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Abstract. Shape Memory Alloys are characterized by a nonlinear hysteretic behavior on the stress–strain 

(σ–ε) diagram, where the loop area determines the amount of energy dissipated per cycle. In this work, an 

ensemble Stacking machine learning model was developed to predict the hysteresis behavior of SMAs under cyclic 

loading at different frequencies (0.5, 1, 3, and 5 Hz). The model was constructed using experimental data from 

100–250 loading cycles. Random Forest, Gradient Boosting, Extra Trees, k-Nearest Neighbors (kNN), Support 

Vector Regression (SVR), and Multilayer Perceptron (MLP) were employed as base algorithms. The ElasticNet 

model was selected as the meta-learner and tuned using GridSearchCV with GroupKFold validation. This 

approach ensured the combination of ensemble stability with adaptive selection of the most informative predictions 

from the base models. The obtained results showed a high accuracy in reproducing the stress–strain relationship: 

R2 > 0.995, MSE < 0.0007, MAE < 0.02, and MAPE < 1.3 % on the test data. Validation on independent cycles 

251 and 300 confirmed the model’s generalization ability, achieving R2 > 0.974, MSE < 0.007, MAE < 0.06, and 

MAPE < 4.8 %. The interpretability of the model was provided by the SHAP method, which quantitatively 

determines the contribution of each input feature to the prediction. It was found that Stress is the dominant factor 

influencing the prediction, while UpDown defines the loading–unloading phase, and Cycle reflects the 

accumulation of cyclic effects. The developed ensemble Stacking model is an integral component of an information 

technology framework for predicting the hysteresis behavior of shape memory alloys using machine learning 

methods. The proposed approach provides not only high prediction accuracy but also a physically grounded 

interpretability of the results. 

Key words: SMA; hysteresis; machine learning; ensemble model; Stacking Regressor; ElasticNet; 

Explainable AI (XAI); SHAP analysis; strain prediction; information technology. 
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1. INTRODUCTION 

 

Intelligent materials capable of adaptively responding to changing external conditions 

form the foundation for the development of modern structures with controllable properties. 

Among them, Shape Memory Alloys (SMAs) occupy a special place. They are distinguished 

by two unique properties: the shape memory effect (SME) and superelasticity (SE). These 

characteristics arise from reversible martensitic–austenitic phase transformations that occur at 

the microstructural level under the influence of temperature or mechanical loading. As a result, 

the material can not only recover its original shape after deformation but also withstand 

significant mechanical loads without permanent changes in geometry. The combination of high 

elasticity, durability, and self-recovery capability has led to a wide range of SMA applications 

across various engineering fields [1–5]. 

The stress-strain diagram of an SMA exhibits a pronounced hysteretic behavior. During 

a loading–unloading cycle, a closed loop is formed on the stress–strain (σ–ε) diagram, 

representing the reversible martensitic–austenitic transformations within the material. The area 

enclosed by this loop quantitatively corresponds to the energy dissipated per cycle, Ediss and is 

calculated as follows: 
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𝐸𝑑𝑖𝑠𝑠 = ∫ (𝜎1(𝜀) − 𝜎2(𝜀))𝑑𝜀
𝜀𝑚𝑎𝑥

𝜀𝑚𝑖𝑛
, (1) 

 

where 𝜎 is the stress (MPa), 𝜀 is the strain (dimensionless), 𝜎1(𝜀) and 𝜎2(𝜀) represent 

the loading and unloading stages of the same cycle, respectively. 

This characteristic determines the material’s ability to damp mechanical vibrations and 

serves as an important parameter in evaluating its functional properties. The geometry of the 

hysteresis loop and the amount of dissipated energy are governed by a combination of 

thermokinetic and operational parameters of the material. The key factors include the start and 

finish temperatures of the martensitic transformation (Ms, Mf) and the reverse austenitic 

transformation (As, Af). The frequency of the applied load f (Hz) also has a significant influence. 

Furthermore, the shape of the hysteresis loop evolves with an increasing number of loading–

unloading cycles N. 

