Ministry of Education and Science of Ukraine
Ternopil Ivan Puluj National Technical University

Faculty of Computer Information System and Software Engineering

(full name of faculty)
Department of Computer Science

(full name of department)

QUALIFYING PAPER

For the degree of

Bachelor

(degree name)
topic: Parallel Processing for Real — Time Stream Analytics

Submitted by: student IV course, group

ICH-43

specialty 122 Computer science

(urudp i Ha3Ba creniabHOCTI)

Emmanuel Yaw

Mac-Gatus

(signature) (surname and initials)
Supervisor Roman Zolotyi

(signature) (surname and initials)
Standards verified by

(signature) (surname and initials)
Head of Department Bodnarchuk 1.0O.

(signature) (surname and initials)
Reviewer

(signature) (surname and initials)

Ternopil

2026

Ministry of Education and Science of Ukraine
Ternopil Ivan Puluj National Technical University

Faculty Faculty of Computer Information System and Software Engineering

(full name of faculty)
Department Department of Computer Science

(full name of department)

APPROVED BY
Head of Department
Bodnarchuk 1.O.

(signature) (surname and initials)

« » 20

ASSIGNMENT
for QUALIFYING PAPER

for the degree of Bachelor

(degree name)

specialty 122 Computer science

(code and name of the specialty)
student Emmanuel Yaw Mac-Gatus

(surname, name, patronymic)

1. Paper topic Parallel Processing for Real — Time Stream Analytics

Paper supervisor Zolotyi R.Z., PhD

(surname, name, patronymic, scientific degree, academic rank)
Approved by university order as of « » Ne
2. Student’s paper submission deadline

3. Initial data for the paper Literature sources about architecture, principles of operation and

development of information systems.

4. Paper contents (list of issues to be developed)

5. List of graphic material (with exact number of required drawings, slides)

6. Advisors of paper chapters

Signature, date

Chapter Advisor’s surname, initials and position | assignment was assignment
given by was received by
Life safety,
basics of labor
protection

7. Date of receiving the assignment 20.01.2025

TIME SCHEDULE

LN Paper stages Paper stages deadlines Notes

1 | Analysis of the task for qualifying work. Selection Completed
and work with literary sources.

2 | Writing chapter 1 Completed
3 | Writing chapter 2 Completed
4 | Writing chapter 3 Completed
5 | Writing chapter 4 Completed
6 | Standartization control Completed
7 | Plagiarism check Completed
8 | Preliminary defense of qualifying paper Completed
9 | Defense of qualifying paper

Student

Emmanuel Yaw Mac-Gatus

(signature)

Paper supervisor

(surname and initials)

Zolotyi R.Z.

(signature)

(surname and initials)

ANNOTATION

Parallel Processing for Real — Time Stream Analytics // Diploma thesis Bachelor
degree / Emmanuel Yaw Mac-Gatus // Ternopil’ Ivan Puluj National Technical
University, Faculty of Computer Information System and Software Engineering,
Department of Computer Science // Ternopil', 2026 // P. , Fig.— , Tables—

Annexes — , References — .

Keywords: Real-time stream analytics, parallel processing, distributed

systems, data streams, low-latency computing.

Parallel processing helps overcome limitations by distributing data and
computations across multiple processing units, allowing everything to run
simultaneously. This approach enables stream analytics systems to handle higher
volumes of data, respond more quickly, and scale more effectively. As a result,
they are ideally suited for continuous, unbounded data streams. This paper offers a
thorough review of methods for parallel processing in real-time stream analytics,
exploring key architectural designs, stream-processing models, and parallelization
strategies that improve the efficiency and scalability of live data analysis.

This paper also explores the everyday challenges faced when implementing
parallel stream processing. These include coordinating tasks, maintaining
consistent data states, tolerating faults, balancing workloads, and managing data
skew. If not properly handled, these issues can seriously affect how well the
system performs and how reliably it operates. By examining current solutions and
emerging trends in stream processing frameworks and hardware acceleration, the
study highlights the growing importance of parallel processing for real-time data
analysis. The results show that effective parallelization is crucial for supporting
modern, data-driven applications across various fields, including smart cities,

finance, healthcare, and industrial automation.

CONTENT

INTRODUCTION ..cuuannaaooenenssuvsssvrsssesssassssssssssssssssssssss 5
1. ANALYSIS OF THE SUBJECT AREA AND STATEMENT OF THE TASK 7
1. 1. Background and MOtIVATIONueeeeeeosssunesicossssansiosssssasssssssssassssssssssssssssssssssssss 7
1.2. Background and related Work.........coeueeeeeoossuneeicssssnneicsssssaneecssssssssessssssnnns 16
2. SYSTEM ARCHITECTURE FOR REAL-TIME STREAM ANALYTICS.... 22
2. 1. ArchiteCtural OVErviewueeeueeecseeessseessseicsseecssnessecsssessssessssssssssssssssssssesssns 22
2.2. Parallel processing techniques for real-time stream analyticsoeeee... 28
3. ALGORITHMS AND FRAMEWORKS FOR PARALLEL STREAM

PROCESSING...uuuunueinnneiisneinnensssnicssecssiessasens 35
3.1. Stream ProcesSing AIGOVITIMSeueeeeeoseneeriossssnericossssnsrssssssnsssssssssssssssssnns 35
3.2. Challenges and limitations of parallel stream analyticseeeeeesereeeecssennns 41
3.3. Statistical analysis of lar@e dAt@ SELSuuueeeereuueeriersssvereissssssnnecssssnssscsssanns 48
3.4. Results of machine learning MOdels..........eeeeeeeeeevssneenecssssnnnscssssnnsscsssnnns 54
3.5. Discussion and fUttr@ trENAScuueeeereesssvnsieossssssnrecsssssnssscssssasssssssssssssessssne 59
4 SAFETY OF LIFE, BASIC LABOR PROTECTION...........ueesuenesneneans 65
4.1. Labor protection requirements when working with electrical equipment.... 65
4.2. Safety requirements dUring WOTKccovevveericsssssansicssssssssecssssassessssssssssssssssnsns 69
4.3. Safety requirements after completion of repair and maintenance of electrical
CQUIPIMICHL..cuuuvveeeiesssssssecsssssssssssssssssassnsss 71
CONCLUSIONS......uuuuonuuvnnuinsueissreressisssns 73

REFERNCESuuuoouuenneennnenneennnnenssnessssessssesssssessssssssssssssessssesssassssssssssssssssssssasess 78

INTRODUCTION

The rapid growth of data-generating technologies has changed how
information is created and used in many fields. Devices such as those in the
Internet of Things, social media platforms, financial systems, and sensor networks
constantly generate large volumes of real-time data [1]. To extract meaningful
insights, immediate processing is essential. Delays, even brief ones, diminish
value—especially when monitoring for fraud, ensuring smooth traffic flow, or
maintaining system reliability. This is where challenges arise: traditional methods
weren’t built for this. They work through batch jobs, handling tasks sequentially,
which made sense years ago but falls apart when you’re drowning in data that
demands instant analysis [2].

Parallel processing helps overcome limitations by distributing data and
computations across multiple processing units, allowing everything to run
simultaneously. This approach enables stream analytics systems to handle higher
volumes of data, respond more quickly, and scale more effectively. As a result,
they are ideally suited for continuous, unbounded data streams [3]. This paper
offers a thorough review of methods for parallel processing in real-time stream
analytics, exploring key architectural designs, stream-processing models, and
parallelization strategies that improve the efficiency and scalability of live data
analysis [4].

This paper also explores the everyday challenges faced when implementing
parallel stream processing. These include coordinating tasks, maintaining
consistent data states, tolerating faults, balancing workloads, and managing data
skew. If not properly handled, these issues can seriously affect how well the
system performs and how reliably it operates [5]. By examining current solutions
and emerging trends in stream processing frameworks and hardware acceleration,
the study highlights the growing importance of parallel processing for real-time

data analysis. The results show that effective parallelization is crucial for

6

supporting modern, data-driven applications across various fields, including smart

cities, finance, healthcare, and industrial automation [6].

1. ANALYSIS OF THE SUBJECT AREA AND STATEMENT OF THE
TASK

1.1. Background and Motivation

The continuous progress in digital technologies has profoundly changed how
we create, share, and look at data. In the past, data was mainly gathered in separate
groups, stored in databases, and handled based on fixed plans. These datasets were
typically finite, systematically organized, and comparatively small in volume. In
contrast, contemporary systems frequently produce continuous data streams,
exemplifying an unceasing flow of information generated over time. A data stream
1s a real-time, constant flow of data points that arrive in sequence and often require
immediate processing or rigorous temporal management.

These ongoing data streams come from many different sources. You might
find sensor networks monitoring the environment or industrial processes, wearable
and smart devices, Internet of Things (IoT) platforms, online transaction and
payment systems, web server and application logs, or social media sites. The data
from these sources usually has three main traits: it comes in quickly, it’s large in
volume, and it keeps coming without stopping. "High velocity" means data is
generated and sent very fast. "Large volume" refers to the enormous, often
limitless amount of data. "Continuous arrival" means the data flow has no clear
end. Because of these traits, storing all incoming data before analyzing it is often
not possible, so traditional batch processing methods don’t work well here.

To tackle these issues, the concept of real-time stream analytics has
emerged. This approach involves analyzing, transforming, and deriving insights
from streaming data as it arrives, with minimal delay between data arrival and the
resulting insights. Unlike batch analytics, which looks at past data, real-time
analytics focuses on immediate response. This is crucial in situations where data

loses its value quickly. For example, in financial systems, real-time analytics helps

8

spot fraudulent transactions early; in intelligent transportation, it supports live
traffic flow and congestion control; in stock markets, it enables quick trend
detection; and in healthcare, it allows continuous monitoring of patients’ vital
signs. In these cases, delays can lead to financial losses, lower system efficiency,
or even endanger human safety.

Despite its advantages, real-time stream analytics introduces significant
computational complexity. As data streams grow in speed and scale, sequential
processing models, where data items are processed one after another on a single
processing unit, become increasingly inefficient. Such models struggle to meet
strict latency and throughput requirements, leading to processing backlogs and
delayed responses. This limitation becomes more severe as modern applications
demand real-time analysis of millions of events per second.

To address these challenges, parallel processing has become a key technique
in stream analytics systems. Parallel processing is a computational approach in
which multiple processing units execute tasks simultaneously to solve problems
more efficiently. In stream analytics, it involves splitting incoming data streams
and analytical tasks across multiple processors, cores, or distributed machines. By
enabling concurrent execution, parallel processing greatly enhances throughput,
lowers processing latency, and improves system scalability.

As a result, it plays a critical role in meeting the performance demands of
modern real-time analytics applications.

As more industries rely on making quick, real-time decisions, it's essential to
explore how parallel processing can help analyze data streams effectively.
Understanding how to use parallelism effectively, along with the challenges it
entails, is key to building real-time data systems that are efficient, reliable, and

scalable.

CONTINUOUS DATA STREAM: DEFINITION & FLOW

DEFINITION
1. Unending sequence of data
data packets. . .
2. Real-rime generation. ™ < Y Stream e
PROCESSING \ processing STORAGE APPLICATIONS &\
. INGESTION ing
3.Nostartorend; always | oarasources y(TERTON)3l & aN0TICS | “Engines, (e, me M| STOUCE) visuarzanions|
always active. Qiarma.ﬁ:d Kinesis) Engines ML Models Dsta terkity [DaMoads, AlMIL Ajps)

4. Potentitaly infinite size.
5. Often temporal & ordered.

FLOW

Endless, real-riime data journey from source to insight.

Figure 1.1 - Definition and Flow of Continuous Data Streams

Real-Time Stream Analytics Overview

Building on the previous discussion, real-time stream analytics marks a shift
in how data is processed and analyzed in modern systems. Unlike batch analytics,
which collects data over a set period for later processing, stream analytics
processes data as it arrives. This approach enables systems to produce insights
continuously, rather than waiting for the entire dataset.

The primary goal of real-time stream analytics is to facilitate rapid decision-
making. Because data can quickly lose its relevance, delayed analysis often proves
ineffective. Consequently, stream analytics systems are designed to process events
rapidly, typically delivering results within milliseconds or seconds. This
distinguishes stream analytics from traditional data processing by prioritizing

speed, responsiveness, and system efficiency.

10

ROLE OF PARALLEL PROCESSING IN REDUCING LATENCY

SERIAL PROCESSING (HIGH LATENCY)

Task T

r ~
= ‘ Processor1 || Processorzl Processor 3

| Processor 4

L

TOTALTIME=T1+T2 + T2 T3 F4 (LONG)

PARALLEL PROCESSING (LOW LATENCY)

Task T (Divided)

r ‘ Processor 1 | Processor 3 LProcessora LProcessoM i
3 . l —r — — J e .-:

Significance
Reduction
in Latency

TOTAL TIME = MAX(T1, T1, T3 F4) (SHORT)

Processing data concruently for faster results.

Figure 1.2 — Role of Parallel Processing in Reducing Latency

Real-time stream analytics systems have some key features. They keep
processing incoming data nonstop, so they need to run continuously. Their ability
to handle data quickly is essential because even minor delays can affect
performance and decision accuracy. These systems also often track context across
multiple events, which helps spot patterns, trends, or anomalies. Scalability is
essential too, since data volumes can suddenly grow.

These features really challenge computer resources and how systems are

built. Just using one machine and processing tasks one after another usually isn't

11

enough. That's why many modern stream analytics tools are moving toward

parallel and distributed computing models, helping them run faster and scale more

easily.
COMPARISON OF BATCH ANALYTICS AND STREAM ANALYTICS
BATCH ANALYTICS STREAM ANALYTICS
(TRADITIONAL) \ (REAL-TIME)
~ Live Data Sources
P &2 (Sensors, Feeds)
. 5 Stream Processing i
e (Flink, ‘
| 2 yAN : (Spark Streaming)
B:ta::'i';;iasé ;— i ‘
. Stream Ingegl!on Real-tive
. . (Kafka, Kinesis) = Alerts |
Batch Batch Processing Analytics/ML Dashboards |
Processing (e.g, MapReduce, SQL)

Bl Dashboards |
(After Hours/Daily) |

|
|
Data Ingestion = Processing = Insight - DECISION |

b
L

HIGH LATENCY (Hours/Days)
HISTORICAL DATA

Time-Series DB / Caches > } I
Automated Actions

Data Ingestion - Processing - Insight - DECISION |

b

A
LOW LATENCY (Millsendiadts/Seconds)

LIVE DITA

From periodic reports to instantatious insights.

