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Abstract. Shape Memory Alloys are characterized by a nonlinear hysteretic behavior on the stress—strain
(o0—¢) diagram, where the loop area determines the amount of energy dissipated per cycle. In this work, an
ensemble Stacking machine learning model was developed to predict the hysteresis behavior of SMAs under cyclic
loading at different frequencies (0.5, 1, 3, and 5 Hz). The model was constructed using experimental data from
100-250 loading cycles. Random Forest, Gradient Boosting, Extra Trees, k-Nearest Neighbors (kNN), Support
Vector Regression (SVR), and Multilayer Perceptron (MLP) were employed as base algorithms. The ElasticNet
model was selected as the meta-learner and tuned using GridSearchCV with GroupKFold validation. This
approach ensured the combination of ensemble stability with adaptive selection of the most informative predictions
from the base models. The obtained results showed a high accuracy in reproducing the stress—strain relationship:
R? > 0.995, MSE < 0.0007, MAE < 0.02, and MAPE < 1.3 % on the test data. Validation on independent cycles
251 and 300 confirmed the model’s generalization ability, achieving R?> > 0.974, MSE < 0.007, MAE < 0.06, and
MAPE < 4.8 %. The interpretability of the model was provided by the SHAP method, which quantitatively
determines the contribution of each input feature to the prediction. It was found that Stress is the dominant factor
influencing the prediction, while UpDown defines the loading—unloading phase, and Cycle reflects the
accumulation of cyclic effects. The developed ensemble Stacking model is an integral component of an information
technology framework for predicting the hysteresis behavior of shape memory alloys using machine learning
methods. The proposed approach provides not only high prediction accuracy but also a physically grounded
interpretability of the results.

Key words: SMA; hysteresis; machine learning, ensemble model; Stacking Regressor; ElasticNet;
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1. INTRODUCTION

Intelligent materials capable of adaptively responding to changing external conditions
form the foundation for the development of modern structures with controllable properties.
Among them, Shape Memory Alloys (SMAs) occupy a special place. They are distinguished
by two unique properties: the shape memory effect (SME) and superelasticity (SE). These
characteristics arise from reversible martensitic—austenitic phase transformations that occur at
the microstructural level under the influence of temperature or mechanical loading. As a result,
the material can not only recover its original shape after deformation but also withstand
significant mechanical loads without permanent changes in geometry. The combination of high
elasticity, durability, and self-recovery capability has led to a wide range of SMA applications
across various engineering fields [1-5].

The stress-strain diagram of an SMA exhibits a pronounced hysteretic behavior. During
a loading—unloading cycle, a closed loop is formed on the stress—strain (c—¢) diagram,
representing the reversible martensitic—austenitic transformations within the material. The area
enclosed by this loop quantitatively corresponds to the energy dissipated per cycle, Eaiss and is
calculated as follows:
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Eaiss = [, (01(8) — 02(e))de, 1)

where o is the stress (MPa), ¢ is the strain (dimensionless), g; (¢) and o, (¢) represent
the loading and unloading stages of the same cycle, respectively.

This characteristic determines the material’s ability to damp mechanical vibrations and
serves as an important parameter in evaluating its functional properties. The geometry of the
hysteresis loop and the amount of dissipated energy are governed by a combination of
thermokinetic and operational parameters of the material. The key factors include the start and
finish temperatures of the martensitic transformation (M,, My) and the reverse austenitic
transformation (4s, Ay). The frequency of the applied load f(Hz) also has a significant influence.
Furthermore, the shape of the hysteresis loop evolves with an increasing number of loading—
unloading cycles N.