The frequency of the applied external load is one of the key factors determining the 

functional properties of SMAs [6–7]. It is particularly significant when the material operates 

under repeated cyclic loading, during which martensitic–austenitic transformations are 

periodically activated. The loading frequency directly affects the thermal processes within 

the material. At higher frequencies, self-heating of the specimen may occur, leading to a 

local temperature rise, a shift in the phase transformation temperature ranges, and 

consequently, a partial loss of functionality. Moreover, frequency is a decisive factor 

shaping the hysteretic behavior of SMAs. As the frequency increases, the geometry of the 

stress–strain loop changes, directly influencing its area and, therefore, the amount of energy 

dissipated per cycle. High frequencies cause the loop to narrow and reduce its energy 

capacity due to incomplete phase transformations, whereas low frequencies promote a more 

complete development of both martensitic and austenitic phases. Accurate reproduction of 

the nonlinear hysteretic behavior of shape memory alloys under varying loading frequencies 

is essential for designing durable and reliable components in aerospace, biomedical, and 

robotic systems. However, classical analytical models often fail to achieve sufficient 

agreement with experimental data, which justifies the use of modern machine learning 

methods. Machine learning algorithms can effectively capture complex nonlinear 

relationships between stress, strain, loading frequency, number of cycles, and other 

operational parameters. Consequently, the application of machine learning enables higher 

accuracy in predicting hysteresis behavior. Furthermore, integrating Explainable AI (XAI) 

methods [8] allows for interpreting the influence of individual input features on the output, 

increasing model transparency and providing deeper insights into the physical processes 

underlying SMA behavior. 

The review paper [9] emphasizes that Shape Memory Alloys (SMAs) are widely 

used in sensors, actuators, aerospace engineering, medicine, and robotics; however, their 

nonlinear behavior complicates the application of traditional numerical modeling methods. 

The authors note that the use of artificial intelligence approaches is a promising direction, 

as they can reduce computational costs and improve prediction accuracy. Considerable 

attention is given to artificial neural networks (ANNs), which are employed to  model the 

properties of SMAs in various forms – such as wires, reverse-spring wires, rods, rings, and 

porous materials. The review summarizes the current neural network architectures and 

training methods and confirms their strong potential for engineering and biomedical 

applications. 

In the study [10], there was proposed an interpretable machine learning approach for 

predicting the martensitic transformation peak temperature (Tp) in high-entropy shape memory 

alloys (HESMAs) based on the TiZrHfNiCoCu system. The authors constructed a dataset, 

performed feature selection, and developed a model that achieved an error of less than 3% for 

newly synthesized alloys. The model was interpreted using SHAP analysis, which revealed the 
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key role of the CV22 feature (Allred–Rochow electronegativity). The analysis also showed that 

higher concentrations of Co and Cu have a positive effect on Tp, thus enabling the guided 

design of HESMAs with tailored transformation temperatures. 

The study [11] investigated the use of machine learning methods to predict phase 

transformation temperatures in high-temperature shape memory alloys (HTSMAs) based on 

titanium. The authors compared the performance of three algorithms: Artificial Neural 

Networks (ANN), Support Vector Regression (SVR), and Random Forest Regression (RFR). 

These models were applied to determine the austenite finish temperature, the martensite start 

temperature, and the thermal hysteresis. The ANN provided the most accurate predictions for 

the austenite finish temperature, while the SVR achieved the highest accuracy for the martensite 

start temperature. The RFR model produced the most precise estimation of hysteresis derived 

from the predicted transformation temperatures. The analysis of feature importance confirmed 

the significant role of Pt and Ni in the phase transformations, which is consistent with previous 

research. The study demonstrated the potential of machine learning to accelerate the design of 

titanium-based HTSMAs with predictable temperature-dependent behavior. 

The study [12] proposed a physics-informed machine learning approach for predicting the 

martensitic transformation start temperature in HESMAs. The authors expanded the existing 

HESMA database and performed prediction using the Extremely Randomized Trees algorithm with 

two strategies. The first strategy considered only the alloy composition, while the second included 

a set of physical descriptors such as mixing enthalpy, atomic radius, and electronegativity. The 

second approach achieved higher prediction accuracy. Experimental validation on six synthesized 

alloys confirmed the reliability of the developed model. In addition, the authors implemented a 

design tool for HESMAs aimed at achieving Ms values above 400°C. 