Figure 1.3 - Comparison of Batch Analytics and Stream Analytics

Role of Parallel Processing

To meet the performance demands of real-time stream analytics, parallel

processing plays a central and enabling role. Rather than executing operations

12

sequentially, parallel processing allows multiple computations to run concurrently
by distributing workloads across multiple processing units. In streaming
environments, this approach enables systems to handle large volumes of incoming

events without sacrificing responsiveness.

KEY CHARACTERISTICS OF
REAL-TIME STREAM ANALYTICS
e,
Y N
CONTINUOUS DATA INGESTION
Always-on, from diverse sources
(e.g. sensors, social media). o
—® - —
DVANCED ANALYTICS LOW-LATENCY
[Machine Learning, PROCESSING
Anoamly Detection . for immediate insights_..‘l
ADVANCED ANALYTICS L \ IMMEDATE INSIGHTS
Resilent to failures, & ACTIONS
no data loss immediate insights.
REAL-TIME
FAULT TOLERANCE Real-time alerting,
& RELIABITY dashboards, daslboads,
Resilent no data loss @} automated responses
)
SCALABILITY & ELASTICITY
Handle varing data volumes
dynamicly

Processing data in motion for instant intelligence and responsive systems

Figure 1.4 - Key Characteristics of Real-Time Stream Analytics

In real-time stream analytics, parallelism can be implemented at multiple
levels of the system architecture. A prevalent method is data-level parallelism, in

which incoming data streams are partitioned for independent processing. This

13

facilitates the concurrent analysis of multiple events, thereby substantially
enhancing throughput. Additionally, task-level parallelism involves executing
different analytical operations or processing stages simultaneously. Pipeline
parallelism extends this concept by enabling data to traverse a series of processing
stages that operate concurrently, thereby optimizing overall system efficiency.

By leveraging these forms of parallelism, stream processing systems can
scale horizontally by adding more processing resources as data rates increase. This
flexibility allows systems to adapt dynamically to changing workloads while
maintaining consistent performance across varying conditions. As a result, parallel
processing is not merely an optimization technique but a fundamental requirement

for achieving real-time performance in modern stream analytics systems.

LEVELS OF PARALELISM IN STREAM

PROCESSING SYSTEMS
1. TASK-LEVEL 2. DATA-LEVEL 3. OPERATOR-LEVEL
PARALELISM PARALELISM PARALELISM
®@O® ®OO @0 600 66 ource
COE mmmp OO 6 LJ ©® :
Processing -r
@@~®® i Kii x [Filterl—[loinHSink]
@e® ®@O® ®® 0@ OO
Different stages run Same task, Independent operators
concruently partined data execute in paralel

Achieving high throuhput & low latency through
conncurent execution.

Figure 1.5 - Levels of Parallelism in Stream Processing Systems

14

Challenges in Parallel Stream Processing

While running tasks in parallel can significantly boost performance, it also
introduces tricky technical challenges that require careful attention. One major
issue is handling shared state, since many stream analytics apps rely on it across
different tasks. Keeping everything consistent and correct can be quite challenging.
If the state isn’t managed properly or is poorly designed, it can lead to wrong
results or even make the system unstable.

Synchronization overhead is a significant concern because coordinating
parallel tasks often involves synchronization mechanisms that, if not optimized,
can decrease performance gains. Too much synchronization can cause delays that
negate the advantages of parallel execution. Moreover, data skew—where some
data partitions carry much more workload than others—can create load imbalance
among processing units. This imbalance hampers overall system efficiency and
restricts scalability.

Fault tolerance is crucial in systems that handle multiple streams of data
simultaneously. In big-scale setups, things like hardware breaking down, network
issues, and software bugs happen more often than you'd like. That's why these
systems need to bounce back from problems quickly, ensuring no data is lost and
everything keeps running smoothly. Finding ways to make these systems both
highly efficient and really reliable is an ongoing and exciting area of research.

Objectives and Scope of the Paper

The main goal of this paper is to explore and explain how parallel processing
techniques are used in real-time stream analytics systems. We want to improve
understanding of how parallelism enables the quick, scalable processing of
continuous data streams. Specifically, this paper aims to:

1. Describe the basic ideas behind analyzing live data streams and
handling multiple tasks at the same time.

2. Describe how systems are designed to handle tasks by breaking them

into smaller parts and working on them simultaneously across multiple machines.

COMMON CHALLENGES IN
PARALEL STREAM PROCESSING

@

&

\

ET’ 2 M
b

N

1. DATA CONSISTENCY

& ORDERING
1 \’ 3 X
3
X
W ?
21—
X

Out-o-order arrival, ensuring
correct results

State management
across parallel tasks

J

(a B

2. FAULT TOLERANCE &
RECOVERY

Node faliures,

ﬁ seamless without
R dataloss

Maintaing processing statg

_ J

3.

e

_

3. SCALABILITY &
RESOURCE
MANAGEMENT

T g P o G o

Processing Cluster

[~

Dynamic scaling with
varying data load

O,

Efficient resource
allocation/decallation

~

J

Tacking complexity to build robust and efficient real-time systems.

Figure 1.6 - Common Challenges in Parallel Stream Processing

modern stream analytics platforms.

4,

in processing data with parallel streams.

5.

Explore new trends and future research paths in the field.

15

Examine the models and techniques used for parallel processing in

Identify the main challenges, limitations, and compromises involved

This paper primarily explores ideas, system designs, and processing methods

rather than delving into the nitty-gritty details of implementation. This way, the

16

discussion can be relevant and applicable across a variety of platforms and
applications.

Organization of the Paper

The remainder of this paper is organized to provide a logical and progressive
exploration of the topic. Section II reviews foundational concepts and related work
in real-time stream analytics and parallel processing. Section III discusses system
architectures for real-time stream analytics. Section IV examines parallel
processing models and techniques in detail. Section V explores algorithms and
frameworks commonly used in parallel stream processing systems. Section VI
discusses key challenges and limitations. Section VII presents discussion and

future research trends, and Section VIII concludes the paper.

1.2. Background and related work

Fundamentals of Stream Analytics

Stream analytics is a data processing paradigm that focuses on the real-time
or near-real-time analysis of continuously generated data. Unlike traditional data
analytics systems that operate on fixed, stored datasets, stream analytics systems
are designed to process data that arrives constantly and may have no predefined
end. This unbounded nature of streaming data requires systems to analyze
information as it flows through the system rather than waiting for complete
datasets to be collected.

At its core, the primary objective of stream analytics is to extract meaningful
insights, patterns, or anomalies from data as soon as it is generated. These insights
may include detecting abnormal behavior, identifying trends, triggering alerts, or
supporting automated decision-making. Because streaming data is often time-
sensitive, its usefulness can diminish rapidly if analysis is delayed. As a result,

stream analytics emphasizes immediacy, responsiveness, and efficiency.

17

Streaming data is commonly described using the well-known “three V’s”:
velocity, volume, and variety. Velocity refers to the speed at which data is
generated and transmitted, often at very high rates. Volume refers to the potentially
massive, continuously growing amount of data produced over time. Variety
indicates the heterogeneous nature of streaming data, which may include
structured, semi-structured, and unstructured formats originating from diverse
sources. Together, these characteristics distinguish stream analytics from
traditional data processing approaches and introduce unique computational
challenges.

In real-time stream analytics, data is typically processed either event-by-
event or in small batches. This incremental processing model allows applications
to respond quickly to changes in the data stream. As a result, stream analytics is
well-suited for time-critical domains such as financial trading systems,
cybersecurity monitoring, industrial automation, smart grids, and intelligent
transportation systems. In these environments, the ability to analyze and act on
data in real time can provide significant operational and strategic advantages.

Stream Processing Models

To enable real-time analysis of streaming data, different processing
approaches have been developed and are commonly used in practice. These
approaches dictate how incoming data is grouped, handled, and processed within a
system. The two most popular methods are processing data one event at a time and
processing it in small batches.

Event-at-a-time processing, also called true streaming, means handling each
new event as it arrives. This approach offers very low latency, making it ideal for
tasks that require quick responses, such as fraud detection, security breaches, or
real-time alerts. But processing one event at a time can also create extra work,
especially when it comes to tracking data or managing multiple tasks
simultaneously. Updating stored information and syncing everything can slow

things down if not done carefully.

18

Micro-batch processing groups incoming events into small batches that are
processed together over short time frames. This approach reduces workload by
spreading computation across multiple events, boosting overall speed. Although it
introduces a slight delay compared to processing each event alone, it still delivers
results fast enough for many uses. Plus, it simplifies error handling and state
management, which is why many modern stream processing systems favor this
approach.

Both processing methods really benefit from parallel techniques. Splitting
data or tasks across multiple processing units enables systems to handle high input
volumes without excessive delay. Deciding whether to process one event at a time
or in small batches usually depends on the application's needs, especially when
balancing speed, efficiency, and system complexity.

Overview of Parallel Processing Concepts

Parallel processing is a fundamental computing paradigm in which multiple
processing elements execute tasks simultaneously to solve problems more
efficiently. In the context of stream analytics, parallel processing is essential for
meeting real-time performance requirements and achieving scalability under high
data rates.

Parallelism in stream analytics can be applied in several forms. Data
parallelism involves partitioning incoming data streams into independent subsets
that can be processed concurrently using the same operations. This approach is
convenient when events are independent or can be grouped by keys such as user
identifiers or sensor IDs. Task parallelism, on the other hand, focuses on executing
different operations or analytical tasks in parallel. This model is useful when a
stream analytics application consists of multiple independent processing stages.

Pipeline parallelism is another essential form of parallelism, in which
different stages of a processing pipeline operate concurrently on distinct data
items. As data flows through the pipeline, each stage performs a specific function,

such as filtering, aggregation, or pattern detection. By overlapping execution

19

across stages, pipeline parallelism improves overall throughput and resource
utilization.

In practice, modern stream analytics systems often combine multiple forms
of parallelism to maximize performance. The effective use of parallel processing
allows systems to scale horizontally, adapt to fluctuating workloads, and maintain
low-latency processing even under heavy data loads.

Distributed Stream Processing Systems

Most real-time stream analytics platforms are implemented as distributed
systems due to the scale and complexity of modern data streams. In distributed
stream processing systems, computational tasks are executed across multiple
machines connected through a network. This distributed architecture enables
horizontal scalability, allowing systems to handle increasing data rates by adding
more processing nodes.

Distributed stream processing systems typically consist of several key
components. Data ingestion layers are responsible for collecting, buffering, and
distributing incoming data streams. Processing engines execute analytical
operations in parallel across multiple nodes. State management modules maintain
intermediate results required for stateful processing, such as windowed
aggregations or pattern detection. Finally, output sinks store processed results or
forward them to external systems for further analysis or action.

Parallel processing is fundamental to the operation of distributed stream
processing systems. By distributing computation and data across multiple
machines, these systems can efficiently utilize available resources and achieve high
throughput. However, distributed execution also introduces challenges related to
coordination, communication overhead, and fault tolerance, which must be
carefully addressed through system design.

Evolution from Batch Processing to Stream Processing

Early data analytics systems were primarily designed around batch

processing models. In batch-oriented systems, data is collected over time, stored

20

persistently, and processed periodically. While this approach is practical for
historical analysis and reporting, it is poorly suited for applications that require
immediate insights.

The limitations of batch processing, particularly its inability to provide
timely responses, led to the development of stream processing systems capable of
handling continuous data flows. Early stream processing systems were often
limited in scalability and reliability, making them challenging to deploy in large-
scale environments. However, advances in distributed computing, cloud
infrastructure, and parallel processing techniques have significantly improved the
robustness and scalability of modern stream analytics platforms.

The transition from batch to stream processing reflects a broader shift in
computing toward real-time, data-driven decision-making. Today, many systems
adopt hybrid architectures that combine batch and stream processing to support
both historical analysis and real-time insights. Parallel processing has played a
crucial role in enabling this transition by providing the computational power to
process large-scale data streams efficiently.

Related Work in Parallel Stream Analytics

A substantial body of research has investigated parallel processing
techniques for stream analytics. Early work in this area focused on parallel query
processing and operator parallelization, drawing inspiration from parallel database
systems. These studies explored how analytical operators could be executed
concurrently to improve performance.

Subsequent research introduced window-based processing models and
stateful stream operators, enabling more complex analytics, such as aggregations,
joins, and time-window-based pattern detection. As stream analytics systems grew
in scale, research attention shifted toward scalability, fault tolerance, and low-
latency processing.

More recent studies have proposed techniques such as dynamic load

balancing, adaptive parallelism, and efficient state management to address

21

challenges in parallel stream processing. Researchers have also examined trade-
offs between latency and throughput in different processing models, highlighting
the importance of selecting appropriate parallelization strategies based on
application requirements. This body of related work provides a strong foundation
for understanding modern parallel stream analytics systems.

Summary

This section presents a detailed overview of the fundamental concepts and
related work in real-time stream analytics and parallel processing. It discussed the
nature of streaming data, stream processing models, parallel processing paradigms,
and distributed system architectures. The evolution from batch-oriented systems to
real-time stream processing was also examined, along with key research
contributions in parallel stream analytics. These foundational concepts provide the
necessary background for analyzing system architectures and parallel processing

techniques, which are explored in the subsequent sections.

22

2. SYSTEM ARCHITECTURE FOR REAL-TIME STREAM ANALYTICS

2.1. Architectural Overview

A real-time stream analytics system is fundamentally designed to ingest,
process, and analyze continuous flows of data with minimal delay between data
arrival and result generation. Unlike traditional data processing architectures,
which are typically centralized and batch-oriented, real-time stream analytics
architectures must support continuous operation, rapid response times, and
dynamic scalability. These requirements make architectural design a critical factor
in the effectiveness of any stream analytics platform.