The frequency of the applied external load is one of the key factors determining the
functional properties of SMAs [6—7]. It is particularly significant when the material operates
under repeated cyclic loading, during which martensitic—austenitic transformations are
periodically activated. The loading frequency directly affects the thermal processes within
the material. At higher frequencies, self-heating of the specimen may occur, leading to a
local temperature rise, a shift in the phase transformation temperature ranges, and
consequently, a partial loss of functionality. Moreover, frequency is a decisive factor
shaping the hysteretic behavior of SMAs. As the frequency increases, the geometry of the
stress—strain loop changes, directly influencing its area and, therefore, the amount of energy
dissipated per cycle. High frequencies cause the loop to narrow and reduce its energy
capacity due to incomplete phase transformations, whereas low frequencies promote a more
complete development of both martensitic and austenitic phases. Accurate reproduction of
the nonlinear hysteretic behavior of shape memory alloys under varying loading frequencies
is essential for designing durable and reliable components in aerospace, biomedical, and
robotic systems. However, classical analytical models often fail to achieve sufficient
agreement with experimental data, which justifies the use of modern machine learning
methods. Machine learning algorithms can effectively capture complex nonlinear
relationships between stress, strain, loading frequency, number of cycles, and other
operational parameters. Consequently, the application of machine learning enables higher
accuracy in predicting hysteresis behavior. Furthermore, integrating Explainable Al (XAI)
methods [8] allows for interpreting the influence of individual input features on the output,
increasing model transparency and providing deeper insights into the physical processes
underlying SMA behavior.

The review paper [9] emphasizes that Shape Memory Alloys (SMAs) are widely
used in sensors, actuators, aerospace engineering, medicine, and robotics; however, their
nonlinear behavior complicates the application of traditional numerical modeling methods.
The authors note that the use of artificial intelligence approaches is a promising direction,
as they can reduce computational costs and improve prediction accuracy. Considerable
attention is given to artificial neural networks (ANNs), which are employed to model the
properties of SMAs in various forms — such as wires, reverse-spring wires, rods, rings, and
porous materials. The review summarizes the current neural network architectures and
training methods and confirms their strong potential for engineering and biomedical
applications.

In the study [10], there was proposed an interpretable machine learning approach for
predicting the martensitic transformation peak temperature (Tp) in high-entropy shape memory
alloys (HESMAs) based on the TiZrHfNiCoCu system. The authors constructed a dataset,
performed feature selection, and developed a model that achieved an error of less than 3% for
newly synthesized alloys. The model was interpreted using SHAP analysis, which revealed the
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key role of the CV22 feature (Allred—Rochow electronegativity). The analysis also showed that
higher concentrations of Co and Cu have a positive effect on Tp, thus enabling the guided
design of HESMAs with tailored transformation temperatures.

The study [11] investigated the use of machine learning methods to predict phase
transformation temperatures in high-temperature shape memory alloys (HTSMAs) based on
titanium. The authors compared the performance of three algorithms: Artificial Neural
Networks (ANN), Support Vector Regression (SVR), and Random Forest Regression (RFR).
These models were applied to determine the austenite finish temperature, the martensite start
temperature, and the thermal hysteresis. The ANN provided the most accurate predictions for
the austenite finish temperature, while the SVR achieved the highest accuracy for the martensite
start temperature. The RFR model produced the most precise estimation of hysteresis derived
from the predicted transformation temperatures. The analysis of feature importance confirmed
the significant role of Pt and Ni in the phase transformations, which is consistent with previous
research. The study demonstrated the potential of machine learning to accelerate the design of
titanium-based HTSMAs with predictable temperature-dependent behavior.

The study [12] proposed a physics-informed machine learning approach for predicting the
martensitic transformation start temperature in HESMAs. The authors expanded the existing
HESMA database and performed prediction using the Extremely Randomized Trees algorithm with
two strategies. The first strategy considered only the alloy composition, while the second included
a set of physical descriptors such as mixing enthalpy, atomic radius, and electronegativity. The
second approach achieved higher prediction accuracy. Experimental validation on six synthesized
alloys confirmed the reliability of the developed model. In addition, the authors implemented a
design tool for HESMAs aimed at achieving M; values above 400°C.

The study [13] employed several machine learning models, including linear regression,
Random Forest, and Support Vector Regression, to predict the parameters of the monoclinic
B19° lattice phase in two datasets: ZrO,-based shape memory ceramics and NiTi-based high-
entropy SMAs. The results showed that linear regression provided the most accurate predictions
for the parameters ac, am, bm, and ¢, in NiTi-based HESMAs, while Random Forest achieved
the best predictions for f, in both datasets. In contrast, the SVR model exhibited the largest
deviations from the experimental values. The combination of Random Forest and linear
regression improved the accuracy of estimating martensitic phase parameters across different
SMA materials, showing promise for their use in high-temperature applications.

