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ANNOTATION 

 

Parallel Processing for Real – Time Stream Analytics // Diploma thesis Bachelor 

degree // Emmanuel Yaw Mac-Gatus // Ternopil’ Ivan Puluj National Technical 

University, Faculty of Computer Information System and Software Engineering, 

Department of Computer Science // Ternopil', 2026 // P. __, Fig. – __, Tables – __, 

Annexes – __, References – __. 

 

Kеуwоrds: Real-time stream analytics, parallel processing, distributed 

systems, data streams, low-latency computing. 

 

Parallel processing helps overcome limitations by distributing data and 

computations across multiple processing units, allowing everything to run 

simultaneously. This approach enables stream analytics systems to handle higher 

volumes of data, respond more quickly, and scale more effectively. As a result, 

they are ideally suited for continuous, unbounded data streams. This paper offers a 

thorough review of methods for parallel processing in real-time stream analytics, 

exploring key architectural designs, stream-processing models, and parallelization 

strategies that improve the efficiency and scalability of live data analysis. 

This paper also explores the everyday challenges faced when implementing 

parallel stream processing. These include coordinating tasks, maintaining 

consistent data states, tolerating faults, balancing workloads, and managing data 

skew. If not properly handled, these issues can seriously affect how well the 

system performs and how reliably it operates. By examining current solutions and 

emerging trends in stream processing frameworks and hardware acceleration, the 

study highlights the growing importance of parallel processing for real-time data 

analysis. The results show that effective parallelization is crucial for supporting 

modern, data-driven applications across various fields, including smart cities, 

finance, healthcare, and industrial automation. 
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INTRODUCTION 

 

The rapid growth of data-generating technologies has changed how 

information is created and used in many fields. Devices such as those in the 

Internet of Things, social media platforms, financial systems, and sensor networks 

constantly generate large volumes of real-time data [1]. To extract meaningful 

insights, immediate processing is essential. Delays, even brief ones, diminish 

value—especially when monitoring for fraud, ensuring smooth traffic flow, or 

maintaining system reliability. This is where challenges arise: traditional methods 

weren’t built for this. They work through batch jobs, handling tasks sequentially, 

which made sense years ago but falls apart when you’re drowning in data that 

demands instant analysis [2]. 

Parallel processing helps overcome limitations by distributing data and 

computations across multiple processing units, allowing everything to run 

simultaneously. This approach enables stream analytics systems to handle higher 

volumes of data, respond more quickly, and scale more effectively. As a result, 

they are ideally suited for continuous, unbounded data streams [3]. This paper 

offers a thorough review of methods for parallel processing in real-time stream 

analytics, exploring key architectural designs, stream-processing models, and 

parallelization strategies that improve the efficiency and scalability of live data 

analysis [4]. 

This paper also explores the everyday challenges faced when implementing 

parallel stream processing. These include coordinating tasks, maintaining 

consistent data states, tolerating faults, balancing workloads, and managing data 

skew. If not properly handled, these issues can seriously affect how well the 

system performs and how reliably it operates [5]. By examining current solutions 

and emerging trends in stream processing frameworks and hardware acceleration, 

the study highlights the growing importance of parallel processing for real-time 

data analysis. The results show that effective parallelization is crucial for 
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supporting modern, data-driven applications across various fields, including smart 

cities, finance, healthcare, and industrial automation [6]. 
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1. ANALYSIS OF THE SUBJECT AREA AND STATEMENT OF THE 

TASK 

 

1.1. Background and Motivation 

 

The continuous progress in digital technologies has profoundly changed how 

we create, share, and look at data. In the past, data was mainly gathered in separate 

groups, stored in databases, and handled based on fixed plans. These datasets were 

typically finite, systematically organized, and comparatively small in volume. In 

contrast, contemporary systems frequently produce continuous data streams, 

exemplifying an unceasing flow of information generated over time. A data stream 

is a real-time, constant flow of data points that arrive in sequence and often require 

immediate processing or rigorous temporal management. 

These ongoing data streams come from many different sources. You might 

find sensor networks monitoring the environment or industrial processes, wearable 

and smart devices, Internet of Things (IoT) platforms, online transaction and 

payment systems, web server and application logs, or social media sites. The data 

from these sources usually has three main traits: it comes in quickly, it’s large in 

volume, and it keeps coming without stopping. "High velocity" means data is 

generated and sent very fast. "Large volume" refers to the enormous, often 

limitless amount of data. "Continuous arrival" means the data flow has no clear 

end. Because of these traits, storing all incoming data before analyzing it is often 

not possible, so traditional batch processing methods don’t work well here. 

To tackle these issues, the concept of real-time stream analytics has 

emerged. This approach involves analyzing, transforming, and deriving insights 

from streaming data as it arrives, with minimal delay between data arrival and the 

resulting insights. Unlike batch analytics, which looks at past data, real-time 

analytics focuses on immediate response. This is crucial in situations where data 

loses its value quickly. For example, in financial systems, real-time analytics helps 
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spot fraudulent transactions early; in intelligent transportation, it supports live 

traffic flow and congestion control; in stock markets, it enables quick trend 

detection; and in healthcare, it allows continuous monitoring of patients’ vital 

signs. In these cases, delays can lead to financial losses, lower system efficiency, 

or even endanger human safety. 

Despite its advantages, real-time stream analytics introduces significant 

computational complexity. As data streams grow in speed and scale, sequential 

processing models, where data items are processed one after another on a single 

processing unit, become increasingly inefficient. Such models struggle to meet 

strict latency and throughput requirements, leading to processing backlogs and 

delayed responses. This limitation becomes more severe as modern applications 

demand real-time analysis of millions of events per second. 

To address these challenges, parallel processing has become a key technique 

in stream analytics systems. Parallel processing is a computational approach in 

which multiple processing units execute tasks simultaneously to solve problems 

more efficiently. In stream analytics, it involves splitting incoming data streams 

and analytical tasks across multiple processors, cores, or distributed machines. By 

enabling concurrent execution, parallel processing greatly enhances throughput, 

lowers processing latency, and improves system scalability.  

As a result, it plays a critical role in meeting the performance demands of 

modern real-time analytics applications. 

As more industries rely on making quick, real-time decisions, it's essential to 

explore how parallel processing can help analyze data streams effectively. 

Understanding how to use parallelism effectively, along with the challenges it 

entails, is key to building real-time data systems that are efficient, reliable, and 

scalable. 
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Figure 1.1 - Definition and Flow of Continuous Data Streams 

 

Real-Time Stream Analytics Overview 

Building on the previous discussion, real-time stream analytics marks a shift 

in how data is processed and analyzed in modern systems. Unlike batch analytics, 

which collects data over a set period for later processing, stream analytics 

processes data as it arrives. This approach enables systems to produce insights 

continuously, rather than waiting for the entire dataset. 