At a high level, real-time stream analytics systems adopt a modular,
distributed architecture. Instead of relying on a single centralized processing unit,
computation and data management responsibilities are distributed across multiple
components and nodes. This design enables the system to handle high-throughput
workloads, tolerate failures, and efficiently exploit parallel processing. Each
architectural component is responsible for a specific function, and together they
form a pipeline that supports continuous data flow.

A typical real-time stream analytics architecture consists of several key
components: data sources, a stream ingestion layer, a parallel processing engine,
state management mechanisms, window-based processing modules, and output and
integration layers. These components are interconnected and operate concurrently,
enabling the system to process large-scale streaming data in real time. The
effectiveness of the overall architecture depends on how well these components are
coordinated and how efficiently parallelism is applied across the system.

Data Sources and Stream Generation

Data sources represent the origin of streaming data in real-time analytics
systems. These sources may include physical sensors deployed in industrial or

environmental settings, smart and mobile devices, web servers and application

23

logs, financial transaction platforms, social media feeds, and Internet of Things
(IoT) infrastructures. Each source generates data continuously, often at high speed
and with varying levels of reliability.

One of the defining challenges associated with data sources is their
heterogeneity. Streaming data may be structured, semi-structured, or unstructured,
and it may arrive in different formats, sizes, and frequencies. Additionally, data
generation rates can fluctuate significantly due to user behavior, environmental
conditions, or system events. As a result, real-time stream analytics systems must
be designed to handle unpredictable workloads without compromising
performance or stability.

To address these challenges, modern architectures incorporate mechanisms
that allow multiple data streams to be ingested simultaneously. Parallelism often
begins at the data source level, where independent streams are treated as separate
input channels. This approach enables the system to scale horizontally and
prevents delays caused by bottlenecks at a single input point. Efficient handling of
data sources is therefore a foundational requirement for achieving real-time
performance.

Stream Ingestion Layer

The stream ingestion layer serves as the interface between data sources and
the stream processing engine. Its primary role is to collect incoming data, buffer it,
and distribute it to downstream processing components. Because it operates at the
front of the processing pipeline, the ingestion layer must handle high input rates
while maintaining reliability and low latency.

Scalability is a critical requirement for the ingestion layer, as data arrival
rates can spike due to bursts of activity. To support scalability, ingestion systems
typically use parallel ingestion mechanisms that partition incoming data streams
and distribute them across multiple ingestion nodes. This prevents overload on

individual nodes and ensures balanced utilization of system resources.

24

In addition to data collection and distribution, the ingestion layer often
provides important system-level features. These include buffering to absorb short-
term spikes in data volume, ordering mechanisms to preserve event sequence
where required, and backpressure handling to regulate data flow when downstream
components become congested. Fault tolerance is also a key concern, and ingestion
systems are often designed to recover quickly from failures without losing data.
Through these capabilities, the ingestion layer plays a vital role in maintaining the
stability and efficiency of the overall architecture.

Parallel Processing Engine

The parallel processing engine is the core computational component of a
real-time stream analytics system. It is responsible for executing analytical
operations on incoming data streams using parallel and distributed computing
techniques. This engine performs tasks such as filtering, transformation,
aggregation, correlation, and pattern detection, all under strict latency constraints.

Processing logic within the engine is typically represented as a directed
graph of operators, where each operator performs a specific computation on the
data. Data flows from one operator to the next, forming a processing pipeline.
Parallelism can be applied at multiple levels within this engine to maximize
performance and scalability.

One common approach is operator parallelism, in which multiple instances
of the same operator execute concurrently across different partitions of the data
stream. Task parallelism allows different operators within the processing graph to
execute simultaneously on separate processing nodes. Pipeline parallelism enables
different stages of the processing pipeline to operate concurrently on different data
items. By combining these forms of parallelism, the processing engine can
efficiently handle large-scale data streams while maintaining low latency.

Effective scheduling and resource allocation are essential to the performance
of the parallel processing engine. Tasks must be assigned to processing nodes to

balance the workload and minimize communication overhead. When properly

25

designed, the parallel processing engine enables real-time analytics systems to
scale efficiently and respond rapidly to incoming data.

State Management in Parallel Systems

State management is a critical architectural concern in real-time stream
analytics, particularly for applications that require stateful processing. Stateful
operations include aggregations, joins, pattern detection, and window-based
computations, all of which rely on maintaining intermediate results across multiple
events.

In parallel and distributed environments, managing state becomes
significantly more complex. The state must be partitioned and distributed across
multiple processing nodes to enable parallel execution while minimizing access
latency. Many systems store state locally on processing nodes to improve
performance, but this approach requires mechanisms to ensure consistency and
correctness.

Checkpointing is a commonly used technique for state management in
parallel systems. Periodic snapshots of the system state are saved to stable storage,
allowing the system to recover from failures without losing progress. In the event
of a failure, the system can restore state from the most recent checkpoint and
resume processing. Designing efficient, minimally disruptive checkpointing
mechanisms is a major architectural challenge.

Synchronization overhead is another critical consideration. Excessive
synchronization among parallel tasks can reduce performance gains. As a result,
modern architectures aim to minimize coordination while still ensuring accurate
and consistent results. Effective state management is therefore essential for
balancing performance, correctness, and fault tolerance in real-time stream
analytics systems.

Window-Based Processing Architecture

Window-based processing is a widely used architectural technique in real-

time stream analytics for analyzing subsets of data over specific intervals. Rather

26

than processing an entire unbounded stream at once, windowing divides the stream
into manageable segments based on time or event count. Common window types
include tumbling, sliding, and casement windows.

Parallel processing significantly enhances window-based analytics by
enabling multiple windows to be processed concurrently. Data can be partitioned
by keys or window boundaries, enabling windowed computations to be distributed
across multiple processing nodes. This approach improves scalability and reduces
processing latency.

However, window-based processing introduces additional architectural
challenges. Late-arriving data that arrives after a window has closed must be
handled carefully to avoid incorrect results. Window alignment across parallel
tasks is also critical to ensure consistent computations. Architectural support for
event-time processing, watermarking, and window coordination is often required
to address these challenges while maintaining real-time performance.

Output and Integration Layer

The output and integration layer is responsible for delivering processed
results to downstream systems or end users. Outputs may be written to databases,
transmitted to dashboards, forwarded to messaging systems, or used to trigger
automated actions such as alerts or control signals. Because real-time analytics
often supports time-sensitive decisions, this layer must deliver data with low
latency and reliability.

Parallelism in the output layer ensures that result generation and
transmission do not become bottlenecks. Multiple output streams can be handled
concurrently, allowing the system to maintain high throughput even when
delivering results to various destinations. Integration with external systems also
requires flexibility, as different applications may use other data formats and have

varying delivery requirements.

27

An efficient design of the output layer ensures that insights from the
analytics engine are delivered promptly and reliably, completing the end-to-end
real-time processing pipeline.

Scalability and Fault Tolerance

Scalability and fault tolerance are essential properties of real-time stream
analytics architectures. As data volumes and processing demands increase, systems
must scale without significant redesign. Parallel processing enables horizontal
scalability by allowing additional processing nodes to be added dynamically.

Fault tolerance is equally important, as failures are inevitable in distributed
environments. Mechanisms such as task replication, checkpointing, and automatic
recovery ensure the system continues operating despite hardware or software
failures. These mechanisms are closely integrated with parallel processing models
to minimize downtime and data loss.

A well-designed architecture balances scalability, performance, and
reliability, ensuring continuous operation under varying workloads and failure
conditions.

Summary

This section presents a comprehensive examination of system architectures
for real-time stream analytics. It discussed the roles of data sources, ingestion
layers, parallel processing engines, state management mechanisms, window-based
processing, and output integration. The section emphasized how parallel
processing underpins scalability, low latency, and fault tolerance across the entire
architecture. Understanding these architectural principles provides a strong
foundation for analyzing parallel processing techniques and models, which are

explored in the subsequent sections.

28

2.2. Parallel processing techniques for real-time stream analytics

Overview of Parallelism in Stream Processing

Parallel processing underpins modern real-time stream analytics systems. As
discussed in earlier sections, streaming data arrives continuously and often at very
high speeds, making sequential processing approaches insufficient for meeting
strict latency and throughput requirements. Parallelism enables stream analytics
systems to divide workloads into smaller units that can be processed
simultaneously across multiple computing resources, such as processor cores,
machines, or distributed clusters.

In the context of stream processing, parallelism must be carefully designed
to account for several unique factors, unlike batch processing, which processes
finite, static datasets; stream processing processes unbounded, evolving data.
Processing logic often depends on a state that is continuously updated as new
events arrive. Additionally, many applications operate under tight time constraints,
requiring results to be produced within milliseconds or seconds. These
characteristics make the design of parallel stream processing techniques more
complex than those used in traditional data analytics.

Effective parallel processing in stream analytics requires balancing multiple
objectives, including low latency, high throughput, scalability, and correctness.
Tasks must be coordinated to ensure that parallel execution does not compromise
data consistency or processing guarantees. As a result, stream processing
frameworks adopt specialized parallelization techniques that are tailored to the
characteristics of streaming workloads.

Data Parallelism

Data parallelism is one of the most widely adopted parallel processing
techniques in real-time stream analytics. In this approach, the incoming data stream
1s divided into multiple partitions, often called substreams, which can be processed

independently and concurrently. Each partition is assigned to a parallel instance of

29

the same processing logic, allowing the system to handle high data rates
efficiently.

Partitioning in data parallelism is commonly based on keys extracted from
incoming events. Examples of such keys include user identifiers, sensor IDs,
geographic regions, or transaction types. By grouping events with the same key
into the same partition, systems can ensure that related data is processed together,
which is particularly important for stateful operations such as aggregations and
joins.

Data parallelism is highly effective for stateless operations, such as filtering,
mapping, and transformation, since these operations do not require shared state
across partitions. It can also be applied to stateful operations when state is
partitioned in a way that aligns with the data. This alignment allows each parallel
task to manage its own portion of the state independently, reducing
synchronization overhead.

Despite its advantages, data parallelism introduces challenges related to
workload distribution. One common issue is data skew, where some partitions
receive significantly more data than others. This imbalance can cause specific
processing tasks to become overloaded while others remain underutilized, reducing
overall system efficiency. To address this problem, stream analytics systems often
employ techniques such as dynamic repartitioning, load-aware scheduling, and
adaptive key assignment. These mechanisms help distribute workload more evenly
and maintain stable performance under varying data distributions.

Task Parallelism

Task parallelism focuses on executing different processing tasks or operators
concurrently within a stream analytics pipeline. Instead of dividing data among
identical operations, task parallelism allows distinct operations to run in parallel on
separate computing resources. This approach is beneficial in complex analytics

workflows that consist of multiple independent or loosely coupled tasks.

30

In a typical stream-processing application, tasks may include data ingestion,
preprocessing, filtering, aggregation, enrichment, machine-learning inference, and
output generation. Task parallelism enables these operations to run in parallel,
reducing end-to-end processing latency. By overlapping computations across
different pipeline stages, systems can better utilize available resources and improve
overall responsiveness.

Task parallelism is especially beneficial when different tasks have varying
computational requirements. For example, lightweight filtering operations can
execute in parallel with more computationally intensive analytics tasks. However,
implementing task parallelism requires careful coordination to manage task
dependencies. Data produced by one task must be correctly routed to downstream
tasks, and synchronization mechanisms may be necessary to ensure that results are
generated in the correct order when ordering guarantees are needed.

Designing effective task-parallel stream processing pipelines involves
balancing concurrency with coordination overhead. Excessive synchronization can
reduce performance gains, while insufficient coordination may lead to incorrect or
inconsistent results. As a result, task parallelism is often combined with other
parallelization techniques to achieve optimal performance.

Pipeline Parallelism

Pipeline parallelism is a specialized form of task parallelism in which data
flows through a sequence of processing stages that operate concurrently. Each
stage in the pipeline performs a specific function, and different stages process
different data items simultaneously. As one data item moves to the next stage,
subsequent items can enter earlier stages, keeping the pipeline continuously active.

In real-time stream analytics, pipeline parallelism improves resource
utilization by ensuring that all processing stages run concurrently. This approach is
efficient when processing stages have similar computational complexity and can be
balanced evenly across resources. Pipeline parallelism reduces idle time and

increases throughput by overlapping execution across stages.

31

However, pipeline parallelism introduces important latency considerations.
The overall latency of a data item depends on the slowest stage in the pipeline,
often called the bottleneck. If one stage requires significantly more processing time
than others, it can limit the performance of the entire pipeline. Consequently,
careful performance tuning and load balancing are needed to maximize the benefits
of pipeline parallelism.

Pipeline parallelism is commonly used in stream analytics applications that
involve multi-stage processing, such as data cleansing, feature extraction, analysis,
and result generation. When properly designed, it enables systems to achieve both
high throughput and low latency.

Window-Level Parallelism

Window-based processing is a fundamental concept in real-time stream
analytics, enabling computations over finite subsets of an otherwise unbounded
data stream. Window-level parallelism exploits the independence of these subsets
to allow parallel execution of window-based computations.

In many cases, windows can be processed independently, making them well-
suited for parallelization. For example, tumbling windows that do not overlap can
be assigned to different processing tasks and computed concurrently without
coordination. This approach enables efficient scaling of time-based aggregations
and summaries.

Sliding windows and session windows present additional challenges, as they
may overlap or depend on event timing. Overlapping windows require careful
coordination to manage shared data and avoid redundant computation. To address
this, stream processing systems often use incremental computation techniques,
where results are updated as new events arrive rather than recomputed from
scratch. Parallel processing frameworks also employ window partitioning
strategies to distribute window computations across multiple tasks while

maintaining correctness.

32

Window-level parallelism is significant for applications such as trend
analysis, anomaly detection, and time-series analytics, where timely insights are
critical. By enabling multiple windows to be processed concurrently, systems can
deliver real-time results even under high data rates.