The article [14] explored the use of machine learning methods for rapid prediction of
the martensitic transformation start temperature (Ms) in shape memory alloys. The Gradient
Boosting algorithm achieved the highest accuracy with R* = 0.92 and MAE = 23.42 °C. The
combination of correlation analysis, recursive feature elimination, and exhaustive search
identified six key factors, while SHAP-based interpretation provided a clear understanding of
feature importance distribution. To address the challenge of low M; values in NiTi alloys, the
concept of high-entropy alloys was integrated into the modeling process. The model predicted
the composition Ti19Zr19Hf19Ni37Cus with an M, above 400 °C, confirming the effectiveness of
the proposed approach for extending the operational temperature range of SMAs.

The aim of this study is to develop an ensemble Stacking machine learning model for
predicting the hysteretic behavior of SMAs under repeated cyclic loading at different
frequencies and to evaluate its accuracy using experimental data. The research also involves
the application of Explainable Artificial Intelligence (XAI) methods to interpret the behavior
of the constructed model, perform a quantitative analysis of the contribution of input variables
to the prediction, and identify the dominant factors that determine the evolution of the hysteresis
loop during repeated loading cycles. This approach is intended not only to achieve high
prediction accuracy but also to enhance the interpretability of the results, thereby contributing
to a deeper understanding of the physical mechanisms governing the behavior of SMAs.
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2. MATERIAL AND METHODS

To construct the dataset for training and testing the machine learning models,
experimental data were used from fatigue tests of a NiTi shape memory alloy (SMA) wire with
a diameter of 1.5 mm and a length of 210 mm [15]. The experiments were conducted at room
temperature using a servo-hydraulic testing machine STM-100. The chemical composition of
the alloy consisted of 55.78% Ni and 44.12% Ti, with the total content of impurities (Co, Cu,
Cr, Fe, Nb, C, H, O, N) not exceeding 0.04%.

The dataset included the following input features: material stress o (MPa), cycle number N
corresponding to the loading—unloading sequence, and an indicator specifying the loading or
unloading stage. The output variable was the material strain ¢ (%) which characterizes the response
of the NiTi alloy to the applied stress under different loading frequencies (0.5, 1, 3, and 5 Hz). In
this study, experimental data from 100 to 250 loading-unloading cycles of the SMA were used.

The number of data samples corresponding to each loading frequency is presented
in Table 1.

Table 1

Number of data samples for different loading frequencies

Frequency, Hz 0.5 1 3 5

Number of samples 3,051 16,006 18,573 14,949

The formation of the training and test datasets was performed using the
GroupShuffleSplit method from Python. This method provides a random split of the data into
training and test subsets while preserving the group membership of observations. In this study,
the group index was represented by the loading cycle number N, which prevents data from the
same cycle from appearing simultaneously in both subsets. The data were divided into an
80/20 ratio, with 80% of the records used for training and 20% reserved for independent testing
to evaluate the model’s generalization capability.

Based on the prepared subsets, an ensemble model of the Stacking Regressor type [16] was
constructed. Ensemble learning through stacking combines several base models to enhance the
predictive system’s generalization ability. Unlike bagging or boosting, stacking is not limited to a
single model type and allows the combination of algorithms of different nature, forming a multi-
level architecture. The base models included Random Forest [17], Gradient Boosting [18], Extra
Trees [19], K-Nearest Neighbors (kNN) [20], Support Vector Regressor (SVR) [21], and Multilayer
Perceptron (MLP) [22]. The last three models were implemented within a Pipeline using
StandardScaler for feature normalization. The ElasticNet algorithm [23] was used as the meta-
model, combining the properties of Lasso and Ridge regularization. Optimal hyperparameters were
determined using GridSearchCV with the evaluation metric neg mean squared error. Reliable
model assessment within loading cycles was ensured by a custom GroupKFoldWithGroups
wrapper (n_splits = 5), which considers the grouped structure of the data during cross-validation.