The primary goal of real-time stream analytics is to facilitate rapid decision-

making. Because data can quickly lose its relevance, delayed analysis often proves 

ineffective. Consequently, stream analytics systems are designed to process events 

rapidly, typically delivering results within milliseconds or seconds. This 

distinguishes stream analytics from traditional data processing by prioritizing 

speed, responsiveness, and system efficiency. 

 



10 

 

 

 

Figure 1.2 – Role of Parallel Processing in Reducing Latency 

 

Real-time stream analytics systems have some key features. They keep 

processing incoming data nonstop, so they need to run continuously. Their ability 

to handle data quickly is essential because even minor delays can affect 

performance and decision accuracy. These systems also often track context across 

multiple events, which helps spot patterns, trends, or anomalies. Scalability is 

essential too, since data volumes can suddenly grow. 

These features really challenge computer resources and how systems are 

built. Just using one machine and processing tasks one after another usually isn't 
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enough. That's why many modern stream analytics tools are moving toward 

parallel and distributed computing models, helping them run faster and scale more 

easily. 

 

 

Figure 1.3 - Comparison of Batch Analytics and Stream Analytics 

 

Role of Parallel Processing 

To meet the performance demands of real-time stream analytics, parallel 

processing plays a central and enabling role. Rather than executing operations 
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sequentially, parallel processing allows multiple computations to run concurrently 

by distributing workloads across multiple processing units. In streaming 

environments, this approach enables systems to handle large volumes of incoming 

events without sacrificing responsiveness. 

 

 

Figure 1.4 - Key Characteristics of Real-Time Stream Analytics 

 

In real-time stream analytics, parallelism can be implemented at multiple 

levels of the system architecture. A prevalent method is data-level parallelism, in 

which incoming data streams are partitioned for independent processing. This 
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facilitates the concurrent analysis of multiple events, thereby substantially 

enhancing throughput. Additionally, task-level parallelism involves executing 

different analytical operations or processing stages simultaneously. Pipeline 

parallelism extends this concept by enabling data to traverse a series of processing 

stages that operate concurrently, thereby optimizing overall system efficiency. 

By leveraging these forms of parallelism, stream processing systems can 

scale horizontally by adding more processing resources as data rates increase. This 

flexibility allows systems to adapt dynamically to changing workloads while 

maintaining consistent performance across varying conditions. As a result, parallel 

processing is not merely an optimization technique but a fundamental requirement 

for achieving real-time performance in modern stream analytics systems. 

 

 

Figure 1.5 - Levels of Parallelism in Stream Processing Systems 
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Challenges in Parallel Stream Processing 

While running tasks in parallel can significantly boost performance, it also 

introduces tricky technical challenges that require careful attention. One major 

issue is handling shared state, since many stream analytics apps rely on it across 

different tasks. Keeping everything consistent and correct can be quite challenging. 

If the state isn’t managed properly or is poorly designed, it can lead to wrong 

results or even make the system unstable. 

Synchronization overhead is a significant concern because coordinating 

parallel tasks often involves synchronization mechanisms that, if not optimized, 

can decrease performance gains. Too much synchronization can cause delays that 

negate the advantages of parallel execution. Moreover, data skew—where some 

data partitions carry much more workload than others—can create load imbalance 

among processing units. This imbalance hampers overall system efficiency and 

restricts scalability. 

Fault tolerance is crucial in systems that handle multiple streams of data 

simultaneously. In big-scale setups, things like hardware breaking down, network 

issues, and software bugs happen more often than you'd like. That's why these 

systems need to bounce back from problems quickly, ensuring no data is lost and 

everything keeps running smoothly. Finding ways to make these systems both 

highly efficient and really reliable is an ongoing and exciting area of research. 

Objectives and Scope of the Paper 

The main goal of this paper is to explore and explain how parallel processing 

techniques are used in real-time stream analytics systems. We want to improve 

understanding of how parallelism enables the quick, scalable processing of 

continuous data streams. Specifically, this paper aims to: 

1. Describe the basic ideas behind analyzing live data streams and 

handling multiple tasks at the same time. 

2. Describe how systems are designed to handle tasks by breaking them 

into smaller parts and working on them simultaneously across multiple machines. 
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Figure 1.6 - Common Challenges in Parallel Stream Processing 

 

3. Examine the models and techniques used for parallel processing in 

modern stream analytics platforms. 

4. Identify the main challenges, limitations, and compromises involved 

in processing data with parallel streams. 

5. Explore new trends and future research paths in the field. 

This paper primarily explores ideas, system designs, and processing methods 

rather than delving into the nitty-gritty details of implementation. This way, the 
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discussion can be relevant and applicable across a variety of platforms and 

applications. 

Organization of the Paper 

The remainder of this paper is organized to provide a logical and progressive 

exploration of the topic. Section II reviews foundational concepts and related work 

in real-time stream analytics and parallel processing. Section III discusses system 

architectures for real-time stream analytics. Section IV examines parallel 

processing models and techniques in detail. Section V explores algorithms and 

frameworks commonly used in parallel stream processing systems. Section VI 

discusses key challenges and limitations. Section VII presents discussion and 

future research trends, and Section VIII concludes the paper. 

 

1.2. Background and related work 

 

Fundamentals of Stream Analytics 

Stream analytics is a data processing paradigm that focuses on the real-time 

or near-real-time analysis of continuously generated data. Unlike traditional data 

analytics systems that operate on fixed, stored datasets, stream analytics systems 

are designed to process data that arrives constantly and may have no predefined 

end. This unbounded nature of streaming data requires systems to analyze 

information as it flows through the system rather than waiting for complete 

datasets to be collected. 

At its core, the primary objective of stream analytics is to extract meaningful 

insights, patterns, or anomalies from data as soon as it is generated. These insights 

may include detecting abnormal behavior, identifying trends, triggering alerts, or 

supporting automated decision-making. Because streaming data is often time-

sensitive, its usefulness can diminish rapidly if analysis is delayed. As a result, 

stream analytics emphasizes immediacy, responsiveness, and efficiency. 
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Streaming data is commonly described using the well-known “three V’s”: 

velocity, volume, and variety. Velocity refers to the speed at which data is 

generated and transmitted, often at very high rates. Volume refers to the potentially 

massive, continuously growing amount of data produced over time. Variety 

indicates the heterogeneous nature of streaming data, which may include 

structured, semi-structured, and unstructured formats originating from diverse 

sources. Together, these characteristics distinguish stream analytics from 

traditional data processing approaches and introduce unique computational 

challenges. 

In real-time stream analytics, data is typically processed either event-by-

event or in small batches. This incremental processing model allows applications 

to respond quickly to changes in the data stream. As a result, stream analytics is 

well-suited for time-critical domains such as financial trading systems, 

cybersecurity monitoring, industrial automation, smart grids, and intelligent 

transportation systems. In these environments, the ability to analyze and act on 

data in real time can provide significant operational and strategic advantages. 