Operator Parallelism

Operator parallelism refers to replicating processing operators so that
multiple instances of the same operator can execute concurrently across different
data partitions. Each operator instance performs identical computations but
operates on a distinct subset of the input stream. This technique enables fine-
grained scalability and is a key mechanism for handling large-scale streaming
workloads.

In practice, operator parallelism is often combined with data parallelism.
Data is first partitioned into multiple streams, and each partition is assigned to a
separate operator instance. As data volume increases, additional operator instances
can be dynamically deployed to distribute the workload evenly.

Managing state in operator-parallel systems presents significant challenges,
particularly for stateful operators. Each operator instance must maintain its own
state, and systems must ensure that state updates are applied correctly and
consistently. Synchronization and coordination mechanisms are required to prevent
inconsistencies while minimizing performance overhead.

Operator parallelism is a powerful technique for achieving horizontal
scalability, but its effectiveness depends on careful design of state management,
data partitioning, and fault tolerance mechanisms.

Hybrid Parallel Processing Models

In real-world applications, no single parallel processing technique is
sufficient to meet all performance and scalability requirements. As a result, modern
real-time stream analytics systems employ hybrid parallel processing models that

combine multiple forms of parallelism. For example, a system may use data

33

parallelism to partition incoming streams, pipeline parallelism to structure
processing stages, and window-level parallelism to support time-based analytics.

Hybrid models provide flexibility, enabling systems to adapt to varying
workloads and application requirements. By combining different parallelization
strategies, systems can optimize performance across multiple dimensions,
including latency, throughput, and resource utilization. However, hybrid models
also increase system complexity, as they require sophisticated scheduling,
coordination, and monitoring mechanisms.

Designing effective hybrid parallel processing models involves careful
consideration of application characteristics, workload patterns, and system
constraints. When implemented correctly, hybrid models offer the best balance
between performance and scalability in real-time stream analytics.

Performance Considerations

While parallel processing provides substantial performance benefits, it also
introduces overhead that can limit its effectiveness if not carefully managed.
Communication between parallel tasks, synchronization delays, and state
management overhead can all reduce the gains achieved through parallelization.

Performance optimization strategies in stream analytics systems focus on
minimizing unnecessary communication, optimizing data partitioning schemes,
and reducing synchronization overhead. In-memory processing techniques are
widely used to reduce data access latency and improve throughput. Monitoring and
adaptive tuning mechanisms enable systems to adjust parallelism levels in response
to changing workloads dynamically.

Achieving optimal performance requires continuous evaluation and tuning
of parallel processing strategies. Systems must balance the benefits of increased
parallelism with the costs of coordination and resource contention.

Summary

This section presents a detailed examination of parallel processing

techniques used in real-time stream analytics. It discussed data parallelism, task

34

parallelism, pipeline parallelism, window-level parallelism, operator parallelism,
and hybrid parallel processing models. The section also highlighted key
performance considerations and trade-offs associated with parallel execution.
Together, these techniques form the foundation of scalable and efficient real-time
stream analytics systems. Understanding their strengths and limitations is essential
for designing high-performance analytics solutions that meet modern real-time data

processing demands.

35

3. ALGORITHMS AND FRAMEWORKS FOR PARALLEL STREAM
PROCESSING

3.1. Stream Processing Algorithms

Real-time stream analytics algorithms differ fundamentally from traditional
batch-processing algorithms due to the continuous and unbounded nature of
streaming data. In batch analytics, algorithms operate on static datasets with finite
size, often allowing multiple passes over the data. In contrast, streaming data
arrives continuously and must be processed incrementally, often under strict
latency constraints. As a result, stream processing algorithms must be designed to
operate with limited memory, process events in real time, and produce timely
results that support immediate decision-making.

Parallel processing is central to the scalability and efficiency of these
algorithms. By leveraging multiple processing units simultaneously, streaming
algorithms can maintain high throughput and low latency even when dealing with
massive data volumes. Parallel execution is critical when applications require
processing millions of events per second, such as in financial trading platforms,
smart city monitoring systems, or industrial IoT networks.

Streaming algorithms are broadly categorized into four main classes:
filtering, aggregation, pattern detection, and machine learning—based algorithms.
Each class addresses specific types of analytics requirements and benefits from
parallel execution in distinct ways. Filtering algorithms handle selection tasks,
aggregation algorithms summarize or condense data, pattern detection algorithms
identify sequences or correlations within the stream, and machine learning
algorithms provide predictive or adaptive analytics. Understanding these classes is
crucial for designing high-performance, parallel stream analytics systems.

Parallel Filtering and Transformation Algorithms

36

Filtering and transformation are fundamental building blocks in stream
analytics pipelines. Filtering algorithms select events that meet specific criteria,
such as network packets containing anomalies or financial transactions exceeding a
threshold. Transformation algorithms, on the other hand, convert raw data into
meaningful formats or enrich events with additional context, such as converting
timestamps, extracting features, or adding geographical metadata.

These operations are typically stateless, meaning that each event can be
processed independently without relying on prior events. This property makes
them particularly well-suited for data parallelism. In parallel stream processing, the
incoming data stream can be partitioned, with multiple parallel tasks independently
filtering or transforming their assigned partitions.

Operator replication is another technique used to enhance parallel filtering
and transformation. Multiple instances of the same operator can run concurrently
across separate data partitions, enabling systems to handle high event rates without
introducing latency. For example, in an online recommendation system, filtering
user interactions by relevance and transforming them into feature vectors can be
distributed across multiple parallel tasks, enabling personalized recommendations
to be generated in real time.

Despite their stateless nature, parallel filtering and transformation algorithms
must still manage practical challenges such as load balancing and resource
utilization. Uneven arrival rates of data can cause specific processing tasks to
become overloaded while others remain underutilized. Adaptive partitioning and
dynamic scheduling are therefore commonly implemented to maintain consistent
throughput.

Parallel Aggregation Algorithms

Aggregation algorithms compute summary statistics over streaming data,
including counts, sums, averages, minimum and maximum values, and more

complex metrics such as quantiles and histograms. These algorithms are inherently

37

stateful, as they maintain intermediate results over time or within specific event
windows.

Parallel aggregation is achieved primarily through data partitioning.
Incoming events are partitioned according to keys, such as user IDs, device
identifiers, or sensor types, and local aggregates are maintained within each
partition. Once partial aggregates are computed, they are merged to produce global
results. This hierarchical approach reduces communication overhead and allows
aggregation tasks to scale efficiently across multiple processing units.

However, parallel aggregation introduces several challenges. Maintaining
state consistency across partitions is critical to ensure correct results. Window
alignment, where aggregates are computed over time-based or count-based
windows, must also be carefully managed, especially when windows overlap or
events arrive late. Additionally, fault-tolerance mechanisms such as checkpointing
must be integrated to enable recovery from node failures without losing
intermediate results.

A practical example is traffic monitoring, where sensors along a highway
continuously count vehicles. By partitioning data by sensor location and
computing local aggregates in parallel, the system can provide timely congestion
analysis across the entire network. The combination of regional and global
aggregation ensures both scalability and accuracy.

Pattern Detection and Complex Event Processing

Pattern-detection algorithms identify sequences or combinations of events
that match predefined criteria. These algorithms are crucial in applications such as
fraud detection, cybersecurity monitoring, industrial equipment failure prediction,
and automated alerting systems. Pattern detection often requires maintaining
temporal and logical relationships between events, making it more complex than
simple filtering or aggregation.

Parallel processing enhances pattern detection by dividing the stream into

segments that can be analyzed concurrently. Task parallelism is frequently used to

38

assign different detection rules to separate processing units, while window-level
parallelism allows temporal patterns to be detected within specific intervals. This
combination ensures timely detection even under high event rates.

Complex Event Processing (CEP) systems extend pattern detection by
enabling more sophisticated event correlation, temporal reasoning, and hierarchical
pattern recognition. CEP frameworks leverage parallelism to execute multiple
pattern-matching tasks concurrently and maintain state across distributed nodes. A
significant challenge i CEP 1is ensuring correct event ordering and
synchronization across parallel tasks, as misaligned events can lead to false
positives or missed detections.

For instance, in financial fraud detection, sequences of suspicious
transactions across multiple accounts must be monitored in real time. Parallel
pattern detection allows the system to evaluate various transaction sequences
simultaneously, ensuring rapid identification of potential fraudulent behavior.

Machine Learning Algorithms for Streaming Data

Machine learning (ML) algorithms are increasingly applied to streaming
data for real-time prediction, classification, anomaly detection, and adaptive
decision-making. Unlike traditional batch ML, streaming ML algorithms must
continuously update models as data distributions evolve, often without revisiting
past events. This incremental nature makes them well-suited for parallel execution.

Parallelism in streaming ML can be implemented in several ways:

1. Model Partitioning — Different components of a model, such as layers
of a neural network, are distributed across multiple processing units for concurrent
execution.

2. Parallel Feature Extraction — Features are computed in parallel from
raw events before feeding them into the learning model.

3. Incremental Learning — Model parameters are updated concurrently
across partitions of the stream, enabling the system to adapt to changing data

patterns.

39

Despite these advantages, parallel machine learning in streaming
environments introduces challenges. Ensuring model consistency across parallel
updates, minimizing communication overhead, and controlling prediction latency
are critical concerns. For example, in real-time recommendation engines,
inconsistent model updates can result in incorrect recommendations, while
excessive synchronization delays can increase response time.

Emerging research continues to explore novel parallelization strategies for
streaming ML, including federated learning across distributed nodes, approximate
model updates, and asynchronous parallel training techniques. These strategies aim
to maximize throughput while maintaining prediction accuracy and model stability.

Stream Processing Frameworks

To simplify the development and deployment of real-time stream analytics
applications, several stream processing frameworks have been introduced. These
frameworks provide abstractions for defining processing pipelines, managing
parallel execution, handling fault tolerance, and supporting stateful operations.

Key features of modern frameworks include:

. Support for parallel and distributed execution: Frameworks
automatically partition data and distribute tasks across multiple nodes.

. Built-in state management and checkpointing: Stateful operators are
supported with mechanisms for consistent state updates and recovery.

. Window-based processing capabilities: Time- or count-based
windows are natively supported, with optimizations for overlapping or sliding
windows.

. Scalability and fault tolerance mechanisms: Systems can dynamically
scale out to additional nodes and recover from failures without data loss.

Popular stream processing frameworks include Apache Flink, Apache Spark
Structured Streaming, Apache Storm, and Apache Samza. Each framework
provides unique features and optimizations tailored to different application

scenarios. For instance, Apache Flink offers low-latency, exactly-once state

40

consistency, making it suitable for financial or industrial monitoring applications.
At the same time, Spark Structured Streaming provides strong integration with
batch analytics pipelines and large-scale data warehouses.

Frameworks abstract much of the complexity of parallel processing,
allowing developers to focus on application-specific logic rather than low-level
system concerns such as resource scheduling, checkpointing, or operator
replication.

Algorithm—Framework Interaction

The effectiveness of parallel stream processing depends heavily on the
interaction between the algorithms and the underlying framework. Algorithms
must be designed to exploit the framework's parallelism. In contrast, frameworks
must provide flexible, efficient execution models that accommodate stateful,
stateless, and hybrid processing tasks.

For example, stateless algorithms such as filtering or transformation can be
casily scaled using simple data parallelism. In contrast, stateful algorithms such as
aggregation or pattern detection require careful alignment of state partitions with
data partitions to ensure correctness. Frameworks that support dynamic load
balancing, operator replication, and stateful checkpointing make it easier to
implement parallel algorithms efficiently.

Understanding this interaction is crucial for achieving high-performance
analytics. Poor alignment between algorithm design and framework capabilities
can lead to underutilized resources, increased latency, or incorrect results.
Conversely, well-integrated algorithms and frameworks can deliver near-linear
scalability and robust, fault-tolerant processing.

Summary

This section provides an in-depth examination of algorithms and frameworks
used in parallel real-time stream analytics. It covered key classes of algorithms,

including filtering, transformation, aggregation, pattern detection, and

machine learning, and explained how parallelism enhances their performance.

41

Additionally, it discussed popular stream processing frameworks and the critical
interplay between algorithm design and framework capabilities. Together, these
elements form the backbone of scalable, low-latency, and reliable real-time
analytics systems, enabling applications across diverse domains such as finance,

healthcare, smart cities, cybersecurity, and industrial automation.

3.2. Challenges and limitations of parallel stream analytics

Real-time stream analytics systems powered by parallel processing are
critical for modern data-driven applications, yet they are not without significant
challenges. Parallelism enables high throughput, scalability, and low-latency
processing, but it also introduces complexities that can impact system
performance, reliability, and manageability. In this section, we examine these
challenges in detail, highlighting key limitations and considerations for designing
robust real-time analytics platforms.

Scalability Challenges

Scalability is one of the principal motivations for applying parallel
processing to real-time stream analytics. In theory, adding more processing nodes
should proportionally increase system throughput. In practice, however, achieving
linear scalability is rarely straightforward. Several factors limit performance as the
system grows:

1. Coordination Overhead: As the number of nodes or cores increases,
the need to coordinate processing across them becomes more significant. Task
scheduling, load balancing, and state synchronization introduce communication
overhead that can negate the benefits of adding resources.

2. Communication Latency: Distributed stream processing systems
require data to be exchanged between nodes. Network latency,

serialization/deserialization costs, and protocol overhead can slow down data

42

movement, particularly when events must traverse multiple nodes for stateful
computations.

3. Resource Contention: Multiple parallel tasks may compete for shared
resources, such as CPU, memory, disk, or network bandwidth. High contention can
cause processing delays, leading to missed deadlines in time-sensitive applications.

A particularly challenging issue is data skew, in which specific partitions of
the input stream receive disproportionately large volumes of data. This uneven
distribution can cause specific processing tasks to become bottlenecks, while other
tasks remain underutilized. For example, in a social media analytics application,
popular hashtags or topics may generate a flood of events for a small subset of
partitions, overwhelming their corresponding processing nodes. Addressing data
skew requires adaptive strategies, such as dynamic stream repartitioning, load-
aware scheduling, or predictive partitioning based on historical data trends.
However, implementing these solutions adds complexity to system design and may
introduce additional overhead, which itself can affect performance.