The study [13] employed several machine learning models, including linear regression, 

Random Forest, and Support Vector Regression, to predict the parameters of the monoclinic 

B19` lattice phase in two datasets: ZrO₂-based shape memory ceramics and NiTi-based high-

entropy SMAs. The results showed that linear regression provided the most accurate predictions 

for the parameters ac, am, bm, and cm in NiTi-based HESMAs, while Random Forest achieved 

the best predictions for βm in both datasets. In contrast, the SVR model exhibited the largest 

deviations from the experimental values. The combination of Random Forest and linear 

regression improved the accuracy of estimating martensitic phase parameters across different 

SMA materials, showing promise for their use in high-temperature applications. 

The article [14] explored the use of machine learning methods for rapid prediction of 

the martensitic transformation start temperature (Ms) in shape memory alloys. The Gradient 

Boosting algorithm achieved the highest accuracy with R2 = 0.92 and MAE = 23.42 °C. The 

combination of correlation analysis, recursive feature elimination, and exhaustive search 

identified six key factors, while SHAP-based interpretation provided a clear understanding of 

feature importance distribution. To address the challenge of low Ms values in NiTi alloys, the 

concept of high-entropy alloys was integrated into the modeling process. The model predicted 

the composition Ti19Zr19Hf19Ni37Cu6 with an Ms above 400 °C, confirming the effectiveness of 

the proposed approach for extending the operational temperature range of SMAs. 

The aim of this study is to develop an ensemble Stacking machine learning model for 

predicting the hysteretic behavior of SMAs under repeated cyclic loading at different 

frequencies and to evaluate its accuracy using experimental data. The research also involves 

the application of Explainable Artificial Intelligence (XAI) methods to interpret the behavior 

of the constructed model, perform a quantitative analysis of the contribution of input variables 

to the prediction, and identify the dominant factors that determine the evolution of the hysteresis 

loop during repeated loading cycles. This approach is intended not only to achieve high 

prediction accuracy but also to enhance the interpretability of the results, thereby contributing 

to a deeper understanding of the physical mechanisms governing the behavior of SMAs. 

https://doi.org/10.33108/visnyk_tntu2025.0
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2. MATERIAL AND METHODS 
 

To construct the dataset for training and testing the machine learning models, 

experimental data were used from fatigue tests of a NiTi shape memory alloy (SMA) wire with 

a diameter of 1.5 mm and a length of 210 mm [15]. The experiments were conducted at room 

temperature using a servo-hydraulic testing machine STM-100. The chemical composition of 

the alloy consisted of 55.78% Ni and 44.12% Ti, with the total content of impurities (Co, Cu, 

Cr, Fe, Nb, C, H, O, N) not exceeding 0.04%. 

The dataset included the following input features: material stress σ (MPa), cycle number N 

corresponding to the loading–unloading sequence, and an indicator specifying the loading or 

unloading stage. The output variable was the material strain ε (%) which characterizes the response 

of the NiTi alloy to the applied stress under different loading frequencies f (0.5, 1, 3, and 5 Hz). In 

this study, experimental data from 100 to 250 loading-unloading cycles of the SMA were used. 

The number of data samples corresponding to each loading frequency is presented 

in Table 1. 
 

Table 1 

 

Number of data samples for different loading frequencies 

 

Frequency, Hz 0.5 1 3 5 

Number of samples 3,051 16,006 18,573 14,949 

 

The formation of the training and test datasets was performed using the 

GroupShuffleSplit method from Python. This method provides a random split of the data into 

training and test subsets while preserving the group membership of observations. In this study, 

the group index was represented by the loading cycle number N, which prevents data from the 

same cycle from appearing simultaneously in both subsets. The data were divided into an 

80/20 ratio, with 80% of the records used for training and 20% reserved for independent testing 

to evaluate the model’s generalization capability. 

