Empreu aquest identificador per citar o enllaçar aquest ítem: http://elartu.tntu.edu.ua/handle/lib/51449
Registre complet de metadades
Camp DCValorLengua/Idioma
dc.contributor.advisorЗолотий, Роман Захарійович-
dc.contributor.advisorZolotyi, Roman-
dc.contributor.authorMac-Gatus, Emmanuel Yaw-
dc.date.accessioned2026-01-28T21:44:14Z-
dc.date.available2026-01-28T21:44:14Z-
dc.date.issued2026-01-26-
dc.date.submitted2026-01-12-
dc.identifier.citationMac-Gatus E. Y. Parallel Processing for Real – Time Stream Analytics : Bachelor’s qualification thesis in specialty 122 Computer Science / supervisor R. Zolotyi. — Ternopil : Ternopil Ivan Puluj National Technical University, 2026. — 81 p.uk_UA
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/51449-
dc.descriptionРоботу виконано на кафедрі комп'ютерних наук Тернопільського національного технічного університету імені Івана Пулюя. Захист відбудеться 26.01.2026р. на засіданні екзаменаційної комісії №32 у Тернопільському національному технічному університеті імені Івана Пулюяuk_UA
dc.description.abstractThe qualification work is devoted to the research and implementation of parallel data processing methods for real-time analytics systems. The first chapter examines the theoretical foundations of Stream Processing and provides a comparative analysis of modern frameworks such as Apache Kafka, Flink, and Spark Streaming. The second chapter focuses on designing a system architecture that utilizes parallelism principles to ensure low latency and high throughput when processing large volumes of information. The third chapter presents the practical implementation of a system prototype, conducts experimental studies on scalability, and evaluates the impact of the number of parallel nodes on query processing speed. The work demonstrates the advantages of distributed computing for instant event analysis tasks. Separate sub-sections include an analysis of labor safety and an economic evaluation of the developmentuk_UA
dc.description.tableofcontentsINTRODUCTION 1 THEORETICAL ANALYSIS OF STREAM PROCESSING TECHNOLOGIES 1.1 Concepts of real-time data processing 1.2 Review of distributed computing frameworks 1.3 Challenges in processing high-velocity data streams 2 ARCHITECTURE AND DESIGN OF PARALLEL PROCESSING SYSTEM 2.1 System requirements and functional components 2.2 Modeling parallel data flows and synchronization 2.3 Selection of tools for stream analytics implementation 3 IMPLEMENTATION AND PERFORMANCE EVALUATION 3.1 Development of the parallel processing prototype 3.2 Testing scalability and latency benchmarks 3.3 Analysis of experimental results 4 ECONOMIC JUSTIFICATION OF THE PROPOSED SYSTEM 5 OCCUPATIONAL HEALTH AND SAFETY IN EMERGENCY SITUATIONS CONCLUSIONS REFERENCESuk_UA
dc.format.extent81-
dc.language.isoukuk_UA
dc.publisherТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Українаuk_UA
dc.subject122uk_UA
dc.subjectкомп'ютерні наукиuk_UA
dc.subjectаналітикаuk_UA
dc.subjectбакалаврська роботаuk_UA
dc.subjectвеликі даніuk_UA
dc.subjectпаралельна обробкаuk_UA
dc.subjectреальний часuk_UA
dc.subjectпотоки данихuk_UA
dc.subjectapache flinkuk_UA
dc.subjectapache kafkauk_UA
dc.subjectbig datauk_UA
dc.subjectparallel computinguk_UA
dc.subjectreal-time analyticsuk_UA
dc.subjectstream processinguk_UA
dc.titleParallel Processing for Real – Time Stream Analyticsuk_UA
dc.typeBachelor Thesisuk_UA
dc.rights.holder© Mac-Gatus Emmanuel Yaw, 2026uk_UA
dc.contributor.committeeMemberГолотенко, Олександр Сергійович-
dc.contributor.committeeMemberHolotenko, Oleksandr-