Another consideration is horizontal scalability. While distributed systems
can theoretically scale out by adding more nodes, the cost, coordination, and
management overhead grow with system size. Cloud-based solutions offer elastic
scaling, but dynamic node provisioning introduces transient performance
variability and may require careful orchestration to maintain processing
guarantees.

Latency Constraints

Many real-time stream analytics applications are latency-sensitive, requiring
results within milliseconds or seconds of event arrival. Examples include fraud
detection in financial systems, emergency alerts in smart cities, anomaly detection
in industrial equipment, and recommendation systems for e-commerce platforms.
Meeting these stringent latency requirements is a key challenge in parallel

processing environments.

43

Parallelism can reduce processing latency by enabling the simultaneous
execution of multiple tasks. However, it also introduces latency due to
communication and synchronization overheads. In distributed settings, data must
be transmitted between nodes, serialized, deserialized, and coordinated among
parallel tasks. Each of these steps adds to the overall end-to-end latency.

Moreover, task dependencies can exacerbate latency. Certain computations
depend on the results of prior tasks or on state maintained across nodes.
Synchronization mechanisms, such as barriers, locks, or consensus protocols,
ensure correctness but may delay downstream processing.

Network topology, inter-node bandwidth, and congestion also affect latency.
In geographically distributed deployments, the physical distance between nodes
can introduce additional delays, making it difficult to maintain consistent low-
latency processing across the system.

Optimizing latency in parallel stream analytics requires careful system
design. Strategies include minimizing inter-task communication, using in-memory
processing, optimizing task placement based on network proximity, and employing
incremental computation techniques that reduce the need to recompute results from
scratch. However, achieving a balance between latency and throughput remains a
fundamental challenge, as optimizations that reduce latency may increase resource
usage or reduce overall system efficiency.

State Management Complexity

Stateful processing is at the heart of many real-time analytics tasks,
including aggregations, joins, pattern detection, and window-based computations.
Maintaining and managing this state in a parallel, distributed environment is a
complex, error-prone task.

State in parallel systems must satisfy several requirements:

1. Consistency: Updates to shared state across parallel tasks must be

consistent, even when events are processed out of order or nodes fail.

44

2. Fault Tolerance: Systems must recover state correctly after failures to
avoid incorrect analytics results.

3. Efficiency: Maintaining state should not impose significant overhead
that degrades throughput or increases latency.

To achieve these goals, stream analytics frameworks often employ
checkpointing and state partitioning techniques. State is periodically saved to
persistent storage, enabling recovery in case of node failures. However, frequent
checkpoints introduce performance overhead, while infrequent checkpoints
increase recovery time and the risk of data loss.

Distributed state management also requires careful partitioning to ensure that
parallel tasks can efficiently access and update the relevant portions of state.
Poorly designed state partitioning can lead to bottlenecks and increased
synchronization costs. For example, in a real-time recommendation system, user
session data must be partitioned such that updates and lookups can occur in
parallel without conflicts.

Late-arriving events and out-of-order processing further complicate state
management. In windowed computations, events may arrive after the window has
been partially processed, requiring updates to previously computed results.
Handling these scenarios efficiently while maintaining correctness is an ongoing
research challenge in stream analytics.

Fault Tolerance and Reliability

In distributed parallel systems, failures are inevitable. Hardware faults,
software errors, network outages, and resource exhaustion can all disrupt stream
processing. Real-time analytics systems must tolerate such failures without data
loss or significant downtime.

Fault tolerance mechanisms, such as operator replication, checkpointing, and
log-based recovery, are widely used to maintain reliability. In operator replication,
multiple instances of a processing task are run concurrently, allowing another

instance to take over if one fails. Checkpointing periodically saves the system

45

state, enabling recovery without recomputing from scratch. Log-based recovery
involves storing event streams in durable storage so that processing can resume
from the last consistent point.

Despite their effectiveness, these mechanisms introduce performance
overhead. Maintaining replicas consumes additional resources, checkpointing
interrupts processing, and log replay can increase latency. Striking a balance
between fault tolerance and performance is a key challenge for designers of
parallel stream analytics systems.

Applications with strict reliability requirements, such as financial transaction
monitoring or autonomous vehicle systems, require high-availability guarantees.
Ensuring minimal downtime in these systems adds further complexity to system
architecture and resource management.

Synchronization and Consistency Issues

Executing tasks simultaneously requires careful coordination to ensure
accurate results. Methods like locks, barriers, and agreement procedures help make
sure that shared information is updated correctly and that related calculations
happen in the right sequence.

The choice of consistency approach greatly influences how well the system
performs and how complex it is. Ensuring strong consistency makes sure
everything is correct but can lead to higher delays and more coordination work. On
the other hand, more relaxed consistency methods, like eventual consistency, tend
to boost performance but might result in brief periods of inconsistency.

For example, in a distributed system that combines data from multiple
sources, updates to counters need to be shared among all the connected nodes.
Ensuring that every node shows the same value at all times requires ongoing
communication and coordination, which can slow down performance. Allowing
nodes to temporarily have different values and to synchronize later can increase

speed, but might lead to short periods of inaccuracy.

46

Designers must carefully choose consistency models based on application
requirements, balancing correctness, latency, and system complexity.

Resource Management and Cost

Parallel stream analytics systems are typically deployed on distributed
infrastructure, including cloud clusters, on-premises servers, or hybrid
environments. While additional nodes and cores improve scalability, they also
incur operational costs, including computing resources, energy consumption, and
maintenance.

Efficient resource management is crucial to balance performance and cost.
Over-provisioning ensures low latency and high throughput but increases
expenses, while under-provisioning may lead to performance degradation, missed
deadlines, or dropped events.

Adjusting the number of active processing nodes based on workload changes
helps manage resource demands and maintain performance. However, setting up
these adjustments can make operations more complicated. For instance, in cloud
environments, scaling up too quickly can increase costs without providing
significant performance improvements, while scaling too slowly might cause
delays during traffic spikes.

Resource management also relates to handling unexpected issues. Creating
copies and saving system states requires extra memory and processing work, so
careful planning is needed to keep the system affordable while ensuring it stays
reliable.

Additional Challenges

Beyond the primary limitations discussed, several other challenges affect
parallel stream analytics systems:

1. Data Heterogeneity: Streams often originate from diverse sources with
different formats, units, and schemas. Transforming and normalizing these

heterogeneous streams in parallel can introduce additional complexity.

47

2. Backpressure Handling: Systems need to deal with situations where
they can't process data fast enough. Backpressure signals are sent upstream to
control the flow, but managing these signals efficiently in environments with many
processes requires careful planning.

3. Security and Privacy: Streaming systems often handle sensitive
information, such as financial transactions or personal health records. Protecting
this data through secure processing methods, including encryption, access controls,
and privacy measures, makes things more complicated.

4. Monitoring and Debugging: Observing and diagnosing performance
or correctness issues in parallel, distributed systems is challenging due to their
dynamic and non-deterministic behavior.

Summary

This section has examined the main challenges and limitations of analyzing
data simultaneously across multiple streams, highlighting that while working in
parallel allows for growth, quick responses, and handling large amounts of data, it
also adds complexity in various ways. Growing systems can face difficulties due to
coordinating different parts, uneven data distribution, and competition for
resources. Reducing delays requires careful tuning of communication and
processing steps. Managing state, ensuring reliability, keeping processes
synchronized, and maintaining accuracy are additional hurdles in building
dependable systems. Finally, managing resources and controlling costs are
important factors in practical implementations.

Understanding these limitations is essential for designing effective stream
processing architectures, selecting appropriate parallel processing techniques, and
evaluating existing solutions. Addressing these challenges remains an active area
of research, with ongoing efforts to improve adaptive scheduling, state

management, consistency models, and fault-tolerant frameworks.

48

3.3. Statistical analysis of large data sets

In the previous sections, the results and graphs of a regular dataset were
demonstrated, the dataset was collected according to the technical specifications.
The results of machine learning methods did not meet the needs of the customer.
So it was decided to collect the data in a different way, as a result, a large dataset
was obtained1815696 — expired. You must first connect to the librarydask and
allocate the amount of memory that is needed, in this case 8 GB. The results are

shown in Figure 3.1. The data are shown in Fig. 3.2.

client = Client{n_workers=2, threads per worker=1, memory limit="4GB',processes=False)

client
Client Cluster
« Scheduler: inproc:/M72.25.0.2/55/22 « Workers: 2

« Cores: 2
+« Memory: 500 GB

Figure 3.1 — Result of connecting to the library

@ 1 2 L] 4
x1 141365000000 21895.000000 16245.000000 21811.000000 20322.000000
x2 B7T3.000000 10789.000000 T7B22.0000D0 14270.0D0000 12093.000000
x3 0537134 0.526545 D.422646 0755819 0.670338
x4 0929526 0.434936 D.7T4T4T 0LE22TTS 0.536T06
X3 15. 771608 11.431559 10.652650 15.789350
xb 3125166 3127802 3 ; a.TsTa
KT 092292 0518313 0405626 0658859
] 0. T44548 033276 069365632 0404934
x5 15. 707006 11.395277 10624442 15,743230
x10 -0.35996 0.593410 1.0879T6 1.299158
x11 230. 160848 103.539098 65.56961T 173912368 147.335963
x12 181.955516 96.973361 170712562 167_314556 112.300623
x13 74270311 283.590717 253445205 146779673 214344640
x14 479626285 226649362 255 879355 37T 364050 296.904523
x13 0000000 0.000000 0.000000 0000000 0.000000
x16 0.000000 0.000000 0.000000 0.00D000 0.000000

targer] 111.000000 111.000000 111.000000 111.000000 111.000000

target? 121.000000 121.000000 121.000000 121000000 121.000000

Figure 3.2 — Building a new data set

49

After the data was collected and displayed, the next step was the primary

analysis, that is, to understand that the data does not have gaps or other characters.

First, we will check the list in percentage terms by the proportion of missing

records for each feature. The result is shown in Fig.3.3.

KE -

s
ur
Lo g i

oD o -

wl@g -
x11 -
xl2 -
x13 -
xld -
x15 -
xlg -
targetl
target2

[s=]

[

oW m D o
i

[

]
e R R R

o

F

8%
L%
a%
L%
a%
%
a%

0.0%
2.0%

Figure 3.3 — Checking for missing sample values

Next, we will check for text values. The result is shown in Fig. 3.4.

x1
x2
%3

*1le
x*11
x12
x13
»14
x15
x16

target

1

targst

Lo I I v I T v v

D0 900 00

[v xR [

Figure 3.4 — Non-standard missing values

50

The next step was to create a target sample distribution graph, blue.—
workout, orange—testing, green common. How similar the target variables are to

each other. The density plot is shown in Fig. 3.5.

040 -
0.040
035 -
0.035
,030 -
0.030
025 -
0.025
0.020 - 020
ulnls_ -015_
0.010 - 010 1
0.005 005 -
0.000 - .000 -
80 100 120 140 160 75 100 125 150 175
targetl target2

Figure 3.5 — Density plot of the distribution of target variables

The scatter plot shown in Figure 3.6 shows us how dependent the data is on
each other, as well as the spread of the data. This plot can help us determine
whether we need to clean the data with other methods, or apply a different
approach to the data.

In order to make sure how often certain values occur, we construct a
frequency diagram. Each column of the histogram shows the frequency of the
sample value falling within the value interval — the higher the bar, the more likely

the corresponding indicator values are. The histogram is shown in Figure 3.7.

. *
. gt

. -.-:8.
et
il |

IJ L

000 025 @50 075 100000 025 050 075 100000 @25 050 075 100000 025 050 O75 100000 025 050 075 100
2 " " trgerl g,

Figure 3.6 — Scatter plots of dependent and explanatory variables

JEEERERY

i

[y wid] [w18

2}

4

10
10 L
1= - L
1m e ™
[L - an
[s am
[B an
o oo an
a8 &1 B4 66 oA 10 as Ak w10 oo or a4 as as ie
gt
e
3

ey

A

baaasld freses

4 @

Bb B b4 06 0@ La a8 & B4 86 b8 10

Figure 3.7-Data distribution histograms

52

The next step was to use a correlation map. Here we can see how the
parameters (features) depend on each other. Based on the previous graphs, our
assumptions are correct, where 1 in the previous graph was the perimeter

distribution. The map is shown in Fig.3.8.

-DE

n 2 a » - - o - o Ao a1l a2 a3 M4 W% 6 fget] tseget?

Figure 3.8 — Correlation map — matrix

After the correlation map, it was decided to remove those variables that have
a very high correlation, i.e. they do not carry any informative value. The following
variables were removed: x7, x5, x8, x10, x14, x15, x16.

After removing the data, we obtained a sample that looks like the one shown
in Fig. 3.9.

Data has two types such as integer and floating point numbers. To make
them look the same, standardization has been applied. The idea behind
standardization is that it transforms the data so that its distribution will have a
mean of 0 and a standard deviation of 1. Given the distribution of the data, each
value in the data set will be subtracted from the sample mean and then divided by

the standard deviation of the entire data set. Mathematical explanation:

53

x2 x3 =4 wb »9 xll w2 x13 targetl target2

o 8773 0937134 0929526 3125166 15707006 230.160848 181955516 7427031 m 121

1 10759 0526545 0434938 3127802 11395277 103.5890%8 96973361 28355077 m 121

2 T822 0422646 0774747 3445335 10624442 69569617 170712962 253 445205 M g

3 14270 0755819 0822779 2178386 10748601 173912068 167314556 146.779673 M i

4 12093 0670338 0536706 4792278 15743230 147385963 112300623 214.344640 m 121
1815691 13855 0444579 095944804 16943530 9929977 61.825721 153.095613 3942 412923 106 105

1815692 8183 0771922 0674117 6652344 2028285 156.530470 106108712 2434 390274 106 105
1815693 11037 (0626786 0886155 72176594 14590242 114.204442 141366510 1036541148 106 105
1815694 8055 0493443 0724412 13149114 5.504445 801855968 122.754254 3032 202558 106 105
1815695 7353 0.353857 1.34103%9 9910455 3079820 29.159254 217.796809 2656283451 106 105
815696 rows = 10 columns

Figure 3.9 — Data after removing non-informative variables

X —Xmin

Xnnrm = P
max—Xmin (31)

where and are given as the minimum and maximum allowable values, for

default min = 0 max = 1 gqndardized data are shown in Fig. 3.10.

x1

x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
target1

taroet?