Based on the prepared subsets, an ensemble model of the Stacking Regressor type [16] was 

constructed. Ensemble learning through stacking combines several base models to enhance the 

predictive system’s generalization ability. Unlike bagging or boosting, stacking is not limited to a 

single model type and allows the combination of algorithms of different nature, forming a multi-

level architecture. The base models included Random Forest [17], Gradient Boosting [18], Extra 

Trees [19], K-Nearest Neighbors (kNN) [20], Support Vector Regressor (SVR) [21], and Multilayer 

Perceptron (MLP) [22]. The last three models were implemented within a Pipeline using 

StandardScaler for feature normalization. The ElasticNet algorithm [23] was used as the meta-

model, combining the properties of Lasso and Ridge regularization. Optimal hyperparameters were 

determined using GridSearchCV with the evaluation metric neg_mean_squared_error. Reliable 

model assessment within loading cycles was ensured by a custom GroupKFoldWithGroups 

wrapper (n_splits = 5), which considers the grouped structure of the data during cross-validation. 

In general form, the prediction of the ensemble Stacking model was defined as a linear 

combination of the predictions of the base models: 
 

𝑦̅ = 𝑏 + ∑ 𝑤𝑗∙

𝑚

𝑗=1

𝑦̅𝑗 , (2) 

 

where 𝑦 ̅ is the final ensemble prediction, 𝑦̅𝑗  is the prediction of the j-th base model, 𝑤𝑗 is the weight 

assigned by the ElasticNet meta-model, b is the bias term, and m is the number of base models. 
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The coefficients 𝑤𝑗 represent the contribution of each base model to the 

overall ensemble prediction. The bias term b is an independent model parameter that 

defines the baseline level of the predicted variable and allows adjustment of the 

model output mean when all input features are zero. The inclusion of this parameter  

ensures a shift of the prediction hyperplane relative to the origin, compensating for 

systematic deviations of the base models and improving the accuracy of the overall 

approximation. 

To evaluate the performance of the ensemble model, classical regression metrics 

were used to characterize the accuracy and consistency of predictions with experimental 

data [24]. The Mean Squared Error (MSE) reflects the average squared difference 

between predicted and actual values. Since it is sensitive to large deviations, this  

metric is particularly effective for assessing models where minimizing significant errors is 

crucial. The Mean Absolute Error (MAE) measures the average absolute difference 

between predicted and actual values, regardless of the error direction. This metric 

provides an interpretable measure of the average prediction error expressed in the 

same units as the target variable. The Coefficient of Determination (R2) indicates the 

proportion of the variance in the target variable that is explained by the model. A value of 

R2 close to 1 signifies a high level of agreement between the predictions and experimental 

data, whereas a low value indicates an insufficient ability of the model to reproduce the 

observed relationships. The Mean Absolute Percentage Error (MAPE) represents the 

average percentage deviation of the prediction from the actual values. It is convenient for 

comparing model performance across different datasets because it expresses errors in 

percentage form and allows accuracy to be interpreted in relative terms. Overall, these 

metrics provided a comprehensive evaluation of the ensemble model’s effectiveness, 

considering both the accuracy of data reproduction and the model’s stability on the 

independent test set. 

To enhance the interpretability of the ensemble model results, the SHapley Additive 

exPlanations (SHAP) method was applied. This approach is based on Shapley game theory and 

provides a quantitative assessment of the contribution of each input feature to the model’s 

prediction [25]. SHAP analysis makes it possible to interpret both the global influence of 

features on the model (the average importance of each feature across all observations) and the 

local contribution of individual variables to a specific prediction. This enables a clear 

explanation of why the model produced a particular output and helps identify the key factors 

that determine the hysteretic behavior of shape memory alloys under repeated cyclic loading 

conditions. 
 

3. RESULTS AND DISCUSSION 
 

For the quantitative analysis of the weights of the base models within the 

Stacking ensemble, an ElasticNet regressor was used as the meta-model. This 

algorithm combines the properties of L1 (Lasso) and L2 (Ridge) regularization. Such an 

approach provides a balance between selecting the most informative models through the 

sparsity effect of the L1 norm and stabilizing their weights through the L2 component, 

which helps prevent overfitting and excessive correlation among the base model 

predictions. During training, a five-fold group cross-validation (GroupKFold) was 

performed with respect to the cycle numbers, ensuring independence between the training 

and validation subsets. 