Stream Processing Models 

To enable real-time analysis of streaming data, different processing 

approaches have been developed and are commonly used in practice. These 

approaches dictate how incoming data is grouped, handled, and processed within a 

system. The two most popular methods are processing data one event at a time and 

processing it in small batches. 

Event-at-a-time processing, also called true streaming, means handling each 

new event as it arrives. This approach offers very low latency, making it ideal for 

tasks that require quick responses, such as fraud detection, security breaches, or 

real-time alerts. But processing one event at a time can also create extra work, 

especially when it comes to tracking data or managing multiple tasks 

simultaneously. Updating stored information and syncing everything can slow 

things down if not done carefully. 
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Micro-batch processing groups incoming events into small batches that are 

processed together over short time frames. This approach reduces workload by 

spreading computation across multiple events, boosting overall speed. Although it 

introduces a slight delay compared to processing each event alone, it still delivers 

results fast enough for many uses. Plus, it simplifies error handling and state 

management, which is why many modern stream processing systems favor this 

approach. 

Both processing methods really benefit from parallel techniques. Splitting 

data or tasks across multiple processing units enables systems to handle high input 

volumes without excessive delay. Deciding whether to process one event at a time 

or in small batches usually depends on the application's needs, especially when 

balancing speed, efficiency, and system complexity. 

Overview of Parallel Processing Concepts 

Parallel processing is a fundamental computing paradigm in which multiple 

processing elements execute tasks simultaneously to solve problems more 

efficiently. In the context of stream analytics, parallel processing is essential for 

meeting real-time performance requirements and achieving scalability under high 

data rates. 

Parallelism in stream analytics can be applied in several forms. Data 

parallelism involves partitioning incoming data streams into independent subsets 

that can be processed concurrently using the same operations. This approach is 

convenient when events are independent or can be grouped by keys such as user 

identifiers or sensor IDs. Task parallelism, on the other hand, focuses on executing 

different operations or analytical tasks in parallel. This model is useful when a 

stream analytics application consists of multiple independent processing stages. 

Pipeline parallelism is another essential form of parallelism, in which 

different stages of a processing pipeline operate concurrently on distinct data 

items. As data flows through the pipeline, each stage performs a specific function, 

such as filtering, aggregation, or pattern detection. By overlapping execution 
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across stages, pipeline parallelism improves overall throughput and resource 

utilization. 

In practice, modern stream analytics systems often combine multiple forms 

of parallelism to maximize performance. The effective use of parallel processing 

allows systems to scale horizontally, adapt to fluctuating workloads, and maintain 

low-latency processing even under heavy data loads. 

Distributed Stream Processing Systems 

Most real-time stream analytics platforms are implemented as distributed 

systems due to the scale and complexity of modern data streams. In distributed 

stream processing systems, computational tasks are executed across multiple 

machines connected through a network. This distributed architecture enables 

horizontal scalability, allowing systems to handle increasing data rates by adding 

more processing nodes. 

Distributed stream processing systems typically consist of several key 

components. Data ingestion layers are responsible for collecting, buffering, and 

distributing incoming data streams. Processing engines execute analytical 

operations in parallel across multiple nodes. State management modules maintain 

intermediate results required for stateful processing, such as windowed 

aggregations or pattern detection. Finally, output sinks store processed results or 

forward them to external systems for further analysis or action. 

Parallel processing is fundamental to the operation of distributed stream 

processing systems. By distributing computation and data across multiple 

machines, these systems can efficiently utilize available resources and achieve high 

throughput. However, distributed execution also introduces challenges related to 

coordination, communication overhead, and fault tolerance, which must be 

carefully addressed through system design. 

Evolution from Batch Processing to Stream Processing 

Early data analytics systems were primarily designed around batch 

processing models. In batch-oriented systems, data is collected over time, stored 



20 

 

 

persistently, and processed periodically. While this approach is practical for 

historical analysis and reporting, it is poorly suited for applications that require 

immediate insights. 

The limitations of batch processing, particularly its inability to provide 

timely responses, led to the development of stream processing systems capable of 

handling continuous data flows. Early stream processing systems were often 

limited in scalability and reliability, making them challenging to deploy in large-

scale environments. However, advances in distributed computing, cloud 

infrastructure, and parallel processing techniques have significantly improved the 

robustness and scalability of modern stream analytics platforms. 

The transition from batch to stream processing reflects a broader shift in 

computing toward real-time, data-driven decision-making. Today, many systems 

adopt hybrid architectures that combine batch and stream processing to support 

both historical analysis and real-time insights. Parallel processing has played a 

crucial role in enabling this transition by providing the computational power to 

process large-scale data streams efficiently. 

Related Work in Parallel Stream Analytics 

A substantial body of research has investigated parallel processing 

techniques for stream analytics. Early work in this area focused on parallel query 

processing and operator parallelization, drawing inspiration from parallel database 

systems. These studies explored how analytical operators could be executed 

concurrently to improve performance. 

Subsequent research introduced window-based processing models and 

stateful stream operators, enabling more complex analytics, such as aggregations, 

joins, and time-window-based pattern detection. As stream analytics systems grew 

in scale, research attention shifted toward scalability, fault tolerance, and low-

latency processing. 

More recent studies have proposed techniques such as dynamic load 

balancing, adaptive parallelism, and efficient state management to address 
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challenges in parallel stream processing. Researchers have also examined trade-

offs between latency and throughput in different processing models, highlighting 

the importance of selecting appropriate parallelization strategies based on 

application requirements. This body of related work provides a strong foundation 

for understanding modern parallel stream analytics systems. 

Summary 

This section presents a detailed overview of the fundamental concepts and 

related work in real-time stream analytics and parallel processing. It discussed the 

nature of streaming data, stream processing models, parallel processing paradigms, 

and distributed system architectures. The evolution from batch-oriented systems to 

real-time stream processing was also examined, along with key research 

contributions in parallel stream analytics. These foundational concepts provide the 

necessary background for analyzing system architectures and parallel processing 

techniques, which are explored in the subsequent sections. 
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2. SYSTEM ARCHITECTURE FOR REAL-TIME STREAM ANALYTICS 

 

2.1. Architectural Overview 

 

A real-time stream analytics system is fundamentally designed to ingest, 

process, and analyze continuous flows of data with minimal delay between data 

arrival and result generation. Unlike traditional data processing architectures, 

which are typically centralized and batch-oriented, real-time stream analytics 

architectures must support continuous operation, rapid response times, and 

dynamic scalability. These requirements make architectural design a critical factor 

in the effectiveness of any stream analytics platform. 

At a high level, real-time stream analytics systems adopt a modular, 

distributed architecture. Instead of relying on a single centralized processing unit, 

computation and data management responsibilities are distributed across multiple 

components and nodes. This design enables the system to handle high-throughput 

workloads, tolerate failures, and efficiently exploit parallel processing. Each 

architectural component is responsible for a specific function, and together they 

form a pipeline that supports continuous data flow. 