0.375985
0.267968
0.355502
0.253043
0.086409
0.009036
0.418574
0.321932
0.096200
0.057737
0.741563
0.535364
0.252685
0.002307
0.000000
0.000000
0.384615
0.413333

0.641868
0.329546
0.181139
0.102171
0.062479
0.009044
0.257907
0.212488
0.072690
0.060438
0.429539
0.321671
0.265898
0.001779
0.000000
0.000000
0.384615
0.413333

0.448256 0.638990
0.238920 0.435872
0137017 0.278504
0.205826 0.220480
0.058186 0.059000
0.009992 0.006208
0.213236 0.346988
0.308343 0.303229
0.068487 0.069164
0.061813 0.058169
0.345674 0.602901
0.507093 0.498548
0.263995 0.257262
0.001840 0.002094
0.000000 0.000000
0.000000 0.000000
0.354615 0.384615
0.413333 0413333

0.587965
0.369376
0.242203
0.133215
0.086507
0.014015
0.313721
0.231976
0.096397
0.062408
0.537507
0.360212
0.261527
0.001926
0.000000
0.000000
0.384615
0.413333

0.581214
0.234002
0.124837
0.120272
0.086044
0.012862
0.204234
0.235338
0.096044
0.061361
0.330298
0.366903
0.260576
0.001961
0.000000
0.000000
0.364615
0.413333

Figure 3.10 — Standardized data

3.4. Results of machine learning models

0.649853
0.262843
0.183350
0.159996
0.194558
0.044172
0.252021
0.263424
0.203307
0.078584
0.410736
0.417575
0.284500
0.001328
0.000000
0.000000
0.384615
0.413333

0.605990
0.285226
0.265253
0.184107
0.052087
0.014173
0.332577
0.273603
0.062341
0.066458
0.567871
0.435345
0.272603
0.001592
0.000000
0.000000
0.384615
0.413333

54

Next, we build machine learning models. Since we have come to the point

where we have a regression problem, the main task is to predict the target

variables. We will build the same models that were built on past data. Since the

unsatisfactory results made it clear that there is not enough data, the models are

retrained. Therefore, it was decided to use such methods as: linear regression,

random forest, decision tree and determine the best predictive model. All methods

will be considered from the point of view of regression. The following metrics of

predictive quality were used, as well as the coefficient of determination R*:

55

— coefficient R?:
2 _q M e 2
RE=1-7=0-) 3.2)

where U-—residual sum of squares;
V- - total sum of squares.

— root mean Squarc error:

1 .
MSE =;Zi=1(}’i - }’sz

(3.3)
— mean absolute error:
MAE = =30, |x; — x o
— average absolute percentage error:
MAPE =22 3n | X3
n Sy (3.5)
— average percentage error:
100% v (yi-Vi
MPE = 2Xyn (¥22)
i (3.6)

Results of the error of the predictive quality, as well as the coefficient of
determination R?, given for models such as, linear regression, trees solutions,
random forest. The results are shown in Table 3.1.

In addition to visualizing the predictive quality, regression trees were
constructed graphically for both target variables. It is graphically that we can
understand how the distribution is going. The tree for target1 is shown in Fig. 3.15.
The tree for target2 is shown in Fig. 3.16. As you can see, we take a subset of the
data and decide how best to divide the subset.

Our initial subset was the entire data set, and we divided it according to the
rule X <= 0.258 . Then for each subset we performed additional splitting until they
could correctly predict the target variable without adhering to the constraint on the

depth of the tree.

Table 3.1 - Results of forecast error of the methods used

56

Method Error Target 1 (target variable) | Target 2 (target variable)
forecast train test train test
qualities

Linear MSE 0.02 0.04 0.01 0.02
regression | MAE 0.13 0.17 0.9 0.11
MAPE 14.20 16.67 14.28 16.41
SCORE 0.13 0.10 0.13 0.13
Decision MSE 0.01 0.02 0.0 0.01
tree MAE 0.06 0.11 0.03 0.07
MAPE 7.49 10.63 3.15 6.55
SCORE 0.76 0.53 0.75 0.58
Random MSE 0.02 0.04 0.01 0.03
forest MAE 0.01 0.03 0.02 0.04
MAPE 2.54 3.46 1.0 1.96
SCORE 0.90 0.88 0.93 0.91

XI0] <= 0212

ms = 0,054

samples = 390
05T

/ L}
0137
4
1

[xi5) <= 0.083

mar = 0,00

Figure 3.14 — Tree for target variable (targetl)

57

X0 <= 0258
me = 0.025
samples = 1452
wvalse = 0.394
True / '\im
X[0] <= 0.212 X[a] == 0301
mse = 0.056 mae = 0018
samples = 3590 samples = 1062
vialee = 0,478 wvalse = 0363
X[0] <= 0175 X[0] <= 0.236 = X[0] <= (681
mse = 0,027 mee = 0,032 pesca hf"'lﬁ s = 0,016
samples = 317 samples = 73 Hl.u: = 0].BE samples = 1007
walue = 0L435 valae = (L6564 . walue = 0,373
i ~\
Xi0] == 016 - X[0]) ==0.579
mame | [moomor) [mmoon] [omem) (oo
S, = 22 alue = 0,187 ahue = 0.782 ahae - 0.582 MiSpied ' 312
value = 0LIAT = : - sk i v vabse = 0.413
X|a] == (.D&6& Xja] == D508 X[0) <= 0.614
mese = 0,014 :JP‘;L mse = 0015 mse = 0009
wmples = 230 Lm:’_ oy aamphes = 407 samples = 145
whlue = 0464 value = 0392 valee = 0.459
ey : ,
x[0] <= 0.065 | [x|0]<=0.122 X[0] <= 0.492 X0 <= D546 =00
mee = 0.01 e = 0,002 mue = 0015 e = 0,008 ireisin
samples = 144 samples = B samyples = 309 samples = 98 e £
value = 053 walue = 0.354 valee = 0.417 value = 0316 s
X[0] <= 0019 X[0) <= 0.359 X[1] == 0.421
s = 0,002 mse = D02 mse = 0002 e = .01 mse = 0.014 mse = (L0 e = 0,007 mee = L0
saanples = 28 wmples = 46 samples = 30 samples = 56 samnples = 779 samples = 30 anmples = B8 samples = 30
e S - 27 o
value = 0468 walue = 0662 valise = 0,385 walie = (1,337 valise = 8,408 walue = 0,52 T vale = 0,38
o = .00 X[8] == D018 Xj4) == 0.012 X[0) == 0.378 mse = LB0A e = 0,004
los = 30 s = (.00 1 mse = 002 rmr-lJ.{H_ Shiadies & 43 samoles = 15
waniples : . : P i
vallue = 0,438 Faplen = B8 gy = B peupia = 213 vabue = 0.255 | | value = 0.314
: valag = (.481 walue = 0.463 value = 0,38 =

Figure 3.15 — Tree for target variable (target2)

Fig. 3.16 visualizes the results of the methods. The graphs show the actual
and forecast data. It can be seen that the random forest model predicts the target
variables much better, since the forecast values are close to the actual ones along
the bisector, and this is also visible in the forecast quality estimates that were
shown in Table 3.1. These results meet the needs of the customer and will be

transferred to him.

AR | IO G R el iget] - (epees phieen)

DAKTSs | DTN [[SR TRIGEEE - (EeRn Pl

. -
M . aw . o -
'] w & ses
£
. L] - e . % a .
. L e ag . = "" o ®
E o5 E
I s Mane . * N bl * Fellve .
J " % | n* L]
. sl sem ® " < oe . = a "
- § a® L] L]
" L -
-y f.“ s o - -
: .o $!'- %
LA L " @ -
a2 o4 T 04 E
Al At
ST | NPOMWOIN fan 2R sl tanget] - [Bunageomil tic) DENTV | IPCTHOES AR L Tk [7 - (Renaganpai nic)
*
. o
L
1E] .
L -
¥
" - 8 o 0 ' e
£ # [] & L
¥ . B H 5 . . .
%
4 . L3 L £ g .
-I :'I - # «* =2 L

Figure 3.16 — Results of forecast and actual data

All the results that were demonstrated, they say that the most effective was
the random forest machine learning model. After that, a convenient program code
was developed so that the customer could easily operate this system. In order to

predict other data, it is necessary to download the data to the root directory, and

Preisd

58

]

AT APON=tEs 220 400 Ieieecs Earget] | Misiiea pedpocm)

then run the program code through the command line of the operating system. All

results will be received and stored in the excel file in the form shown in Fig. 3.18.

A B C D
pred_tar_1 pred_tar_2
106 105 0,2404 0,3753
102 102 0,6273 0,3805
116 111 0,3092 0,3641
106 108 0,3114 0,3801
108 109 0,4808 0,3727
111 122 0,486 0,3853
115 107 0,4448 0,4105
106 105 0,4846 0,4313
107 106 0.,4308 0,3845
103 103 0,4229 0,4903
140 125 0,2837 0,3288
106 105 0,4297 0,3395

Figure 3.18—Output result

59

3.5. Discussion and future trends

Discussion of Parallel Stream Analytics

The rapid evolution of data-generating technologies has made real-time
stream analytics a cornerstone of modern information systems. The analysis
presented in the preceding sections highlights that parallel processing is essential
for enabling real-time stream analytics at scale. By distributing computations
across multiple processing units, these systems can handle high-volume, high-
velocity data streams while maintaining stringent latency requirements.

Parallel stream processing allows multiple events to be processed
concurrently, improving throughput and ensuring that results are delivered in near
real-time. For example, consider an intelligent traffic management system in a
metropolitan area. Sensors embedded in roads and traffic signals generate
continuous streams of data, including vehicle counts, speeds, and congestion
levels. Without parallel processing, the sequential handling of these streams would
delay insights, rendering the system ineffective at managing live traffic flows. By
leveraging data-level and task-level parallelism, the system can process multiple
streams simultaneously, detect congestion patterns in real time, and issue adaptive
traffic signals.

However, the effectiveness of parallel processing depends heavily on system
design choices. Several factors influence performance, scalability, and resource
efficiency:

1. Data Partitioning Strategies: How incoming streams are divided
among processing nodes significantly affects workload distribution. Poor
partitioning can lead to data skew, where some nodes are overloaded while others
remain underutilized, resulting in bottlenecks. Effective partitioning strategies
must account for both event distribution and the nature of computations being

performed.

60

2. Parallel Execution Models: Whether a system relies on data
parallelism, task parallelism, pipeline parallelism, or a hybrid approach affects
throughput, latency, and system flexibility. Systems optimized for stateless
operations may underperform when handling stateful analytics unless their
execution model efficiently handles shared state.

3. State Management Techniques: Stateful stream processing, such as
computing moving averages or detecting patterns across multiple events,
introduces complexity. Systems must manage state consistently across parallel
tasks while supporting fault tolerance and recovery. Inefficient state management
can degrade performance and increase processing latency.

4, Resource Allocation and Scheduling: How computational resources
are allocated and tasks are scheduled across nodes directly impacts system
efficiency. Over- or under-provisioning resources can either waste infrastructure or
compromise real-time performance.

An important point is that no single method of parallel processing works
best for everything. Different jobs have their own needs for speed, capacity,
accuracy, and reliability. For example, a system that detects fraud in stock trading
needs to respond quickly and give accurate results, since delays or mistakes could
cost money. On the other hand, a product recommendation system for an online
shopping site might focus on handling many requests at once, even if it causes
small delays, as this won't affect the customer's experience much because of this,
systems that analyze data in real-time need to be built to be adaptable and flexible
so they can meet the specific needs of each task.

Trade-offs in System Design

Designing effective parallel real-time stream analytics systems involves
navigating a complex landscape of trade-offs between competing objectives. These
trade-offs manifest across several dimensions:

1. Throughput vs. Latency: Increasing parallelism generally improves

throughput by enabling more events to be processed simultaneously. However,

61

additional parallel tasks introduce communication overhead, synchronization
delays, and coordination complexity, which may increase overall latency. For time-
sensitive applications, balancing throughput with minimal latency is critical.

2. Consistency vs. Performance: Strong consistency guarantees
correctness across all parallel tasks but can require extensive coordination and
synchronization, which may slow down processing. Eventual consistency models
improve performance by reducing synchronization but may temporarily produce
inconsistent or approximate results. Designers must assess the acceptable level of
consistency for the application domain. For example, in healthcare monitoring
systems, strong consistency is critical for patient safety, whereas in social media
trend analysis, temporary inconsistencies may be tolerable.

3. Fault Tolerance vs. Resource Utilization: Replication, checkpointing,
and other fault-tolerance mechanisms consume computational resources and
network bandwidth. While these mechanisms improve system reliability, they
increase operational costs and may reduce effective throughput. Optimizing this
trade-off involves carefully selecting checkpoint intervals, replication strategies,
and recovery protocols to balance reliability with performance.

4, Complexity vs. Maintainability: Hybrid parallel models and adaptive
algorithms enhance performance but increase system complexity. Highly complex
systems may be more challenging to maintain, debug, and scale, especially in
distributed environments. System designers must consider long-term
maintainability alongside immediate performance improvements.

5. Centralized vs. Edge Processing: Deploying processing closer to data
sources (edge computing) reduces network latency but may limit the available
computational resources compared to cloud-based centralized systems. Conversely,
centralized systems provide virtually unlimited resources but can introduce higher
latency due to data transmission delays.

Effectively navigating these trade-offs requires profiling workloads,

understanding application requirements, and dynamically adapting system

62

configurations. Adaptive scheduling, dynamic repartitioning, and elastic resource
management are key strategies for optimizing these trade-offs in real-time
deployments.