The hyperparameter tuning process using GridSearchCV identified the 

optimal values of α and l1_ratio, which minimized the mean squared error in 
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cross-validation. The value α = 0.01 resulted in mild regularization, sufficient to 

prevent overfitting without significantly reducing accuracy. This setting is particularly 

important for ensemble models, where base predictors may exhibit partial correlation with 

each other. 

The parameter l₁ ratio ∈ [0, 1] defines the balance between L1 and L2 regularization 

in the overall penalty function. When l₁ ratio = 1, the model uses pure Lasso (L1) 

regularization, which promotes sparsity by setting insignificant coefficients to zero. This 

helps selecting the most influential features or, in the case of an ensemble, the most 

significant base models. When l₁ ratio = 0, the model applies pure Ridge (L2) regularization, 

which does not eliminate coefficients but reduces their amplitudes, stabilizing the model in 

the presence of multicollinearity. The intermediate value l₁ ratio = 0.8 combines the effects 

of both methods: the L1 component performs partial selection of the most relevant models, 

while the L2 component ensures robustness to noise and redundant or correlated base 

predictors. 

The normalized distribution of ElasticNet meta-model weights represents 

the relative contribution of each base algorithm to the ensemble’s final prediction.  

The weights were normalized so that the sum of their absolute values was equal to one, 

allowing for a direct comparison of the influence of different models. Figure 1 illustrates 

the variation in weight structure across four loading frequencies, showing how the 

contribution of individual algorithms evolves with increasing deformation frequency 

in the SMA. 

 

  

 

a)  

 

b)  

  

 

c)  

 

d)  
Figure 1. Normalized weights of the ElasticNet meta-model for the base regressors: 

0.5 Hz (a), 1 Hz (b), 3 (c) Hz, 5 Hz (d)  
At the low loading frequency of 0.5 Hz (Fig. 1 a), the highest weights were assigned 

to the ExtraTrees and Gradient Boosting models, indicating the dominant contribution of 
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tree-based ensembles to the overall prediction. When the frequency increased to 1 Hz (Fig. 1 b), 

the contribution of the MLP model became more significant, gradually gaining a larger share 

of the ensemble. A further increase to 3 Hz (Fig. 1 c) was accompanied by a noticeable 

strengthening of the MLP and kNN models, while the influence of tree-based algorithms 

gradually decreased. At the maximum frequency of 5 Hz (Fig. 1 d), the weights were 

distributed almost uniformly among all base models, and the weight of the SVR dropped 

to a value close to zero. Thus, in all examined frequency regimes, the SVR consistently  

had the smallest impact on the meta-prediction, whereas the leading role was alternately 

played by tree-based ensembles, MLP, or kNN models, depending on the cyclic loading 

frequency. 

The performance of the developed ensemble model was evaluated using 

standard regression metrics, namely the mean squared error (MSE), mean absolute 

error (MAE), coefficient of determination (R²), and mean absolute percentage 

error (MAPE). These indicators were calculated both for the test dataset within the training 

cycle range (100–250) and for independent experimental cycles (251 and 300) that were not 

used during training, validation, or testing. The quantitative evaluation results are 

summarized in Table 1. 
 

Table 1 

 

Prediction errors of the ensemble Stacking model for different loading frequencies and cycles. 