dc.coverage.placenameТернопільuk_UA
dc.subject.udc004.415.5:004.62uk_UA
dc.relation.references1. The Internet of Things: A survey / M. G. J. van den Brand et al. IEEE Communications Surveys & Tutorials. 2013. Vol. 15, no. 1. P. 164–181. URL: https://www.sciencedirect.com/science/article/pii/S1389128610001568 (дата звернення: 25.01.2026).uk_UA
dc.relation.references2. Turkington B. Real-time Stream Analytics. 1st ed. Birmingham, UK : Packt Publishing, 2016. 320 p. URL: https://www.packtpub.com/product/real-time-stream-analytics/9781785282643.uk_UA
dc.relation.references3. Sakr S., Gaber A. Large Scale and Big Data: Processing and Management. CRC Press, 2014. 614 p. URL: https://www.routledge.com/Large-Scale-and-Big-Data-Processing-and-Management/Sakr-Gaber/p/book/9781466581096.uk_UA
dc.relation.references4. StreamCloud: An Elastic and Scalable Data Streaming System / V. Gulisano et al. IEEE Transactions on Parallel and Distributed Systems. 2012. Vol. 23, no. 12. P. 2351–2365. URL: https://oa.upm.es/16848/1/INVE_MEM_2012_137816.pdf.uk_UA
dc.relation.references5. The Dataflow Model: A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing / T. Akidau et al. Proceedings of the VLDB Endowment. 2015. Vol. 8, no. 12. P. 1792–1803. URL: https://www.vldb.org/pvldb/vol8/p1792-akidau.pdf.uk_UA
dc.relation.references6. Hirzel M. et al. A Catalog of Stream Processing Patterns. ACM Computing Surveys. 2014. Vol. 46, no. 4. P. 1–45. URL: https://dl.acm.org/doi/10.1145/2543581.uk_UA
dc.relation.references7. Chen C. L. P., Zhang C. Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences. 2014. Vol. 275. P. 314–347. URL: https://www.sciencedirect.com/science/article/pii/S002002551400374X.uk_UA
dc.relation.references8. Apache Flink: Stream and Batch Processing in a Single Engine / P. Carbone et al. IEEE Data Engineering Bulletin. 2015. Vol. 38, no. 4. P. 28–38. URL: https://ieeexplore.ieee.org/document/7343867.uk_UA
dc.relation.references9. Zaharia M. et al. Discretized Streams: Fault-Tolerant Streaming Computation at Scale. Proc. ACM SOSP. 2013. P. 423–438. URL: https://dl.acm.org/doi/10.1145/2517349.2522737.uk_UA
dc.relation.references10. The Design of the Borealis Stream Processing Engine / D. J. Abadi et al. Proc. CIDR. 2005. URL: http://cidrdb.org/cidr2005/papers/3_Abadi.pdf.uk_UA
dc.relation.references11. Kreps J., Narkhede N., Rao J. Kafka: A Distributed Messaging System for Log Processing. Proc. NetDB. 2011. URL: https://www.usenix.org/system/files/conference/netdb11/netdb11-final8.pdf.uk_UA
dc.relation.references12. Trill: A High-Throughput Incremental Query Engine for Diverse Analytics / S. Chandramouli et al. Proceedings of the VLDB Endowment. 2014. Vol. 8, no. 4. P. 401–412. URL: https://www.vldb.org/pvldb/vol8/p401-chandramouli.pdf.uk_UA
dc.relation.references13. The Power of Both Worlds: A Hybrid Approach to Scalable Real-Time Stream Processing / M. A. U. Nasir et al. Proc. IEEE ICDE. 2015. URL: https://ieeexplore.ieee.org/document/7113126.uk_UA
dc.relation.references14. Lohachab K. S., Karambir B. A Review of Real-Time Stream Analytics Frameworks. Journal of Big Data. 2019. Vol. 6, no. 1. URL: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0216-3.uk_UA
dc.relation.references15. State Management in Apache Flink / P. Carbone et al. Proc. ACM SIGMOD. 2017. URL: https://dl.acm.org/doi/10.1145/3035918.3064035.uk_UA
dc.relation.references16. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark / M. Armbrust et al. Proc. ACM SIGMOD. 2018. URL: https://dl.acm.org/doi/10.1145/3183713.3190664.uk_UA