Emerging Trends in Parallel Stream Processing

The field of parallel real-time stream analytics is rapidly evolving, driven by
advances in hardware, software, and computing paradigms. Several key trends are
shaping the future of this domain:

1. Edge and Fog Computing Integration

Edge computing refers to processing data closer to the source rather than
sending it to a centralized cloud or data center. In stream analytics, this reduces
network overhead, minimizes latency, and enables faster decision-making. Edge-
based parallel processing partitions computation between edge devices and central
servers, allowing local event filtering, aggregation, or pattern detection before
transmitting results upstream.

For example, in autonomous vehicles, onboard edge devices process sensor
data in real time to make immediate driving decisions, while aggregated
information is sent to central cloud servers for fleet-wide analytics. Fog
computing, an intermediate layer between edge and cloud, further enhances this
architecture by distributing computation hierarchically.

2. Adaptive and Elastic Parallelism

Modern stream analytics systems increasingly adopt adaptive parallelism,
dynamically adjusting the degree of parallelism in response to workload
fluctuations. This elasticity ensures that resources are used efficiently while
maintaining performance across variable input rates. Techniques such as dynamic
operator scaling, load-aware task scheduling, and stream auto-repartitioning enable
systems to respond to sudden spikes or drops in data volume.

Adaptive parallelism is particularly beneficial in applications such as social

media monitoring or e-commerce analytics, where traffic patterns can be highly

63

unpredictable. By automatically reallocating resources and scaling processing
tasks, systems can maintain low latency without over-provisioning infrastructure.

3. Hardware Acceleration

Advances in hardware are influencing the design and optimization of
parallel stream analytics systems. Multi-core CPUs, GPUs, and specialized
accelerators such as Field Programmable Gate Arrays (FPGAs) and Tensor
Processing Units (TPUs) provide high-throughput parallel computation
capabilities.

Parallel stream analytics frameworks increasingly leverage these
accelerators for tasks such as pattern matching, machine learning inference, and
large-scale aggregations. GPUs, for example, excel at executing the same operation
across thousands of data items simultaneously, making them ideal for data-parallel
stream processing. FPGAs provide low-latency, customizable hardware pipelines
for specialized tasks, such as real-time signal processing in industrial or healthcare
applications.

4. Integration of Machine Learning and Al

The integration of streaming machine learning and Al is transforming real-
time analytics. Techniques such as incremental learning, online clustering,
anomaly detection, and reinforcement learning allow systems to adapt to changing
data patterns and evolving environments.

Parallel execution is critical for streaming Al workloads. Model partitioning,
distributed feature extraction, and parallel inference pipelines enable machine
learning algorithms to process high-velocity streams in real time. Research is
ongoing to optimize consistency, minimize communication overhead, and improve
convergence speed for streaming machine learning models.

5. Unified Batch-Stream Processing Frameworks

There is a growing trend toward unified frameworks that combine batch and

stream processing. These frameworks provide consistent abstractions for both

64

historical and real-time data, enabling organizations to leverage the same pipelines,
operators, and parallelism strategies across different workloads.

For instance, systems such as Apache Flink and Apache Spark Structured
Streaming allow incremental processing of streaming data while also supporting
batch-style computation on historical datasets. Unified frameworks simplify
system design, reduce maintenance overhead, and enable optimization of parallel

execution across both batch and streaming workloads.

65

4 SAFETY OF LIFE, BASIC LABOR PROTECTION

4.1. Labor protection requirements when working with electrical

equipment

General provisions

The labor protection instructions for an electrician when performing repair
and maintenance work on electrical equipment were developed in accordance with
the Law of Ukraine “On Labor Protection” (Resolution of the Verkhovna Rada of
Ukraine dated 10/14/1992 No. 2694-X11) as amended on 01/20/2018, based on the
“Regulations on the Development of Labor Protection Instructions”, approved by
the Order of the Labor Protection Supervision Committee of the Ministry of Labor
and Social Policy of Ukraine dated January 29, 1998 No. 9 as amended on
September 1, 2017, taking into account the “Rules for the Technical Operation of
Consumer Electrical Installations”, approved by the Order of the Ministry of Fuel
and Energy dated July 25, 2006. No. 258 (as amended by the order of the Ministry
of Energy and Coal Industry of Ukraine dated 13.02.2012 No. 91, “Rules for the
safe operation of electrical installations of consumers”, approved by the order of
the State Supervision Service of Ukraine dated 09.01.1998 No. 4.

All provisions of this labor protection instruction apply to electricians of an
educational institution who perform repair and maintenance work on electrical
equipment.

Persons not younger than 18 years old who have undergone training in the
specialty and who are also allowed to perform repair and maintenance work on
electrical equipment independently are:

a medical examination and do not have contraindications due to health to
perform this work;

introductory and primary workplace briefings on labor protection;

training in safe methods and techniques of work;

66

testing of knowledge of the rules for installing electrical installations, safety
rules for operating electrical installations, labor protection requirements;

when repairing and maintaining electrical equipment voltage up to 1000V
have an electrical safety group not lower than III, and over 1000V - not lower than
IV.

Electricians must know and comply with the requirements of the labor
protection instructions when performing work on the repair and maintenance of
electrical equipment, instructions for working with hand tools, power tools and
ladders.

Electricians when performing work on the repair and maintenance of
electrical equipment must comply with the requirements of the Rules for the safe
operation of electrical installations of consumers and the Rules for the technical
operation of electrical installations of consumers, and have an appropriate
electrical safety group in accordance with the requirements of these Rules.

When performing work on the repair and maintenance of electrical
equipment, the impact of the following harmful and dangerous production factors
may be observed:

fall from a height;

electric shock;

increased electric field strength;

increased dustiness of the air in the work area;

increased vibration level;

insufficient illumination of the work area;

physical overload;

neuropsychic overload.

Electricians when performing repairs and maintenance of electrical
equipment must use the following PPE:

cotton overalls - for 12 months;

gloves for - 3 months;

67

leather boots for - 24 months;

dielectric galoshes - on duty;

dielectric gloves - on duty;

dielectric mats - on duty.

An electrician when repairing and maintaining electrical equipment is
obliged to:

keep his workplace clean and tidy;

comply with the Rules of Internal Labor Regulations;

be able to use personal and collective protective equipment, fire
extinguishing equipment;

be able to provide first aid to accident victims;

know and comply with all requirements of regulatory acts on labor
protection, fire protection rules and industrial sanitation.

immediately inform your immediate supervisor about any accident that
occurred at work, about signs of an occupational disease, as well as about a
situation that poses a threat to the life and health of people;

know the testing dates of protective equipment and devices, the rules for
their operation, care and use. It is not allowed to use protective equipment and
devices with an expired inspection period;

perform only the assigned work;

comply with the requirements of the equipment operating instructions;

know where the first aid facilities, primary fire extinguishing equipment,
main and emergency exits, evacuation routes in the event of an accident or fire are
located;

know the telephone numbers of a medical institution (103) and fire
department (101).

An electrician may refuse to perform the work assigned to him if a
production situation arises that poses a threat to his life and health of others, or to

the environment, and report this to his immediate supervisor.

68

Smoking, drinking alcoholic beverages and other substances that have a
narcotic effect on the human body are prohibited in the workplace.

In order to prevent injuries and the occurrence of dangerous situations, the
following requirements must be observed: it is impossible to involve third parties
in the work;

do not start work if there are no conditions for its safe performance;

perform work only on serviceable equipment, with serviceable devices and
tools;

if a malfunction is detected, immediately report it directly to

to the manager or eliminate them on their own, if this applies to their job
duties;

not to touch uninsulated or damaged wires;

not to perform work that is not part of their professional duties.

Be able to provide first aid for bleeding, fractures, burns, electric shock,
sudden illness or poisoning.

Follow the rules of personal hygiene:

outerwear, hats and other personal belongings should be left in the
wardrobe;

work 1n clean overalls;

eat in the designated place.

Be able to correctly use PPE and collective protection equipment, primary
fire extinguishing equipment, fire-fighting equipment, know where they are.

Persons who violate this labor protection instruction for an electrician when
performing repair and maintenance work on electrical equipment shall bear
disciplinary, administrative, material and criminal liability in accordance with the
current legislation of Ukraine.

Safety requirements before starting work

Wear overalls, inspect and prepare the workplace, remove unnecessary

objects.

69

Remove unauthorized persons from the work area and clear the workplace of
foreign materials and other objects, fence off the work area and install safety signs.

Make sure that the workplace is sufficiently illuminated, that there is no
electrical voltage on the repaired equipment.

Inspect the serviceability of switches, electrical outlets, power cords,
electrical wires, connecting cables, make sure that PPE (personal protective
equipment) and warning devices (dielectric gloves, safety glasses, galoshes, mats,
etc.) are available and in good condition.

When working with a tool, it is necessary to make sure that it is in good
condition, that there is no mechanical damage to the insulating coating and that the
tool has been tested in a timely manner.

Inspect the workplace for compliance with fire safety requirements and for
adequate workplace lighting.

If you find any deficiencies or violations in electrical and fire safety,

immediately report them to your immediate supervisor.

4.2. Safety requirements during work

When performing your duties, an electrician must have a certificate of
knowledge testing on labor protection. In the absence of a certificate or a
certificate with an expiration date, the employee is not allowed to work.

Work in electrical installations is divided into 3 categories in terms of safety
measures:

with voltage relief;

without voltage relief on or near live parts;

without voltage relief away from live parts.

Employees performing special types of work that require additional safety
requirements must be trained in the safe conduct of such work and have a

corresponding entry in the knowledge test certificate.

70

An employee who serves electrical installations assigned to him with a
voltage of up to 1000 V alone must have a III group on electrical safety.

When performing work in electrical installations, it is necessary to carry out
organizational measures that ensure the safety of work:

draw up work orders-permits, orders in accordance with the list of works
performed in the order of current operation;

prepare workplaces;

admittance to work;

exercise control over the performance of work;

transfer to another workplace;

establish breaks in work and its completion.

To prepare the workplace for work that requires voltage relief, it is necessary
to apply, in a certain order, the following technical measures:

perform the necessary shutdowns and take all measures that exclude
erroneous or unauthorized switching on of switching equipment;

hang prohibition posters on the drives of manual and remote control keys of
switching equipment;

check for the absence of voltage on conductive parts that must be grounded
to protect people from electric shock;

install grounding (turn on grounding knives, use portable grounding);

install fences, if necessary, near workplaces or live parts that remain under
voltage, and also hang safety posters on these fences.

depending on local conditions, fence live parts before or after their
grounding.

At least two workers should work without removing voltage on or near live
parts, one of whom, the work supervisor, must have group IV; the others must
have group III with mandatory registration of the work with a work permit or

order.

71

When removing and installing fuses under voltage in electrical installations
with voltage up to 1000 V, all loads connected to the specified fuses should be
disconnected in advance; use insulating pliers or dielectric gloves, and if there are
open fuse inserts, then safety glasses.

Work using ladders must be carried out by two people, one of the workers
must be at the bottom. Standing on boxes or other objects is prohibited. P

When installing extension ladders on beams, elements of metal structures,
etc., the upper and lower parts of the ladder should be securely fixed to the
structures.

During maintenance and repair of electrical installations, it is prohibited to

use metal ladders.

4.3. Safety requirements after completion of repair and maintenance of

electrical equipment

Disconnect (disconnect) the necessary electrical equipment, power tools
from the network.

Clean up the workplace, remove parts, material, garbage and waste to
special places.

Remove all tools and devices to the designated place.

Remove and remove overalls, PPE, wash hands thoroughly.

Inspect the workplace for compliance with all fire protection requirements.

Notify your immediate supervisor of any deficiencies and malfunctions that
occurred during the work. Record this in the operational log.

Safety requirements in emergency situations

In case of fire:

turn off electrical equipment, supply and exhaust ventilation, if any;

notify the fire department by calling 101 and report this to your supervisor,

and 1n his absence, to another official;

72

proceed to eliminate the source of the fire, using the fire extinguishing
agents provided for this purpose. Extinguish electrical equipment that is under
voltage can only be extinguished with carbon dioxide fire extinguishers of the OU
type or sand. It is prohibited to extinguish them with water or foam fire
extinguishers.

The electrician must remember that in the event of a sudden power outage, it
can be supplied again without warning.

Mechanisms and devices should be quickly turned off:

in the event of a sudden power outage;

if their further operation threatens the safety of employees;

in the event of a feeling of electric current when touching metal parts of the
starting equipment;

in case of sparking;

at the slightest sign of ignition, smoke, or a burning smell;

if an unfamiliar noise appears.

In the event of a short circuit in the power supply network, it is necessary to
de-energize the equipment and notify your immediate supervisor.

If an electric shock occurs, the victim should be released from the action of
the electric current, for which purpose the electrical network should be turned off
or the victim should be disconnected from the conductive parts using dielectric
protective equipment and other insulating items and objects (dry clothing, dry pole,
rubberized material, etc.), or the wire should be cut (chopped) with any tool with
an insulating handle, carefully, without causing additional injuries to the victim.
Before the arrival of a medical worker, it is necessary to provide the victim with
first aid.

In the event of accidents (injury to a person), immediately notify the

immediate supervisor.

73

CONCLUSIONS

In today’s highly connected, data-filled world, real-time stream analysis has
become a key part of modern computer systems. The incredible rise in data
creation, fueled by the Internet of Things (IoT), banking systems, social media,
sensor networks, and factory automation, has changed how organizations gather,
process, and use information. Unlike old-fashioned static data sets, today’s data is
continuous, fast, and diverse, coming in streams that need quick analysis. Being
able to get useful insights from these streams instantly has become vital in many
areas, including finance, healthcare, transportation, smart cities, and industrial
oversight.

Traditional methods of handling data, which involve gathering, storing, and
analyzing information in batches over time, no longer meet the needs of today's
rapidly flowing data streams. Although these batch systems still work well for
reviewing past data and managing large volumes of information, they can't deliver
the quick responses required for real-time situations. For example, in stock trading,
a delay in detecting fraudulent activity can cause significant financial loss; in
autonomous vehicles, slow analysis of sensor data can compromise safety; and in
health monitoring, delays in identifying issues with a patient’s vital signs can be
dangerous. These examples demonstrate that delays in processing constant streams
of data are more than just operational problems—they can lead to serious financial,
safety, and personal risks.