 

Cycle type Frequency (Hz) MSE MAE R2 MAPE 

Test 

0.5 0.0004 0.0163 0.9992 0.0057 

1 0.0004 0.0175 0.9990 0.0075 

3 0.0007 0.0218 0.9976 0.0106 

5 0.0006 0.0218 0.9959 0.0125 

Independent (251) 

0.5 0.0004 0.0167 0.9992 0.0059 

1 0.0003 0.0155 0.9992 0.0068 

3 0.0012 0.0287 0.9970 0.0146 

5 0.0011 0.0274 0.9952 0.0155 

Independent (300) 

0.5 0.0015 0.0339 0.9969 0.0116 

1 0.0006 0.0203 0.9987 0.0078 

3 0.0019 0.0360 0.9957 0.0169 

5 0.0071 0.0622 0.9741 0.0479 

 

For the test data within the training cycle range (100–250), the obtained error 

values were exceptionally low, confirming the high performance of the developed Stacking 

model. The mean squared error (MSE) did not exceed 0.0007, the mean absolute error 

(MAE) was approximately 0.02, and the mean absolute percentage error (MAPE) remained 

below 1.3%. The coefficient of determination (R2 > 0.995) in all cases indicates that 

the ensemble accurately reproduces the functional relationship between stress and strain. 

For the independent verification cycles, a slight but consistent decrease in accuracy was 

observed with increasing loading frequency and cycle number. For the 251st cycle, the 

R2 value remained nearly unchanged (≈ 0.99 for 0.5 – 1 Hz), and MAPE did not exceed 

1.6%. In the 300th cycle, the prediction error increased slightly. At 3 Hz, MAE reached 

0.036 and MAPE was approximately 1.7%, while at 5 Hz a more noticeable deviation was 
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observed (MSE = 0.0071, R2 = 0.974, MAPE ≈ 4.8%). Overall, the results show that the 

ensemble maintains high stability and accuracy across the entire frequency range, with 

errors remaining within acceptable limits even beyond the training cycles. This confirms 

the model’s strong generalization ability and its capability to correctly capture the complex 

nonlinear behavior of SMAs under repeated loading. 

The distribution of the prediction residuals for the test dataset is shown in Figure 2.  

 

  

 

a) 

 

b) 

  

 

c)  

 

d)  
Figure 2. Distribution of prediction residuals of the Stacking model for the test datasets 

at different loading frequencies: 0.5 Hz (a), 1 Hz (b), 3 Hz (c), 5 Hz (d) 

 

In all cases, the residuals were uniformly distributed around the horizontal axis, showing 

no noticeable systematic bias in the predictions of the ElasticNet meta-model. For the 

frequencies of 0.5 and 1 Hz, the point cloud appeared nearly symmetrical, and the residual 

variation range was within ±0.07, confirming the high accuracy and stability of the ensemble. 

At 3 and 5 Hz, a slight increase in the spread of residuals up to ±0.1 was observed; however, 

their distribution remained random without any pronounced autocorrelation. This indicates that 

the model accurately reproduces nonlinear dependencies even under dynamic loading 

conditions and at higher rates of martensitic–austenitic phase transformations. The absence of 

a cone-shaped pattern or displacement of the residual cloud from the horizontal axis confirms 

the constant nature of error variance and the uniform quality of prediction across the entire 

dataset. 

The developed ensemble Stacking model successfully reproduced the hysteretic 

behavior of the SMA during cyclic loading. Based on the input parameters: material  
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stress σ (MPa), cycle number N, corresponding to the loading–unloading process, and the 

loading phase indicator the model predicts the instantaneous strain value ε (%). This enables 

not only the estimation of individual points but also the reconstruction of the complete  

σ–ε, hysteresis loop, which characterizes the phase transformations between martensite and 

austenite. 

Figure 3 presents the reconstructed hysteresis loops for cycles 251 and 300 at a loading 

frequency of 1 Hz.  

 

  

 

a)  

 

b)  
Figure 3. Comparison of experimental and predicted hysteresis loops: 

251st cycle (a), 300th cycle (b) 

 

The reconstructed dependencies showed a high level of agreement between the 

experimental data and the predictions of the Stacking model. For the 251st cycle (Fig. 3a), 

the curves almost completely overlap, indicating high prediction accuracy during 

both loading and unloading phases. The model accurately reproduces the key regions 

of the hysteresis behavior, particularly the characteristic nonlinear response during 

the martensitic and austenitic phase transformations. For the 300th cycle (Fig. 3b), the shape 

of the hysteresis loop is also reproduced with high precision, although small discrepancies 

between the predicted and experimental data can be observed in the form of slight 

deviations. These differences are consistent with the obtained statistical error metrics (Table 

1). Despite these minor variations, the overall loop contour, its width, and slope in the 

transformation regions are accurately captured. Overall, the results obtained demonstrate 

strong consistency between the predicted and experimental hysteresis loops and confirm the 

model’s ability to generalize to unseen cycles. This validates the effectiveness of the 

ensemble approach in describing the nonlinear hysteretic behavior of SMAs. 