A typical real-time stream analytics architecture consists of several key 

components: data sources, a stream ingestion layer, a parallel processing engine, 

state management mechanisms, window-based processing modules, and output and 

integration layers. These components are interconnected and operate concurrently, 

enabling the system to process large-scale streaming data in real time. The 

effectiveness of the overall architecture depends on how well these components are 

coordinated and how efficiently parallelism is applied across the system. 

Data Sources and Stream Generation 

Data sources represent the origin of streaming data in real-time analytics 

systems. These sources may include physical sensors deployed in industrial or 

environmental settings, smart and mobile devices, web servers and application 
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logs, financial transaction platforms, social media feeds, and Internet of Things 

(IoT) infrastructures. Each source generates data continuously, often at high speed 

and with varying levels of reliability. 

One of the defining challenges associated with data sources is their 

heterogeneity. Streaming data may be structured, semi-structured, or unstructured, 

and it may arrive in different formats, sizes, and frequencies. Additionally, data 

generation rates can fluctuate significantly due to user behavior, environmental 

conditions, or system events. As a result, real-time stream analytics systems must 

be designed to handle unpredictable workloads without compromising 

performance or stability. 

To address these challenges, modern architectures incorporate mechanisms 

that allow multiple data streams to be ingested simultaneously. Parallelism often 

begins at the data source level, where independent streams are treated as separate 

input channels. This approach enables the system to scale horizontally and 

prevents delays caused by bottlenecks at a single input point. Efficient handling of 

data sources is therefore a foundational requirement for achieving real-time 

performance. 

Stream Ingestion Layer 

The stream ingestion layer serves as the interface between data sources and 

the stream processing engine. Its primary role is to collect incoming data, buffer it, 

and distribute it to downstream processing components. Because it operates at the 

front of the processing pipeline, the ingestion layer must handle high input rates 

while maintaining reliability and low latency. 

Scalability is a critical requirement for the ingestion layer, as data arrival 

rates can spike due to bursts of activity. To support scalability, ingestion systems 

typically use parallel ingestion mechanisms that partition incoming data streams 

and distribute them across multiple ingestion nodes. This prevents overload on 

individual nodes and ensures balanced utilization of system resources. 
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In addition to data collection and distribution, the ingestion layer often 

provides important system-level features. These include buffering to absorb short-

term spikes in data volume, ordering mechanisms to preserve event sequence 

where required, and backpressure handling to regulate data flow when downstream 

components become congested. Fault tolerance is also a key concern, and ingestion 

systems are often designed to recover quickly from failures without losing data. 

Through these capabilities, the ingestion layer plays a vital role in maintaining the 

stability and efficiency of the overall architecture. 

Parallel Processing Engine 

The parallel processing engine is the core computational component of a 

real-time stream analytics system. It is responsible for executing analytical 

operations on incoming data streams using parallel and distributed computing 

techniques. This engine performs tasks such as filtering, transformation, 

aggregation, correlation, and pattern detection, all under strict latency constraints. 

Processing logic within the engine is typically represented as a directed 

graph of operators, where each operator performs a specific computation on the 

data. Data flows from one operator to the next, forming a processing pipeline. 

Parallelism can be applied at multiple levels within this engine to maximize 

performance and scalability. 

One common approach is operator parallelism, in which multiple instances 

of the same operator execute concurrently across different partitions of the data 

stream. Task parallelism allows different operators within the processing graph to 

execute simultaneously on separate processing nodes. Pipeline parallelism enables 

different stages of the processing pipeline to operate concurrently on different data 

items. By combining these forms of parallelism, the processing engine can 

efficiently handle large-scale data streams while maintaining low latency. 

Effective scheduling and resource allocation are essential to the performance 

of the parallel processing engine. Tasks must be assigned to processing nodes to 

balance the workload and minimize communication overhead. When properly 
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designed, the parallel processing engine enables real-time analytics systems to 

scale efficiently and respond rapidly to incoming data. 

State Management in Parallel Systems 

State management is a critical architectural concern in real-time stream 

analytics, particularly for applications that require stateful processing. Stateful 

operations include aggregations, joins, pattern detection, and window-based 

computations, all of which rely on maintaining intermediate results across multiple 

events. 

In parallel and distributed environments, managing state becomes 

significantly more complex. The state must be partitioned and distributed across 

multiple processing nodes to enable parallel execution while minimizing access 

latency. Many systems store state locally on processing nodes to improve 

performance, but this approach requires mechanisms to ensure consistency and 

correctness. 

Checkpointing is a commonly used technique for state management in 

parallel systems. Periodic snapshots of the system state are saved to stable storage, 

allowing the system to recover from failures without losing progress. In the event 

of a failure, the system can restore state from the most recent checkpoint and 

resume processing. Designing efficient, minimally disruptive checkpointing 

mechanisms is a major architectural challenge. 

Synchronization overhead is another critical consideration. Excessive 

synchronization among parallel tasks can reduce performance gains. As a result, 

modern architectures aim to minimize coordination while still ensuring accurate 

and consistent results. Effective state management is therefore essential for 

balancing performance, correctness, and fault tolerance in real-time stream 

analytics systems. 

Window-Based Processing Architecture 

Window-based processing is a widely used architectural technique in real-

time stream analytics for analyzing subsets of data over specific intervals. Rather 
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than processing an entire unbounded stream at once, windowing divides the stream 

into manageable segments based on time or event count. Common window types 

include tumbling, sliding, and casement windows. 

Parallel processing significantly enhances window-based analytics by 

enabling multiple windows to be processed concurrently. Data can be partitioned 

by keys or window boundaries, enabling windowed computations to be distributed 

across multiple processing nodes. This approach improves scalability and reduces 

processing latency. 

However, window-based processing introduces additional architectural 

challenges. Late-arriving data that arrives after a window has closed must be 

handled carefully to avoid incorrect results. Window alignment across parallel 

tasks is also critical to ensure consistent computations. Architectural support for 

event-time processing, watermarking, and window coordination is often required 

to address these challenges while maintaining real-time performance. 

Output and Integration Layer 

The output and integration layer is responsible for delivering processed 

results to downstream systems or end users. Outputs may be written to databases, 

transmitted to dashboards, forwarded to messaging systems, or used to trigger 

automated actions such as alerts or control signals. Because real-time analytics 

often supports time-sensitive decisions, this layer must deliver data with low 

latency and reliability. 

Parallelism in the output layer ensures that result generation and 

transmission do not become bottlenecks. Multiple output streams can be handled 

concurrently, allowing the system to maintain high throughput even when 

delivering results to various destinations. Integration with external systems also 

requires flexibility, as different applications may use other data formats and have 

varying delivery requirements. 
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An efficient design of the output layer ensures that insights from the 

analytics engine are delivered promptly and reliably, completing the end-to-end 

real-time processing pipeline. 