To tackle these problems, parallel processing has become a key technology
for real-time stream analysis, enabling systems to handle many events at once. This
greatly increases speed and reduces delays, which is crucial for managing the
growing volume and complexity of data in today’s applications.

This paper has provided a thorough look at how computers process data in
real-time, stressing its important role in today's technology. It started by explaining

the basic ideas behind analyzing data streams and using multiple processors at

74

once, along with reasons why these methods are popular. Data stream analysis
involves processing ongoing, unpredictable data quickly to get immediate results.
Multiple processing is a way of doing many tasks at the same time to increase
speed and reduce delays. These ideas form the core of today's data handling, where
managing continuous, fast-moving information is essential for staying competitive
and efficient.

Building on this basic idea, the paper looked into different system setups
created to support real-time stream analysis. Usually, these systems have several
main parts: data sources, ways to collect the data, processing engines that work in
parallel, tools to keep track of the system’s state, and layers to share or connect
results. Each of these parts is essential to ensure that data flows smoothly,
processing is quick, the system’s memory stays accurate, and results get to users
without much delay.

Data sources in these setups are becoming more diverse, including
everything from smart gadgets and sensors to websites and social media platforms.
Since the data can arrive at different speeds, in various formats, and with varying
levels of reliability, we need robust systems to gather it—especially during sudden
increases in activity—while keeping everything organized and dependable. This is
when multiple collection points start working simultaneously, ensuring all
incoming data is captured quickly and efficiently.

The system's main component is the processing engine, which handles
complex analysis tasks on incoming data streams. By using different forms of
parallelism, such as splitting data, dividing tasks, lining up processes, and working
on windows, these engines can process millions of events every second while
keeping delays manageable. For instance, data parallelism means processing
different parts of a stream in parallel, and pipeline parallelism allows data to flow
smoothly through each step. Often, these methods are mixed to create flexible and

scalable systems that reduce the chance of slowdowns.

75

A crucial part of these systems is handling their state, which helps with
ongoing tasks like merging data, linking different groups, and spotting complex
events. Managing the state well requires careful organization, saving progress, and
fixing issues to keep everything accurate and reliable across all parts. It gets harder
in systems that run tasks at the same time, where keeping everyone's state in sync
takes more effort. Still, good state management is vital for providing accurate, real-
time insights in applications that depend on cumulative or time-based calculations.

The output and integration layers complete the architecture by delivering
processed results to downstream systems, dashboards, or automated decision-
making components. Parallelism is also applied here to allow multiple results to be
transmitted or stored concurrently, ensuring that the output does not become a
bottleneck in the overall system. In addition, fault tolerance, load balancing, and
scalability mechanisms are integrated throughout the architecture to maintain
continuous operation even under failure conditions or fluctuating workloads.

The paper also provided a detailed analysis of parallel processing techniques
for real-time stream analytics. These techniques include:

1. Data parallelism, where streams are partitioned and processed
independently, providing fine-grained scalability.

2. Task parallelism, allowing multiple stages or operations to execute
concurrently to reduce overall pipeline latency.

3. Pipeline parallelism, which maintains continuous data flow through
sequential processing stages executed in parallel.

4. Window-level parallelism, enabling simultaneous computation over
multiple temporal or event-based windows.

3. Operator parallelism, which replicates operators across data partitions
for efficient scaling.

The combination of these techniques forms the backbone of high-
performance stream analytics systems, allowing them to meet the dual

requirements of low latency and high throughput.

76

Furthermore, the study explored key algorithms and frameworks for parallel
stream analytics, including filtering, aggregation, pattern detection, and streaming
machine learning. Filtering and transformation algorithms benefit from stateless
parallelism, while aggregation and pattern detection algorithms leverage stateful
parallel execution. Machine learning algorithms for streaming data, including
classification, anomaly detection, and predictive analytics, rely on distributed
model execution and parallel feature extraction to scale effectively. Frameworks
such as Apache Flink, Apache Spark Structured Streaming, and Apache Kafka
Streams provide pre-built abstractions and runtime support, facilitating the
implementation of these algorithms while transparently managing parallelism,
state, and fault tolerance.

Despite this progress, systems that analyze data in real time still face several
problems and limits. Growing the system's capacity isn't always straightforward;
uneven data distribution and workload imbalances can cause delays. Waiting times
are still affected by the need for coordination, communication, and network traffic.
Managing the state of data across multiple locations adds difficulty, especially
when trying to find the right balance between saving checkpoints and maintaining
system speed. While necessary, safety nets that prevent system failures can add
extra work and storage needs. Additionally, managing resources and keeping
operational costs down are key to ensuring the system works well and remains
affordable. Recognizing and solving these issues is essential for creating systems
that are dependable, efficient, and easy to maintain.

The discussion of future trends underscores the field's dynamic, evolving
nature. Integration with edge and fog computing is enabling real-time processing
closer to the data source, reducing latency and bandwidth usage. Adaptive and
elastic parallelism allows systems to dynamically adjust to fluctuating workloads,
improving resource utilization and responsiveness. Hardware advancements,
including multi-core processors, GPUs, FPGAs, and TPUs, provide new avenues

for accelerating parallel stream processing. Data-driven analysis and learning

77

systems enhance predictive capabilities and decision-making, while unified batch-
stream processing frameworks simplify system design and maintenance.

Looking ahead, there are many opportunities for research in this area. Future
work could focus on simple, efficient ways to manage system state; better methods
to evenly distribute workload and prevent data imbalance; quick fault recovery;
running machine learning tasks in parallel on streaming data; energy-saving
computing for devices at the edge; and secure, privacy-protected ways to analyze
data together. Solving these problems will need teamwork across different fields,
including computer systems, processing techniques, data analysis, and artificial
intelligence.

In conclusion, using multiple tasks at once is essential for analyzing data as
it happens. It turns continuous, fast-moving data flows from a problem into an
opportunity, allowing quick and useful insights that support making decisions in
many areas. Companies and researchers need to keep exploring, improving, and
creating new ways to design systems that handle data streams in parallel, so they
can keep up with the growing needs of data-based applications. By making good
use of handling many tasks at once, today's analysis systems can provide scalable,
quick, and dependable real-time information, making sure the full value of
streaming data is recognized.

As digital systems keep advancing, analyzing data as it happens, driven by
multiple computers working together, will continue to be a key foundation for
responsive, intelligent, and adaptable systems. Its significance will keep growing,
especially as data becomes more central to making operational decisions,
forecasting outcomes, and automating responses across various fields such as
finance, healthcare, industrial automation, smart cities, and others. The way
advanced processing techniques, cutting-edge algorithms, and solid system
structures work together will ultimately influence the efficiency, dependability, and

future success of these real-time data analysis platforms.

78

REFERNCES

1. The Internet of Things: A survey / M. G. J. van den Brand et al. IEEE
Communications Surveys & Tutorials. 2013. Vol. 15, no. 1. P. 164-181. URL:
https://www.sciencedirect.com/science/article/pii/S1389128610001568 (mara
3BepHeHHs: 25.01.2026).

2. Turkington B. Real-time Stream Analytics. 1st ed. Birmingham, UK :
Packt Publishing, 2016. 320 p. URL: https://www.packtpub.com/product/real-
time-stream-analytics/9781785282643.

3. Sakr S., Gaber A. Large Scale and Big Data: Processing and
Management. CRC Press, 2014. 614 p. URL: https://www.routledge.com/Large-
Scale-and-Big-Data-Processing-and-Management/Sakr-
Gaber/p/book/9781466581096.

4. StreamCloud: An FElastic and Scalable Data Streaming System / V.
Gulisano et al. IEEE Transactions on Parallel and Distributed Systems. 2012. Vol.
23, no. 12. P. 2351-2365. URL:
https://oa.upm.es/16848/1/INVE _ MEM 2012 137816.pdf.

5. The Dataflow Model: A Practical Approach to Balancing Correctness,
Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing /
T. Akidau et al. Proceedings of the VLDB Endowment. 2015. Vol. 8, no. 12. P.
1792—1803. URL: https://www.vldb.org/pvldb/vol8/p1792-akidau.pdf.

6. Hirzel M. et al. A Catalog of Stream Processing Patterns. ACM
Computing Surveys. 2014. Vol. 46, no. 4. P. 145 URL:
https://dl.acm.org/doi/10.1145/2543581.

7. Chen C. L. P., Zhang C. Y. Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data. Information Sciences. 2014.
Vol. 275. P. 314-347. URL:
https://www.sciencedirect.com/science/article/pii/S002002551400374X.

79

8. Apache Flink: Stream and Batch Processing in a Single Engine / P.
Carbone et al. IEEE Data Engineering Bulletin. 2015. Vol. 38, no. 4. P. 28-38.
URL.: https://ieeexplore.ieee.org/document/7343867.

0. Zaharia M. et al. Discretized Streams: Fault-Tolerant Streaming
Computation at Scale. Proc. ACM SOSP. 2013. P. 423-438. URL:
https://dl.acm.org/doi/10.1145/2517349.2522737.

10. The Design of the Borealis Stream Processing Engine / D. J. Abadi et
al. Proc. CIDR. 2005. URL: http://cidrdb.org/cidr2005/papers/3 Abadi.pdf.

11. Kreps J., Narkhede N., Rao J. Kafka: A Distributed Messaging
System for Log Processing. Proc. NetDB. 2011. URL:
https://www.usenix.org/system/files/conference/netdb11/netdb11-final8.pdf.

12. Trill: A High-Throughput Incremental Query Engine for Diverse
Analytics / S. Chandramouli et al. Proceedings of the VLDB Endowment. 2014.
Vol. 8, no. 4. P. 401-412. URL: https://www.vldb.org/pvldb/vol8/p401-
chandramouli.pdf.

13. The Power of Both Worlds: A Hybrid Approach to Scalable Real-
Time Stream Processing / M. A. U. Nasir et al. Proc. IEEE ICDE. 2015. URL:
https://ieeexplore.ieee.org/document/7113126.

14. Lohachab K. S., Karambir B. A Review of Real-Time Stream
Analytics Frameworks. Journal of Big Data. 2019. Vol. 6, no. 1. URL:
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0216-3.

15. State Management in Apache Flink / P. Carbone et al. Proc. ACM
SIGMOD. 2017. URL: https://dl.acm.org/doi/10.1145/3035918.3064035.

16. Structured Streaming: A Declarative API for Real-Time Applications
in Apache Spark / M. Armbrust et al. Proc. ACM SIGMOD. 2018. URL:
https://dl.acm.org/doi/10.1145/3183713.3190664.

17. MillWheel: Fault-Tolerant Stream Processing at Scale / T. Akidau et
al. Proceedings of the VLDB Endowment. 2013. Vol. 6, no. 11. URL:
https://www.vldb.org/pvldb/vol6/p1128-akidau.pdf.

80

18. S-Store: Streaming Meets Transaction Processing / J. Meehan et al.
Proceedings of the VLDB Endowment. 2015. Vol. 8§, no. 13. P. 2134-2145. URL:
https://www.vldb.org/pvldb/vol8/p2134-meehan.pdf.

19. Gedik B. et al. SPADE: The System S Declarative Stream Processing
Engine. Proc. ACM SIGMOD. 2008. URL:
https://dl.acm.org/doi/10.1145/1376616.1376671.

20. Edge Computing: Vision and Challenges / W. Shi et al. IEEE Internet
of Things Journal. 2016. Vol. 3, no. 5. P. 637-646. URL:
https://ieeexplore.ieee.org/document/7462615.

21. George G. et al. Parallel processing using GPU for real-time data
streaming. Proc. IEEE ICSPC. 2017. URL:
https://ieeexplore.ieee.org/document/8327318.

22. Y. Leshchyshyn, L. Scherbak, O. Nazarevych, V. Gotovych, P.
Tymkiv and G. Shymchuk, «Multicomponent Model of the Heart Rate Variability
Change-point,» 2019 IEEE XVth International Conference on the Perspective
Technologies and Methods in MEMS Design (MEMSTECH), Polyana, Ukraine,
2019, pp. 110-113, doi: 10.1109/MEMSTECH.2019.8817379

23. Lytvynenko, S. Lupenko, O. Nazarevych, G. Shymchuk and V.
Hotovych, «Mathematical model of gas consumption process in the form of cyclic
random process,» 2021 IEEE 16th International Conference on Computer Sciences
and Information Technologies (CSIT), LVIV, Ukraine, 2021, pp. 232-235, doi:
10.1109/CSIT52700.2021.9648621

24. Bodnarchuk, I., Kunanets, N., Martsenko, S., Matsiuk, O., Matsiuk,
A., Tkachuk, R., Shymchuk, H.: Information system for visual analyzer disease
diagnostics. CEUR Workshop Proceedings 2488, pp. 43-56 (2019).

25. Mumuyk I'. B. JlochimkeHHs METOMIB 3aXUCTy BIJOMHX XMapHUX
miatopMm : kBamdikamiiiHa poboTa OCBITHROTO piBHSA ,Marictp® ,,125 -

KibepOesneka“ / I'. B. lllumuyk. — Tepuomnine : THTY, 2022. — 74 c.

81

26. MeroauyHl BKa3iBKA PO3pOO0JICHI Yy BUAMOBIIHOCTI 3 HaBYaJIbHUM
IJJAHOM JIJI1 CTYJEHTIB OCBITHBOTO pIBHSA OakamaBp cremaibHOCTI 126
«lapopmaniiini cuctemu Ta TexHojori» / Ykmag.: O. b. Hazapesuu, I'. B.
[Iumuyk, H. M. lIBega. — Tepuonins : THTY 2020. — 22 c.

27. V. Kozlovskyi, Y. Balanyuk, H. Martyniuk, O. Nazarevych, L.
Scherbak and G. Shymchuk, «Information Technology for Estimating City Gas
Consumption During the Year,» 2022 International Conference on Smart
Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 2022, pp.
1-4, doi: 10.1109/SIST54437.2022.9945786.