To interpret the behavior of the ensemble Stacking model, the SHAP method was 

applied. This technique enables a quantitative assessment of the contribution of each input 

feature to the final prediction. Belonging to the class of XAI methods, SHAP explains the 

results of machine learning models without compromising prediction accuracy. The analysis 

was performed using KernelExplainer, which approximates local feature influences in 

nonlinear models. To reduce computational complexity, the sample was limited to a subset 

of 400 background data points derived from the training set. The evaluation was conducted 

for the features Stress, Cycle, and UpDown. 

The results of the global SHAP analysis are presented in Figure 4, which shows the 

mean absolute SHAP values for all features in the test dataset.  
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a)  

 

b)  

  

 

c)  

 

d)  
Figure 4. Global mean absolute SHAP values for the test datasets at different loading frequencies: 

0.5 Hz (a), 1 Hz (b), 3 Hz (c), 5 Hz (d) 

 

The variable Stress has the strongest influence on the model’s prediction,  

confirming its primary role in determining the strain behavior of the SMA. The large 

SHAP values associated with this feature indicate that even small variations in stress  

have a significant effect on the predicted strain. The second most important factor 

is UpDown, which represents the loading or unloading stage, that is, the direction 

of movement within the hysteresis loop. Its contribution shows that the model 

effectively distinguishes between the different phases of the loading cycle. The influence 

of the Cycle feature is comparatively smaller, although it increases for later cycles, as 

illustrated in Figure 5. 

 

  

 

a)  

 

b)  

  

 

c)  

 

d)  
Figure 5. Global mean absolute SHAP values for the 300th cycle at different loading frequencies: 

0.5 Hz (a), 1 Hz (b), 3 Hz (c), 5 Hz (d) 

 

A local SHAP analysis for an individual sample (the 45th measurement of the 

300th cycle at a loading frequency of 1 Hz) is presented in Figure 6.  
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Figure 6. Local SHAP Waterfall Plot for the 45th measurement 

of the 300th cycle at a loading frequency of 1 Hz. 

 

The largest positive contribution to the predicted value comes from Stress (+0.86), 

confirming the dominant role of mechanical loading in material deformation. The feature 

UpDown = 1, corresponding to the loading phase, exerts a minor negative influence (–0.09), 

slightly reducing the predicted strain during this stage. The variable Cycle = 300 provides a 

small positive contribution (+0.03). 

The model’s initial expected value, E[f(X)] = 2.582, shifts to the final prediction 

f(x)=3.388 under the influence of these factors, which align well with the experimental 

observations. Thus, the local SHAP analysis shows that increasing stress is the primary factor 

driving strain growth, while the loading phase and cycle number act as secondary corrective 

parameters that influence the shape of the hysteresis loop. 

The obtained results indicate that the ensemble Stacking model not only reproduces the 

nonlinear mechanical behavior of the material with high accuracy but also preserves a 

physically interpretable structure of dependencies. The application of SHAP analysis 

quantitatively confirmed the dominant role of stress in shaping the deformation behavior of the 

NiTi alloy and revealed the influence of cyclic effects responsible for the evolution of the 

hysteresis loop during repeated loading.  

The developed ensemble Stacking model represents a component of an information 

technology framework for predicting the hysteretic behavior of SMAs using machine learning 

methods. The proposed framework covers the full data analysis cycle, from the preprocessing 

of experimental measurements to the modeling of complex nonlinear relationships and the 

subsequent interpretation of results using XAI approaches. This integration ensures not only 

high accuracy in reproducing hysteresis loops but also provides a physically grounded 

explanation of each parameter’s contribution, making the model suitable for practical 

applications in assessing the durability and performance of SMAs. 
 