In general form, the prediction of the ensemble Stacking model was defined as a linear
combination of the predictions of the base models:

m
j=1

where ¥ is the final ensemble prediction, y; is the prediction of the j-th base model, w; is the weight
assigned by the ElasticNet meta-model, b is the bias term, and m is the number of base models.
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The coefficients w; represent the contribution of each base model to the
overall ensemble prediction. The bias term b is an independent model parameter that
defines the baseline level of the predicted variable and allows adjustment of the
model output mean when all input features are zero. The inclusion of this parameter
ensures a shift of the prediction hyperplane relative to the origin, compensating for
systematic deviations of the base models and improving the accuracy of the overall
approximation.

To evaluate the performance of the ensemble model, classical regression metrics
were used to characterize the accuracy and consistency of predictions with experimental
data [24]. The Mean Squared Error (MSE) reflects the average squared difference
between predicted and actual values. Since it is sensitive to large deviations, this
metric is particularly effective for assessing models where minimizing significant errors is
crucial. The Mean Absolute Error (MAE) measures the average absolute difference
between predicted and actual values, regardless of the error direction. This metric
provides an interpretable measure of the average prediction error expressed in the
same units as the target variable. The Coefficient of Determination (R?) indicates the
proportion of the variance in the target variable that is explained by the model. A value of
R? close to 1 signifies a high level of agreement between the predictions and experimental
data, whereas a low value indicates an insufficient ability of the model to reproduce the
observed relationships. The Mean Absolute Percentage Error (MAPE) represents the
average percentage deviation of the prediction from the actual values. It is convenient for
comparing model performance across different datasets because it expresses errors in
percentage form and allows accuracy to be interpreted in relative terms. Overall, these
metrics provided a comprehensive evaluation of the ensemble model’s effectiveness,
considering both the accuracy of data reproduction and the model’s stability on the
independent test set.

To enhance the interpretability of the ensemble model results, the SHapley Additive
exPlanations (SHAP) method was applied. This approach is based on Shapley game theory and
provides a quantitative assessment of the contribution of each input feature to the model’s
prediction [25]. SHAP analysis makes it possible to interpret both the global influence of
features on the model (the average importance of each feature across all observations) and the
local contribution of individual variables to a specific prediction. This enables a clear
explanation of why the model produced a particular output and helps identify the key factors
that determine the hysteretic behavior of shape memory alloys under repeated cyclic loading
conditions.

3. RESULTS AND DISCUSSION

For the quantitative analysis of the weights of the base models within the
Stacking ensemble, an ElasticNet regressor was used as the meta-model. This
algorithm combines the properties of L1 (Lasso) and L2 (Ridge) regularization. Such an
approach provides a balance between selecting the most informative models through the
sparsity effect of the L1 norm and stabilizing their weights through the L2 component,
which helps prevent overfitting and excessive correlation among the base model
predictions. During training, a five-fold group cross-validation (GroupKFold) was
performed with respect to the cycle numbers, ensuring independence between the training
and validation subsets.

The hyperparameter tuning process using GridSearchCV identified the
optimal values of a and /i ratio, which minimized the mean squared error in
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cross-validation. The value a = 0.01 resulted in mild regularization, sufficient to
prevent overfitting without significantly reducing accuracy. This setting is particularly
important for ensemble models, where base predictors may exhibit partial correlation with
each other.

The parameter /; ratio € [0, 1] defines the balance between L1 and L2 regularization
in the overall penalty function. When /; ratio = 1, the model uses pure Lasso (L1)
regularization, which promotes sparsity by setting insignificant coefficients to zero. This
helps selecting the most influential features or, in the case of an ensemble, the most
significant base models. When /; ratio = 0, the model applies pure Ridge (L2) regularization,
which does not eliminate coefficients but reduces their amplitudes, stabilizing the model in
the presence of multicollinearity. The intermediate value /; ratio = 0.8 combines the effects
of both methods: the L1 component performs partial selection of the most relevant models,
while the L2 component ensures robustness to noise and redundant or correlated base
predictors.

