, pp. 785–808. Elsevier. https://doi.org/10.1016/B978-0-12-819264-1.00024-8
dc.relation.referencesen5. Zhang H., Zhao L., Li A., & Xu S. (2024) Design and hysteretic performance analysis of a novel multi-layer self-centering damper with shape memory alloy. Buildings, 14 (2), p. 483. https://doi.org/10.3390/buildings14020483
dc.relation.referencesen6. Iasnii V., Krechkovska H., Budz V., Student O., & Lapusta Y. (2024). Frequency effect on low‑cycle fatigue behavior of pseudoelastic NiTi alloy. Fatigue & Fracture of Engineering Materials & Structures. https://doi.org/10.1111/ffe.14331
dc.relation.referencesen7. Tymoshchuk D., Yasniy O., Maruschak P., Iasnii V., & Didych I. (2024) Loading Frequency Classification in Shape Memory Alloys: A Machine Learning Approach. Computers, 13 (12), p. 339. https://doi.org/10.3390/computers13120339
dc.relation.referencesen8. IBM. (n.d.-b). What is Explainable AI (XAI)? | IBM. https://www.ibm.com/think/topics/explainable-ai.
dc.relation.referencesen9. Hmede R., Chapelle F., & Lapusta Y. (2022) Review of neural network modeling of shape memory alloys. Sensors, 22 (15), p. 5610. https://doi.org/10.3390/s22155610
dc.relation.referencesen10. He S., Wang Y., Zhang Z., Xiao F., Zuo S., Zhou Y., Cai X., & Jin X. (2023) Interpretable machine learning workflow for evaluation of the transformation temperatures of TiZrHfNiCoCu high entropy shape memory alloys. Materials & Design, 225, 111513. https://doi.org/10.1016/j.matdes.2022.111513
dc.relation.referencesen11. Sridharan S., Velayutham R., Behera S., & Murugesan J. (2025). Machine Learning-Based Temperature- Induced Phase Transformation Temperature Prediction of Ti-Based High-Temperature Shape Memory Alloy. Journal of Materials Engineering and Performance. https://doi.org/10.1007/s11665-025-11236-z
dc.relation.referencesen12. Thiercelin L., Peltier L., & Meraghni F. (2024) Physics-informed machine learning prediction of the martensitic transformation temperature for the design of “NiTi-like” high entropy shape memory alloys. Computational Materials Science, 231, 112578. https://doi.org/10.1016/j.commatsci.2023.112578
dc.relation.referencesen13. Lam T.-N., Jiang J., Hsu M.-C., Tsai S.-R., Luo M.-Y., Hsu S.-T., Lee W.-J., Chen C.-H., & Huang E.-W. (2024) Predictions of Lattice Parameters in NiTi High-Entropy Shape-Memory Alloys Using Different Machine Learning Models. Materials, 17 (19), 4754. https://doi.org/10.3390/ma17194754
dc.relation.referencesen14. Liu C., & Su H. (2024) Machine learning aided prediction of martensite transformation temperature of NiTi-based shape memory alloy. Materials Today Communications, 41, 110720. https://doi.org/10.1016/j.mtcomm.2024.110720
dc.relation.referencesen15. Iasnii V., Bykiv N., Yasniy O., & Budz V. (2022) Methodology and some results of studying the influence of frequency on functional properties of pseudoelastic SMA. Scientific journal of the Ternopil national technical university, 107 (3), pp. 45–50. https://doi.org/10.33108/visnyk_tntu2022.03.045
dc.relation.referencesen16. StackingRegressor. (n.d.). Available at: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html.
dc.relation.referencesen17. RandomForestRegressor. (n.d.). Available at: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html.
dc.relation.referencesen18. Clark B., & Lee F. (n.d.). What is Gradient Boosting? | IBM. Available at: https://www.ibm.com/think/topics/gradient-boosting.
dc.relation.referencesen19. ExtraTreesRegressor. (n.d.). Retrieved from Available at: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html.
dc.relation.referencesen20. Nearest Neighbors. (n.d.). Available at: https://scikit-learn.org/stable/modules/neighbors.html.
dc.relation.referencesen21. Support Vector Machines. (n.d.). Available at: https://scikit-learn.org/stable/modules/svm.html.
dc.relation.referencesen22. Haykin S. (2009). Neural networks and learning machines (3rd ed.). Hamilton, ON, Canada: Prentice Hall.
dc.relation.referencesen23. ElasticNet. (n.d.). Available at: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html.
dc.relation.referencesen24. Metrics and scoring: quantifying the quality of predictions. (n.d.). Available at: https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation.
dc.relation.referencesen25. GitHub – shap/shap: A game theoretic approach to explain the output of any machine learning model. (n.d.-b). Available at: https://github.com/shap/shap.
dc.identifier.doihttps://doi.org/10.33108/visnyk_tntu2025.03.134
dc.contributor.affiliationТернопільський національний технічний університет імені Івана Пулюя, Тернопіль, Україна
dc.contributor.affiliationTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
dc.citation.journalTitleВісник Тернопільського національного технічного університету
dc.citation.volume119
dc.citation.issue3
dc.citation.spage134
dc.citation.epage146
dc.identifier.citation2015Tymoshchuk D., Yasniy O. Information technology for predicting the hysteresis behavior of shape memory alloys based on a stacking ensemble machine learning model // Scientific Journal of TNTU, Ternopil. 2025. Vol 119. No 3. P. 134–146.
dc.identifier.citationenAPATymoshchuk, D., & Yasniy, O. (2025). Information technology for predicting the hysteresis behavior of shape memory alloys based on a stacking ensemble machine learning model. Scientific Journal of the Ternopil National Technical University, 119(3), 134-146. TNTU..
dc.identifier.citationenCHICAGOTymoshchuk D., Yasniy O. (2025) Information technology for predicting the hysteresis behavior of shape memory alloys based on a stacking ensemble machine learning model. Scientific Journal of the Ternopil National Technical University (Tern.), vol. 119, no 3, pp. 134-146.
Apareix a les col·leccions:Вісник ТНТУ, 2025, № 3 (119)



Els ítems de DSpace es troben protegits per copyright, amb tots els drets reservats, sempre i quan no s’indiqui el contrari.