4. CONCLUSIONS 
 

An ensemble Stacking model was developed in this study to predict the hysteretic behavior 

of NiTi shape memory alloys (NiTi-SMA) under cyclic loading at frequenciesof 0.5, 1, 3, and 5 Hz. 

The model showed high accuracy on the test data within the 100–250 cycle range, achieving 

R2 > 0.995, MSE < 0.0007, MAE < 0.02, and MAPE < 1.3%. Validation on cycles 251 and 

300 confirmed its strong generalization capability. The most noticeable decrease in 

prediction accuracy occurred at 5 Hz for the 300th cycle; however,  the results remained 

acceptable (R2 ≈ 0.974). The application of Explainable AI SHAP methods provided an 

interpretable understanding of the contribution of input parameters and confirmed the 

physical consistency of the model’s operation, highlighting the dominant influence of stress 

and the role of loading cycles in shaping the hysteresis loop. Future research will focus on 

advancing the proposed information technology framework for predicting the hysteretic 
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behavior of shape memory alloys by integrating recurrent neural network architectures such 

as Bidirectional LSTM and GRU, which are expected to further enhance prediction 

accuracy. 
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УДК 004.9:006.3 
 

ІНФОРМАЦІЙНА ТЕХНОЛОГІЯ ПРОГНОЗУВАННЯ 

ГІСТЕРЕЗИСНОЇ ПОВЕДІНКИ СПЛАВІВ З ПАМ’ЯТТЮ ФОРМИ 

НА ОСНОВІ АНСАМБЛЕВОЇ STACKING-МОДЕЛІ МАШИННОГО 

НАВЧАННЯ 
 

Дмитро Тимощук; Олег Ясній 
 

Тернопільський національний технічний університет імені Івана Пулюя, 

Тернопіль, Україна 
 

Резюме. Сплави з пам’яттю форми (СПФ) характеризуються нелінійною гістерезисною 

поведінкою на діаграмі деформування (σ–ε), площа петлі якої визначає енергію, розсіяну за цикл. 

Запропоновано ансамблеву Stacking-модель машинного навчання для прогнозування гістерезисної 

поведінки СПФ за умов циклічного навантаження з різними частотами (0,5; 1; 3 та 5 Гц). Для побудови 

моделі використано експериментальні дані 100–250 циклів навантаження. У якості базових алгоритмів 

застосовано Random Forest, Gradient Boosting, Extra Trees, kNN, SVR та MLP. За метамодель вибрано 

ElasticNet, яку налаштовано за допомогою GridSearchCV з GroupKFold-валідацією. Такий підхід 

забезпечив поєднання стабільності ансамблю з адаптивним відбором найінформативніших прогнозів 

базових моделей. Отримані результати показали високу точність відтворення залежності напруження-

деформація. Для тестових даних R2 > 0,995, MSE < 0,0007, MAE < 0,02, MAPE < 1,3 %. Перевірка 

на незалежних циклах 251 та 300 підтвердила узагальнювальну здатність моделі, зокрема R² > 0,974, 

MSE < 0,007, MAE < 0,06, MAPE < 4.8 %. Інтерпретованість моделі забезпечено методом SHAP, який 

кількісно визначає внесок кожної вхідної ознаки у формування прогнозу. Встановлено, що Stress є головним 

чинником формування прогнозу, тоді як ознака UpDown визначає фазу навантаження-розвантаження, а 

Cycle відображає накопичення циклічних ефектів. Розроблена ансамблева Stacking-модель є складовою 

інформаційної технології прогнозування гістерезисної поведінки сплавів з пам’яттю форми із 

застосуванням методів машинного навчання. Запропонований підхід забезпечує не лише високу точність 

прогнозування, але й фізично обґрунтовану інтерпретованість результатів. 

Ключові слова: SMA, гістерезис, машинне навчання, ансамблева модель, Stacking Regressor, 

ElasticNet, Explainable AI (XAI), SHAP-аналіз, прогнозування деформації, циклічне навантаження. 
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