The normalized distribution of ElasticNet meta-model weights represents
the relative contribution of each base algorithm to the ensemble’s final prediction.
The weights were normalized so that the sum of their absolute values was equal to one,
allowing for a direct comparison of the influence of different models. Figure 1 illustrates
the variation in weight structure across four loading frequencies, showing how the

contribution of individual algorithms evolves with increasing deformation frequency
in the SMA.
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Figure 1. Norznalized weights of the ElasticNet meta-model for the baze regressors:
0.5 Hz (a), 1 Hz (b), 3 (c) Hz, 5 Hz (d)
At the low loading frequency of 0.5 Hz (Fig. 1 a), the highest weights were assigned
to the ExtraTrees and Gradient Boosting models, indicating the dominant contribution of
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tree-based ensembles to the overall prediction. When the frequency increased to 1 Hz (Fig. 1 b),
the contribution of the MLP model became more significant, gradually gaining a larger share
of the ensemble. A further increase to 3 Hz (Fig. 1 ¢) was accompanied by a noticeable
strengthening of the MLP and kNN models, while the influence of tree-based algorithms
gradually decreased. At the maximum frequency of 5 Hz (Fig. 1 d), the weights were
distributed almost uniformly among all base models, and the weight of the SVR dropped
to a value close to zero. Thus, in all examined frequency regimes, the SVR consistently
had the smallest impact on the meta-prediction, whereas the leading role was alternately
played by tree-based ensembles, MLP, or kNN models, depending on the cyclic loading
frequency.

The performance of the developed ensemble model was evaluated using
standard regression metrics, namely the mean squared error (MSE), mean absolute
error (MAE), coefficient of determination (R?*), and mean absolute percentage
error (MAPE). These indicators were calculated both for the test dataset within the training
cycle range (100-250) and for independent experimental cycles (251 and 300) that were not
used during training, validation, or testing. The quantitative evaluation results are
summarized in Table 1.

Table 1

Prediction errors of the ensemble Stacking model for different loading frequencies and cycles.

Cycle type Frequency (Hz) MSE MAE R? MAPE
0.5 0.0004 0.0163 0.9992 0.0057
0.0004 0.0175 0.9990 0.0075

Test

0.0007 0.0218 0.9976 0.0106
0.0006 0.0218 0.9959 0.0125

0.5 0.0004 0.0167 0.9992 0.0059
1 0.0003 0.0155 0.9992 0.0068
Independent (251)
0.0012 0.0287 0.9970 0.0146
0.0011 0.0274 0.9952 0.0155
0.5 0.0015 0.0339 0.9969 0.0116
0.0006 0.0203 0.9987 0.0078
Independent (300)

0.0019 0.0360 0.9957 0.0169
0.0071 0.0622 0.9741 0.0479

For the test data within the training cycle range (100-250), the obtained error
values were exceptionally low, confirming the high performance of the developed Stacking
model. The mean squared error (MSE) did not exceed 0.0007, the mean absolute error
(MAE) was approximately 0.02, and the mean absolute percentage error (MAPE) remained
below 1.3%. The coefficient of determination (R* > 0.995) in all cases indicates that
the ensemble accurately reproduces the functional relationship between stress and strain.
For the independent verification cycles, a slight but consistent decrease in accuracy was
observed with increasing loading frequency and cycle number. For the 251st cycle, the
R? value remained nearly unchanged (= 0.99 for 0.5 — 1 Hz), and MAPE did not exceed
1.6%. In the 300th cycle, the prediction error increased slightly. At 3 Hz, MAE reached
0.036 and MAPE was approximately 1.7%, while at 5 Hz a more noticeable deviation was
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observed (MSE = 0.0071, R*> = 0.974, MAPE ~ 4.8%). Overall, the results show that the
ensemble maintains high stability and accuracy across the entire frequency range, with
errors remaining within acceptable limits even beyond the training cycles. This confirms
the model’s strong generalization ability and its capability to correctly capture the complex
nonlinear behavior of SMAs under repeated loading.