Scalability and Fault Tolerance 

Scalability and fault tolerance are essential properties of real-time stream 

analytics architectures. As data volumes and processing demands increase, systems 

must scale without significant redesign. Parallel processing enables horizontal 

scalability by allowing additional processing nodes to be added dynamically. 

Fault tolerance is equally important, as failures are inevitable in distributed 

environments. Mechanisms such as task replication, checkpointing, and automatic 

recovery ensure the system continues operating despite hardware or software 

failures. These mechanisms are closely integrated with parallel processing models 

to minimize downtime and data loss. 

A well-designed architecture balances scalability, performance, and 

reliability, ensuring continuous operation under varying workloads and failure 

conditions. 

Summary 

This section presents a comprehensive examination of system architectures 

for real-time stream analytics. It discussed the roles of data sources, ingestion 

layers, parallel processing engines, state management mechanisms, window-based 

processing, and output integration. The section emphasized how parallel 

processing underpins scalability, low latency, and fault tolerance across the entire 

architecture. Understanding these architectural principles provides a strong 

foundation for analyzing parallel processing techniques and models, which are 

explored in the subsequent sections. 
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2.2. Parallel processing techniques for real-time stream analytics 

 

Overview of Parallelism in Stream Processing 

Parallel processing underpins modern real-time stream analytics systems. As 

discussed in earlier sections, streaming data arrives continuously and often at very 

high speeds, making sequential processing approaches insufficient for meeting 

strict latency and throughput requirements. Parallelism enables stream analytics 

systems to divide workloads into smaller units that can be processed 

simultaneously across multiple computing resources, such as processor cores, 

machines, or distributed clusters. 

In the context of stream processing, parallelism must be carefully designed 

to account for several unique factors, unlike batch processing, which processes 

finite, static datasets; stream processing processes unbounded, evolving data. 

Processing logic often depends on a state that is continuously updated as new 

events arrive. Additionally, many applications operate under tight time constraints, 

requiring results to be produced within milliseconds or seconds. These 

characteristics make the design of parallel stream processing techniques more 

complex than those used in traditional data analytics. 

Effective parallel processing in stream analytics requires balancing multiple 

objectives, including low latency, high throughput, scalability, and correctness. 

Tasks must be coordinated to ensure that parallel execution does not compromise 

data consistency or processing guarantees. As a result, stream processing 

frameworks adopt specialized parallelization techniques that are tailored to the 

characteristics of streaming workloads. 

Data Parallelism 

Data parallelism is one of the most widely adopted parallel processing 

techniques in real-time stream analytics. In this approach, the incoming data stream 

is divided into multiple partitions, often called substreams, which can be processed 

independently and concurrently. Each partition is assigned to a parallel instance of 
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the same processing logic, allowing the system to handle high data rates 

efficiently. 

Partitioning in data parallelism is commonly based on keys extracted from 

incoming events. Examples of such keys include user identifiers, sensor IDs, 

geographic regions, or transaction types. By grouping events with the same key 

into the same partition, systems can ensure that related data is processed together, 

which is particularly important for stateful operations such as aggregations and 

joins. 

Data parallelism is highly effective for stateless operations, such as filtering, 

mapping, and transformation, since these operations do not require shared state 

across partitions. It can also be applied to stateful operations when state is 

partitioned in a way that aligns with the data. This alignment allows each parallel 

task to manage its own portion of the state independently, reducing 

synchronization overhead. 

Despite its advantages, data parallelism introduces challenges related to 

workload distribution. One common issue is data skew, where some partitions 

receive significantly more data than others. This imbalance can cause specific 

processing tasks to become overloaded while others remain underutilized, reducing 

overall system efficiency. To address this problem, stream analytics systems often 

employ techniques such as dynamic repartitioning, load-aware scheduling, and 

adaptive key assignment. These mechanisms help distribute workload more evenly 

and maintain stable performance under varying data distributions. 

Task Parallelism 

Task parallelism focuses on executing different processing tasks or operators 

concurrently within a stream analytics pipeline. Instead of dividing data among 

identical operations, task parallelism allows distinct operations to run in parallel on 

separate computing resources. This approach is beneficial in complex analytics 

workflows that consist of multiple independent or loosely coupled tasks. 
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In a typical stream-processing application, tasks may include data ingestion, 

preprocessing, filtering, aggregation, enrichment, machine-learning inference, and 

output generation. Task parallelism enables these operations to run in parallel, 

reducing end-to-end processing latency. By overlapping computations across 

different pipeline stages, systems can better utilize available resources and improve 

overall responsiveness. 

Task parallelism is especially beneficial when different tasks have varying 

computational requirements. For example, lightweight filtering operations can 

execute in parallel with more computationally intensive analytics tasks. However, 

implementing task parallelism requires careful coordination to manage task 

dependencies. Data produced by one task must be correctly routed to downstream 

tasks, and synchronization mechanisms may be necessary to ensure that results are 

generated in the correct order when ordering guarantees are needed. 

Designing effective task-parallel stream processing pipelines involves 

balancing concurrency with coordination overhead. Excessive synchronization can 

reduce performance gains, while insufficient coordination may lead to incorrect or 

inconsistent results. As a result, task parallelism is often combined with other 

parallelization techniques to achieve optimal performance. 

Pipeline Parallelism 

Pipeline parallelism is a specialized form of task parallelism in which data 

flows through a sequence of processing stages that operate concurrently. Each 

stage in the pipeline performs a specific function, and different stages process 

different data items simultaneously. As one data item moves to the next stage, 

subsequent items can enter earlier stages, keeping the pipeline continuously active. 

In real-time stream analytics, pipeline parallelism improves resource 

utilization by ensuring that all processing stages run concurrently. This approach is 

efficient when processing stages have similar computational complexity and can be 

balanced evenly across resources. Pipeline parallelism reduces idle time and 

increases throughput by overlapping execution across stages. 
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However, pipeline parallelism introduces important latency considerations. 

The overall latency of a data item depends on the slowest stage in the pipeline, 

often called the bottleneck. If one stage requires significantly more processing time 

than others, it can limit the performance of the entire pipeline. Consequently, 

careful performance tuning and load balancing are needed to maximize the benefits 

of pipeline parallelism. 

Pipeline parallelism is commonly used in stream analytics applications that 

involve multi-stage processing, such as data cleansing, feature extraction, analysis, 

and result generation. When properly designed, it enables systems to achieve both 

high throughput and low latency. 

Window-Level Parallelism 

Window-based processing is a fundamental concept in real-time stream 

analytics, enabling computations over finite subsets of an otherwise unbounded 

data stream. Window-level parallelism exploits the independence of these subsets 

to allow parallel execution of window-based computations. 

In many cases, windows can be processed independently, making them well-

suited for parallelization. For example, tumbling windows that do not overlap can 

be assigned to different processing tasks and computed concurrently without 

coordination. This approach enables efficient scaling of time-based aggregations 

and summaries. 