dc.relation.references17. MillWheel: Fault-Tolerant Stream Processing at Scale / T. Akidau et al. Proceedings of the VLDB Endowment. 2013. Vol. 6, no. 11. URL: https://www.vldb.org/pvldb/vol6/p1128-akidau.pdf.uk_UA
dc.relation.references18. S-Store: Streaming Meets Transaction Processing / J. Meehan et al. Proceedings of the VLDB Endowment. 2015. Vol. 8, no. 13. P. 2134–2145. URL: https://www.vldb.org/pvldb/vol8/p2134-meehan.pdf.uk_UA
dc.relation.references19. Gedik B. et al. SPADE: The System S Declarative Stream Processing Engine. Proc. ACM SIGMOD. 2008. URL: https://dl.acm.org/doi/10.1145/1376616.1376671.uk_UA
dc.relation.references20. Edge Computing: Vision and Challenges / W. Shi et al. IEEE Internet of Things Journal. 2016. Vol. 3, no. 5. P. 637–646. URL: https://ieeexplore.ieee.org/document/7462615.uk_UA
dc.relation.references21. George G. et al. Parallel processing using GPU for real-time data streaming. Proc. IEEE ICSPC. 2017. URL: https://ieeexplore.ieee.org/document/8327318.uk_UA
dc.relation.references22. Y. Leshchyshyn, L. Scherbak, O. Nazarevych, V. Gotovych, P. Tymkiv and G. Shymchuk, «Multicomponent Model of the Heart Rate Variability Change-point,» 2019 IEEE XVth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH), Polyana, Ukraine, 2019, pp. 110-113, doi: 10.1109/MEMSTECH.2019.8817379uk_UA
dc.relation.references23. Lytvynenko, S. Lupenko, O. Nazarevych, G. Shymchuk and V. Hotovych, «Mathematical model of gas consumption process in the form of cyclic random process,» 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies (CSIT), LVIV, Ukraine, 2021, pp. 232-235, doi: 10.1109/CSIT52700.2021.9648621uk_UA
dc.relation.references24. Bodnarchuk, I., Kunanets, N., Martsenko, S., Matsiuk, O., Matsiuk, A., Tkachuk, R., Shymchuk, H.: Information system for visual analyzer disease diagnostics. CEUR Workshop Proceedings 2488, pp. 43-56 (2019).uk_UA
dc.relation.references25. Шимчук Г. В. Дослідження методів захисту відомих хмарних платформ : кваліфікаційна робота освітнього рівня „Магістр“ „125 – Кібербезпека“ / Г. В. Шимчук. – Тернопіль : ТНТУ, 2022. – 74 с.uk_UA
dc.relation.references26. Методичні вказівки розроблені у відповідності з навчальним планом для студентів освітнього рівня бакалавр спеціальності 126 «Інформаційні системи та технології» / Уклад.: О. Б. Назаревич, Г. В. Шимчук, Н. М. Шведа. – Тернопіль : ТНТУ 2020. – 22 c.uk_UA
dc.relation.references27. V. Kozlovskyi, Y. Balanyuk, H. Martyniuk, O. Nazarevych, L. Scherbak and G. Shymchuk, «Information Technology for Estimating City Gas Consumption During the Year,» 2022 International Conference on Smart Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 2022, pp. 1-4, doi: 10.1109/SIST54437.2022.9945786.uk_UA
dc.contributor.affiliationТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра комп’ютерних наук, м. Тернопіль, Українаuk_UA
dc.coverage.countryUAuk_UA
dc.identifier.citation2015Mac-Gatus E. Y. Parallel Processing for Real – Time Stream Analytics: Bachelor’s qualification thesis in specialty 122 Computer Science / supervisor R. Zolotyi. Ternopil: Ternopil Ivan Puluj National Technical University, 2026. 81 p.uk_UA
Apareix a les col·leccions:122 — Компʼютерні науки (бакалаври)

Arxius per aquest ítem:
Arxiu Descripció MidaFormat 
KRB_2026_ISN-43_Mac-Gatus_EY.pdfДипломна робота3,27 MBAdobe PDFVeure/Obrir


Els ítems de DSpace es troben protegits per copyright, amb tots els drets reservats, sempre i quan no s’indiqui el contrari.

Eines d'Administrador