The distribution of the prediction residuals for the test dataset is shown in Figure 2.
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Figure 2. Distribution of prediction residuals of the Stacking model for the test datasets
at different loading frequencies: 0.5 Hz (a), 1 Hz (b), 3 Hz (c), 5 Hz (d)

In all cases, the residuals were uniformly distributed around the horizontal axis, showing
no noticeable systematic bias in the predictions of the ElasticNet meta-model. For the
frequencies of 0.5 and 1 Hz, the point cloud appeared nearly symmetrical, and the residual
variation range was within £0.07, confirming the high accuracy and stability of the ensemble.
At 3 and 5 Hz, a slight increase in the spread of residuals up to +0.1 was observed; however,
their distribution remained random without any pronounced autocorrelation. This indicates that
the model accurately reproduces nonlinear dependencies even under dynamic loading
conditions and at higher rates of martensitic—austenitic phase transformations. The absence of
a cone-shaped pattern or displacement of the residual cloud from the horizontal axis confirms
the constant nature of error variance and the uniform quality of prediction across the entire
dataset.

The developed ensemble Stacking model successfully reproduced the hysteretic
behavior of the SMA during cyclic loading. Based on the input parameters: material
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stress ¢ (MPa), cycle number N, corresponding to the loading—unloading process, and the
loading phase indicator the model predicts the instantaneous strain value ¢ (%). This enables
not only the estimation of individual points but also the reconstruction of the complete
o—¢, hysteresis loop, which characterizes the phase transformations between martensite and
austenite.

Figure 3 presents the reconstructed hysteresis loops for cycles 251 and 300 at a loading
frequency of 1 Hz.
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Figure 3. Comparison of experimental and predicted hysteresis loops:
251st cycle (a), 300th cycle (b)

The reconstructed dependencies showed a high level of agreement between the
experimental data and the predictions of the Stacking model. For the 251st cycle (Fig. 3a),
the curves almost completely overlap, indicating high prediction accuracy during
both loading and unloading phases. The model accurately reproduces the key regions
of the hysteresis behavior, particularly the characteristic nonlinear response during
the martensitic and austenitic phase transformations. For the 300th cycle (Fig. 3b), the shape
of the hysteresis loop is also reproduced with high precision, although small discrepancies
between the predicted and experimental data can be observed in the form of slight
deviations. These differences are consistent with the obtained statistical error metrics (Table
1). Despite these minor variations, the overall loop contour, its width, and slope in the
transformation regions are accurately captured. Overall, the results obtained demonstrate
strong consistency between the predicted and experimental hysteresis loops and confirm the
model’s ability to generalize to unseen cycles. This validates the effectiveness of the
ensemble approach in describing the nonlinear hysteretic behavior of SMAs.

To interpret the behavior of the ensemble Stacking model, the SHAP method was
applied. This technique enables a quantitative assessment of the contribution of each input
feature to the final prediction. Belonging to the class of XAI methods, SHAP explains the
results of machine learning models without compromising prediction accuracy. The analysis
was performed using KernelExplainer, which approximates local feature influences in
nonlinear models. To reduce computational complexity, the sample was limited to a subset
of 400 background data points derived from the training set. The evaluation was conducted
for the features Stress, Cycle, and UpDown.

The results of the global SHAP analysis are presented in Figure 4, which shows the
mean absolute SHAP values for all features in the test dataset.
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SHAP Summary Plot (bar) - Test data, fr=0.5
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SHAP Summary Plot (bar) - Test data, fr=3
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SHAP Summary Plot (bar) - Test data, fr=1
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SHAP Summary Plot (bar) - Test data, fr=5
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Figure 4. Global mean absolute SHAP values for the test datasets at different loading frequencies:
0.5 Hz (a), 1 Hz (b), 3 Hz (¢), 5 Hz (d)

The variable Stress has the strongest influence on the model’s prediction,
confirming its primary role in determining the strain behavior of the SMA. The large
SHAP values associated with this feature indicate that even small variations in stress
have a significant effect on the predicted strain. The second most important factor
is UpDown, which represents the loading or unloading stage, that is, the direction
of movement within the hysteresis loop. Its contribution shows that the model
effectively distinguishes between the different phases of the loading cycle. The influence
of the Cycle feature is comparatively smaller, although it increases for later cycles, as

illustrated in Figure 5.