Sliding windows and session windows present additional challenges, as they 

may overlap or depend on event timing. Overlapping windows require careful 

coordination to manage shared data and avoid redundant computation. To address 

this, stream processing systems often use incremental computation techniques, 

where results are updated as new events arrive rather than recomputed from 

scratch. Parallel processing frameworks also employ window partitioning 

strategies to distribute window computations across multiple tasks while 

maintaining correctness. 
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Window-level parallelism is significant for applications such as trend 

analysis, anomaly detection, and time-series analytics, where timely insights are 

critical. By enabling multiple windows to be processed concurrently, systems can 

deliver real-time results even under high data rates. 

Operator Parallelism 

Operator parallelism refers to replicating processing operators so that 

multiple instances of the same operator can execute concurrently across different 

data partitions. Each operator instance performs identical computations but 

operates on a distinct subset of the input stream. This technique enables fine-

grained scalability and is a key mechanism for handling large-scale streaming 

workloads. 

In practice, operator parallelism is often combined with data parallelism. 

Data is first partitioned into multiple streams, and each partition is assigned to a 

separate operator instance. As data volume increases, additional operator instances 

can be dynamically deployed to distribute the workload evenly. 

Managing state in operator-parallel systems presents significant challenges, 

particularly for stateful operators. Each operator instance must maintain its own 

state, and systems must ensure that state updates are applied correctly and 

consistently. Synchronization and coordination mechanisms are required to prevent 

inconsistencies while minimizing performance overhead. 

Operator parallelism is a powerful technique for achieving horizontal 

scalability, but its effectiveness depends on careful design of state management, 

data partitioning, and fault tolerance mechanisms. 

Hybrid Parallel Processing Models 

In real-world applications, no single parallel processing technique is 

sufficient to meet all performance and scalability requirements. As a result, modern 

real-time stream analytics systems employ hybrid parallel processing models that 

combine multiple forms of parallelism. For example, a system may use data 
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parallelism to partition incoming streams, pipeline parallelism to structure 

processing stages, and window-level parallelism to support time-based analytics. 

Hybrid models provide flexibility, enabling systems to adapt to varying 

workloads and application requirements. By combining different parallelization 

strategies, systems can optimize performance across multiple dimensions, 

including latency, throughput, and resource utilization. However, hybrid models 

also increase system complexity, as they require sophisticated scheduling, 

coordination, and monitoring mechanisms. 

Designing effective hybrid parallel processing models involves careful 

consideration of application characteristics, workload patterns, and system 

constraints. When implemented correctly, hybrid models offer the best balance 

between performance and scalability in real-time stream analytics. 

Performance Considerations 

While parallel processing provides substantial performance benefits, it also 

introduces overhead that can limit its effectiveness if not carefully managed. 

Communication between parallel tasks, synchronization delays, and state 

management overhead can all reduce the gains achieved through parallelization. 

Performance optimization strategies in stream analytics systems focus on 

minimizing unnecessary communication, optimizing data partitioning schemes, 

and reducing synchronization overhead. In-memory processing techniques are 

widely used to reduce data access latency and improve throughput. Monitoring and 

adaptive tuning mechanisms enable systems to adjust parallelism levels in response 

to changing workloads dynamically. 

Achieving optimal performance requires continuous evaluation and tuning 

of parallel processing strategies. Systems must balance the benefits of increased 

parallelism with the costs of coordination and resource contention. 

Summary 

This section presents a detailed examination of parallel processing 

techniques used in real-time stream analytics. It discussed data parallelism, task 
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parallelism, pipeline parallelism, window-level parallelism, operator parallelism, 

and hybrid parallel processing models. The section also highlighted key 

performance considerations and trade-offs associated with parallel execution. 

Together, these techniques form the foundation of scalable and efficient real-time 

stream analytics systems. Understanding their strengths and limitations is essential 

for designing high-performance analytics solutions that meet modern real-time data 

processing demands. 
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3. ALGORITHMS AND FRAMEWORKS FOR PARALLEL STREAM 

PROCESSING 

 

3.1. Stream Processing Algorithms 

 

Real-time stream analytics algorithms differ fundamentally from traditional 

batch-processing algorithms due to the continuous and unbounded nature of 

streaming data. In batch analytics, algorithms operate on static datasets with finite 

size, often allowing multiple passes over the data. In contrast, streaming data 

arrives continuously and must be processed incrementally, often under strict 

latency constraints. As a result, stream processing algorithms must be designed to 

operate with limited memory, process events in real time, and produce timely 

results that support immediate decision-making. 

Parallel processing is central to the scalability and efficiency of these 

algorithms. By leveraging multiple processing units simultaneously, streaming 

algorithms can maintain high throughput and low latency even when dealing with 

massive data volumes. Parallel execution is critical when applications require 

processing millions of events per second, such as in financial trading platforms, 

smart city monitoring systems, or industrial IoT networks. 

Streaming algorithms are broadly categorized into four main classes: 

filtering, aggregation, pattern detection, and machine learning–based algorithms. 

Each class addresses specific types of analytics requirements and benefits from 

parallel execution in distinct ways. Filtering algorithms handle selection tasks, 

aggregation algorithms summarize or condense data, pattern detection algorithms 

identify sequences or correlations within the stream, and machine learning 

algorithms provide predictive or adaptive analytics. Understanding these classes is 

crucial for designing high-performance, parallel stream analytics systems. 

Parallel Filtering and Transformation Algorithms 
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Filtering and transformation are fundamental building blocks in stream 

analytics pipelines. Filtering algorithms select events that meet specific criteria, 

such as network packets containing anomalies or financial transactions exceeding a 

threshold. Transformation algorithms, on the other hand, convert raw data into 

meaningful formats or enrich events with additional context, such as converting 

timestamps, extracting features, or adding geographical metadata. 

These operations are typically stateless, meaning that each event can be 

processed independently without relying on prior events. This property makes 

them particularly well-suited for data parallelism. In parallel stream processing, the 

incoming data stream can be partitioned, with multiple parallel tasks independently 

filtering or transforming their assigned partitions. 

Operator replication is another technique used to enhance parallel filtering 

and transformation. Multiple instances of the same operator can run concurrently 

across separate data partitions, enabling systems to handle high event rates without 

introducing latency. For example, in an online recommendation system, filtering 

user interactions by relevance and transforming them into feature vectors can be 

distributed across multiple parallel tasks, enabling personalized recommendations 

to be generated in real time. 

Despite their stateless nature, parallel filtering and transformation algorithms 

must still manage practical challenges such as load balancing and resource 

utilization. Uneven arrival rates of data can cause specific processing tasks to 

become overloaded while others remain underutilized. Adaptive partitioning and 

dynamic scheduling are therefore commonly implemented to maintain consistent 

throughput. 