SHAP Summary Plot (bar) - Cycle 300, fr=0.5
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SHAP Summary Plot (bar) - Cycle 300, fr=3
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SHAP Summary Plot (bar) - Cycle 300, fr=1

Stress 0.6080
UpDown 0.1235
Cycle 0.0516
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SHAP Summary Plot (bar) - Cycle 300, fr=5
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Cycle 0.0521
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mean(|SHAP value]|) (average impact on model output magnitude)

d)

Figure 5. Global mean absolute SHAP values for the 300th cycle at different loading frequencies:
0.5 Hz (a), | Hz (b), 3 Hz (¢), 5 Hz (d)

A local SHAP analysis for an individual sample (the 45th measurement of the
300th cycle at a loading frequency of 1 Hz) is presented in Figure 6.
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SHAP Waterfall Plot - sample 45 (Cycle 300, fr=1)
f(IX)
UpDown  —0.09 .

Cycle ' +0.03
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2.6 2.8 3.0 3.2 3.4
E[f(X)]

Figure 6. Local SHAP Waterfall Plot for the 45th measurement
of the 300th cycle at a loading frequency of 1 Hz.

The largest positive contribution to the predicted value comes from Stress (+0.86),
confirming the dominant role of mechanical loading in material deformation. The feature
UpDown = 1, corresponding to the loading phase, exerts a minor negative influence (—0.09),
slightly reducing the predicted strain during this stage. The variable Cycle = 300 provides a
small positive contribution (+0.03).

The model’s initial expected value, E[f(X)] = 2.582, shifts to the final prediction
fix)=3.388 under the influence of these factors, which align well with the experimental
observations. Thus, the local SHAP analysis shows that increasing stress is the primary factor
driving strain growth, while the loading phase and cycle number act as secondary corrective
parameters that influence the shape of the hysteresis loop.

The obtained results indicate that the ensemble Stacking model not only reproduces the
nonlinear mechanical behavior of the material with high accuracy but also preserves a
physically interpretable structure of dependencies. The application of SHAP analysis
quantitatively confirmed the dominant role of stress in shaping the deformation behavior of the
NiTi alloy and revealed the influence of cyclic effects responsible for the evolution of the
hysteresis loop during repeated loading.

The developed ensemble Stacking model represents a component of an information
technology framework for predicting the hysteretic behavior of SMAs using machine learning
methods. The proposed framework covers the full data analysis cycle, from the preprocessing
of experimental measurements to the modeling of complex nonlinear relationships and the
subsequent interpretation of results using XAl approaches. This integration ensures not only
high accuracy in reproducing hysteresis loops but also provides a physically grounded
explanation of each parameter’s contribution, making the model suitable for practical
applications in assessing the durability and performance of SMAs.

4. CONCLUSIONS

An ensemble Stacking model was developed in this study to predict the hysteretic behavior
of NiTi shape memory alloys (NiTi-SMA) under cyclic loading at frequenciesof 0.5, 1, 3, and 5 Hz.
The model showed high accuracy on the test data within the 100-250 cycle range, achieving
R* > 0.995, MSE < 0.0007, MAE < 0.02, and MAPE < 1.3%. Validation on cycles 251 and
300 confirmed its strong generalization capability. The most noticeable decrease in
prediction accuracy occurred at 5 Hz for the 300th cycle; however, the results remained
acceptable (R? = 0.974). The application of Explainable Al SHAP methods provided an
interpretable understanding of the contribution of input parameters and confirmed the
physical consistency of the model’s operation, highlighting the dominant influence of stress
and the role of loading cycles in shaping the hysteresis loop. Future research will focus on
advancing the proposed information technology framework for predicting the hysteretic
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behavior of shape memory alloys by integrating recurrent neural network architectures such
as Bidirectional LSTM and GRU, which are expected to further enhance prediction
accuracy.
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THO®OPMAIIMHA TEXHOJIOI'ISA IPOTHO3YBAHHS
TICTEPE3MCHOI NOBEJIHKHU CILIABIB 3 IAM’ATTIO ®OPMU
HA OCHOBI AHCAMBJIEBOI STACKING-MO/JEJII MAILIMHHOTI'O
HABYAHHA