Parallel Aggregation Algorithms 

Aggregation algorithms compute summary statistics over streaming data, 

including counts, sums, averages, minimum and maximum values, and more 

complex metrics such as quantiles and histograms. These algorithms are inherently 
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stateful, as they maintain intermediate results over time or within specific event 

windows. 

Parallel aggregation is achieved primarily through data partitioning. 

Incoming events are partitioned according to keys, such as user IDs, device 

identifiers, or sensor types, and local aggregates are maintained within each 

partition. Once partial aggregates are computed, they are merged to produce global 

results. This hierarchical approach reduces communication overhead and allows 

aggregation tasks to scale efficiently across multiple processing units. 

However, parallel aggregation introduces several challenges. Maintaining 

state consistency across partitions is critical to ensure correct results. Window 

alignment, where aggregates are computed over time-based or count-based 

windows, must also be carefully managed, especially when windows overlap or 

events arrive late. Additionally, fault-tolerance mechanisms such as checkpointing 

must be integrated to enable recovery from node failures without losing 

intermediate results. 

A practical example is traffic monitoring, where sensors along a highway 

continuously count vehicles. By partitioning data by sensor location and 

computing local aggregates in parallel, the system can provide timely congestion 

analysis across the entire network. The combination of regional and global 

aggregation ensures both scalability and accuracy. 

Pattern Detection and Complex Event Processing 

Pattern-detection algorithms identify sequences or combinations of events 

that match predefined criteria. These algorithms are crucial in applications such as 

fraud detection, cybersecurity monitoring, industrial equipment failure prediction, 

and automated alerting systems. Pattern detection often requires maintaining 

temporal and logical relationships between events, making it more complex than 

simple filtering or aggregation. 

Parallel processing enhances pattern detection by dividing the stream into 

segments that can be analyzed concurrently. Task parallelism is frequently used to 
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assign different detection rules to separate processing units, while window-level 

parallelism allows temporal patterns to be detected within specific intervals. This 

combination ensures timely detection even under high event rates. 

Complex Event Processing (CEP) systems extend pattern detection by 

enabling more sophisticated event correlation, temporal reasoning, and hierarchical 

pattern recognition. CEP frameworks leverage parallelism to execute multiple 

pattern-matching tasks concurrently and maintain state across distributed nodes. A 

significant challenge in CEP is ensuring correct event ordering and 

synchronization across parallel tasks, as misaligned events can lead to false 

positives or missed detections. 

For instance, in financial fraud detection, sequences of suspicious 

transactions across multiple accounts must be monitored in real time. Parallel 

pattern detection allows the system to evaluate various transaction sequences 

simultaneously, ensuring rapid identification of potential fraudulent behavior. 

Machine Learning Algorithms for Streaming Data 

Machine learning (ML) algorithms are increasingly applied to streaming 

data for real-time prediction, classification, anomaly detection, and adaptive 

decision-making. Unlike traditional batch ML, streaming ML algorithms must 

continuously update models as data distributions evolve, often without revisiting 

past events. This incremental nature makes them well-suited for parallel execution. 

Parallelism in streaming ML can be implemented in several ways: 

1. Model Partitioning – Different components of a model, such as layers 

of a neural network, are distributed across multiple processing units for concurrent 

execution. 

2. Parallel Feature Extraction – Features are computed in parallel from 

raw events before feeding them into the learning model. 

3. Incremental Learning – Model parameters are updated concurrently 

across partitions of the stream, enabling the system to adapt to changing data 

patterns. 



39 

 

 

Despite these advantages, parallel machine learning in streaming 

environments introduces challenges. Ensuring model consistency across parallel 

updates, minimizing communication overhead, and controlling prediction latency 

are critical concerns. For example, in real-time recommendation engines, 

inconsistent model updates can result in incorrect recommendations, while 

excessive synchronization delays can increase response time. 

Emerging research continues to explore novel parallelization strategies for 

streaming ML, including federated learning across distributed nodes, approximate 

model updates, and asynchronous parallel training techniques. These strategies aim 

to maximize throughput while maintaining prediction accuracy and model stability. 

Stream Processing Frameworks 

To simplify the development and deployment of real-time stream analytics 

applications, several stream processing frameworks have been introduced. These 

frameworks provide abstractions for defining processing pipelines, managing 

parallel execution, handling fault tolerance, and supporting stateful operations. 

Key features of modern frameworks include: 

• Support for parallel and distributed execution: Frameworks 

automatically partition data and distribute tasks across multiple nodes. 

• Built-in state management and checkpointing: Stateful operators are 

supported with mechanisms for consistent state updates and recovery. 

• Window-based processing capabilities: Time- or count-based 

windows are natively supported, with optimizations for overlapping or sliding 

windows. 

• Scalability and fault tolerance mechanisms: Systems can dynamically 

scale out to additional nodes and recover from failures without data loss. 

Popular stream processing frameworks include Apache Flink, Apache Spark 

Structured Streaming, Apache Storm, and Apache Samza. Each framework 

provides unique features and optimizations tailored to different application 

scenarios. For instance, Apache Flink offers low-latency, exactly-once state 



40 

 

 

consistency, making it suitable for financial or industrial monitoring applications. 

At the same time, Spark Structured Streaming provides strong integration with 

batch analytics pipelines and large-scale data warehouses. 

Frameworks abstract much of the complexity of parallel processing, 

allowing developers to focus on application-specific logic rather than low-level 

system concerns such as resource scheduling, checkpointing, or operator 

replication. 

Algorithm–Framework Interaction 

The effectiveness of parallel stream processing depends heavily on the 

interaction between the algorithms and the underlying framework. Algorithms 

must be designed to exploit the framework's parallelism. In contrast, frameworks 

must provide flexible, efficient execution models that accommodate stateful, 

stateless, and hybrid processing tasks. 

For example, stateless algorithms such as filtering or transformation can be 

easily scaled using simple data parallelism. In contrast, stateful algorithms such as 

aggregation or pattern detection require careful alignment of state partitions with 

data partitions to ensure correctness. Frameworks that support dynamic load 

balancing, operator replication, and stateful checkpointing make it easier to 

implement parallel algorithms efficiently. 

Understanding this interaction is crucial for achieving high-performance 

analytics. Poor alignment between algorithm design and framework capabilities 

can lead to underutilized resources, increased latency, or incorrect results. 

Conversely, well-integrated algorithms and frameworks can deliver near-linear 

scalability and robust, fault-tolerant processing. 

Summary 

This section provides an in-depth examination of algorithms and frameworks 

used in parallel real-time stream analytics. It covered key classes of algorithms,  

including filtering, transformation, aggregation, pattern detection, and 

machine learning, and explained how parallelism enhances their performance. 
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Additionally, it discussed popular stream processing frameworks and the critical 

interplay between algorithm design and framework capabilities. Together, these 

elements form the backbone of scalable, low-latency, and reliable real-time 

analytics systems, enabling applications across diverse domains such as finance, 

healthcare, smart cities, cybersecurity, and industrial automation. 