JAmutpo Tumomyk; OJier SAcHii

Tepnoninbcokuu Hayionanbhuu mexuivHuu ynigepcumem imeni leana 1lynios,
Tepnoninw, Ykpaina

Peztome. Cnnasu 3 nam’ammiwo @opmu (CIIP) xapakmepu3yiomvcs HeNiHIUHOK 2iCMepe3suUcHo
noeedinKow Ha Oiazpami Oeopmy8aHus (o—), niowja nemii AKOI BUSHAYAE eHepeilo, PO3CIAHY 3d YUKIL.
3anpononosano ancambnesy Stacking-modenv MawuHHO20 HAGUANHA OJil NPOSHO3VEAHHS 2ICMEPe3UCHOl
nosedinku CII® 3a ymoe yukiiuno2o nasawmadicenuss 3 pishumu yacmomamu (0,5; 1; 3 ma 5 I'y). /{na nobyoosu
MoOeni suxopucmano excnepumenmanvii oani 100—250 yuknie nasanmasicenns. Y axocmi 6a308ux ancopummis
sacmocosano Random Forest, Gradient Boosting, Extra Trees, kNN, SVR ma MLP. 3a memamooens eubpano
ElasticNet, saxy nanrawmosano 3a oonomoeoio GridSearchCV 3 GroupKFold-eanioayicio. Taxuii nioxio
3a6e3neuus NOEOHAHHA CMAOLIbHOCMI AHCAMONI0 3 A0ANMUBHUM BI0OOPOM HAUIHGOPMAMUBHIUUX NPOSHO3IE
bazosux mooenei. Ompumani pe3yromamuy NOKA3A1U 8UCOKY MOYHICMb 8i0MEOPEHHS 3ANEHCHOCTNI HANPYHCEHHS1-
Oepopmayis. Jna mecmoeux danux R> > 0,995, MSE < 0,0007, MAE < 0,02, MAPE < 1,3 %. Ilepesipka
Ha Hesanexcuux yukiax 251 ma 300 niomeepouna y3azanvHiosaibHy 30amuicme mooeni, 30kpema R* > 0,974,
MSE < 0,007, MAE < 0,06, MAPE < 4.8 %. Inmepnpemoganicms mooeni 3abe3neueno memooom SHAP, axuii
KIIbKICHO BU3HAYAE 8HECOK KOJICHOT 8XIOHOT 03HaKuU Y (hopmyeanHs npocro3y. Bcmanoeneno, wjo Stress € 2onosnum
YUHHUKOM (hopMY8aHHs npo2no3y, modi sax osnaxka UpDown suznauae ¢asy HagaHmaxicenHs-po36anmanicens, a
Cycle gidobpaoicae naxonuuennsi yukuiyHux egpexmis. Pospobnena ancambnesa Stacking-moodens € ckiaoosoi
iHGhoOpMayitinoi  MexHON02Il NPOSHO3Y6AHHS 2icmepe3UcHOl NOo8ediHKU Cniasie 3 nam 'smmio @opmu i3
3ACMOCYBAHHAM MeMO0i8 MAUUHHO20 HABUAHHA. 3anpPONOHO8AHUI NIOXIO 3a6e3neuye He nuule 8UCOKY MOYHICIb
nPOcHO3Y6anHs, ane i QizuyHo 0OIPYHMOBAHY IHMEPRPEMOBAHICb Pe3YIbMAmie.

Kniouosi cnosa: SMA, zicmepesuc, mawunne naguanus, amcamobaesa mooenn, Stacking Regressor,
ElasticNet, Explainable Al (XAI), SHAP-ananiz, npocno3yeants depopmayii, yukiiune Ha8aAHMAaANCEHHSL.
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