 

3.2. Challenges and limitations of parallel stream analytics 

 

Real-time stream analytics systems powered by parallel processing are 

critical for modern data-driven applications, yet they are not without significant 

challenges. Parallelism enables high throughput, scalability, and low-latency 

processing, but it also introduces complexities that can impact system 

performance, reliability, and manageability. In this section, we examine these 

challenges in detail, highlighting key limitations and considerations for designing 

robust real-time analytics platforms. 

Scalability Challenges 

Scalability is one of the principal motivations for applying parallel 

processing to real-time stream analytics. In theory, adding more processing nodes 

should proportionally increase system throughput. In practice, however, achieving 

linear scalability is rarely straightforward. Several factors limit performance as the 

system grows: 

1. Coordination Overhead: As the number of nodes or cores increases, 

the need to coordinate processing across them becomes more significant. Task 

scheduling, load balancing, and state synchronization introduce communication 

overhead that can negate the benefits of adding resources. 

2. Communication Latency: Distributed stream processing systems 

require data to be exchanged between nodes. Network latency, 

serialization/deserialization costs, and protocol overhead can slow down data 
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movement, particularly when events must traverse multiple nodes for stateful 

computations. 

3. Resource Contention: Multiple parallel tasks may compete for shared 

resources, such as CPU, memory, disk, or network bandwidth. High contention can 

cause processing delays, leading to missed deadlines in time-sensitive applications. 

A particularly challenging issue is data skew, in which specific partitions of 

the input stream receive disproportionately large volumes of data. This uneven 

distribution can cause specific processing tasks to become bottlenecks, while other 

tasks remain underutilized. For example, in a social media analytics application, 

popular hashtags or topics may generate a flood of events for a small subset of 

partitions, overwhelming their corresponding processing nodes. Addressing data 

skew requires adaptive strategies, such as dynamic stream repartitioning, load-

aware scheduling, or predictive partitioning based on historical data trends. 

However, implementing these solutions adds complexity to system design and may 

introduce additional overhead, which itself can affect performance. 

Another consideration is horizontal scalability. While distributed systems 

can theoretically scale out by adding more nodes, the cost, coordination, and 

management overhead grow with system size. Cloud-based solutions offer elastic 

scaling, but dynamic node provisioning introduces transient performance 

variability and may require careful orchestration to maintain processing 

guarantees. 

Latency Constraints 

Many real-time stream analytics applications are latency-sensitive, requiring 

results within milliseconds or seconds of event arrival. Examples include fraud 

detection in financial systems, emergency alerts in smart cities, anomaly detection 

in industrial equipment, and recommendation systems for e-commerce platforms. 

Meeting these stringent latency requirements is a key challenge in parallel 

processing environments. 
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Parallelism can reduce processing latency by enabling the simultaneous 

execution of multiple tasks. However, it also introduces latency due to 

communication and synchronization overheads. In distributed settings, data must 

be transmitted between nodes, serialized, deserialized, and coordinated among 

parallel tasks. Each of these steps adds to the overall end-to-end latency. 

Moreover, task dependencies can exacerbate latency. Certain computations 

depend on the results of prior tasks or on state maintained across nodes. 

Synchronization mechanisms, such as barriers, locks, or consensus protocols, 

ensure correctness but may delay downstream processing. 

Network topology, inter-node bandwidth, and congestion also affect latency. 

In geographically distributed deployments, the physical distance between nodes 

can introduce additional delays, making it difficult to maintain consistent low-

latency processing across the system. 

Optimizing latency in parallel stream analytics requires careful system 

design. Strategies include minimizing inter-task communication, using in-memory 

processing, optimizing task placement based on network proximity, and employing 

incremental computation techniques that reduce the need to recompute results from 

scratch. However, achieving a balance between latency and throughput remains a 

fundamental challenge, as optimizations that reduce latency may increase resource 

usage or reduce overall system efficiency. 

State Management Complexity 

Stateful processing is at the heart of many real-time analytics tasks, 

including aggregations, joins, pattern detection, and window-based computations. 

Maintaining and managing this state in a parallel, distributed environment is a 

complex, error-prone task. 

State in parallel systems must satisfy several requirements: 

1. Consistency: Updates to shared state across parallel tasks must be 

consistent, even when events are processed out of order or nodes fail. 
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2. Fault Tolerance: Systems must recover state correctly after failures to 

avoid incorrect analytics results. 

3. Efficiency: Maintaining state should not impose significant overhead 

that degrades throughput or increases latency. 

To achieve these goals, stream analytics frameworks often employ 

checkpointing and state partitioning techniques. State is periodically saved to 

persistent storage, enabling recovery in case of node failures. However, frequent 

checkpoints introduce performance overhead, while infrequent checkpoints 

increase recovery time and the risk of data loss. 

Distributed state management also requires careful partitioning to ensure that 

parallel tasks can efficiently access and update the relevant portions of state. 

Poorly designed state partitioning can lead to bottlenecks and increased 

synchronization costs. For example, in a real-time recommendation system, user 

session data must be partitioned such that updates and lookups can occur in 

parallel without conflicts. 

Late-arriving events and out-of-order processing further complicate state 

management. In windowed computations, events may arrive after the window has 

been partially processed, requiring updates to previously computed results. 

Handling these scenarios efficiently while maintaining correctness is an ongoing 

research challenge in stream analytics. 

Fault Tolerance and Reliability 

In distributed parallel systems, failures are inevitable. Hardware faults, 

software errors, network outages, and resource exhaustion can all disrupt stream 

processing. Real-time analytics systems must tolerate such failures without data 

loss or significant downtime. 

Fault tolerance mechanisms, such as operator replication, checkpointing, and 

log-based recovery, are widely used to maintain reliability. In operator replication, 

multiple instances of a processing task are run concurrently, allowing another 

instance to take over if one fails. Checkpointing periodically saves the system 
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state, enabling recovery without recomputing from scratch. Log-based recovery 

involves storing event streams in durable storage so that processing can resume 

from the last consistent point. 

Despite their effectiveness, these mechanisms introduce performance 

overhead. Maintaining replicas consumes additional resources, checkpointing 

interrupts processing, and log replay can increase latency. Striking a balance 

between fault tolerance and performance is a key challenge for designers of 

parallel stream analytics systems. 

Applications with strict reliability requirements, such as financial transaction 

monitoring or autonomous vehicle systems, require high-availability guarantees. 

Ensuring minimal downtime in these systems adds further complexity to system 

architecture and resource management. 

Synchronization and Consistency Issues 

Executing tasks simultaneously requires careful coordination to ensure 

accurate results. Methods like locks, barriers, and agreement procedures help make 

sure that shared information is updated correctly and that related calculations 

happen in the right sequence. 

The choice of consistency approach greatly influences how well the system 

performs and how complex it is. Ensuring strong consistency makes sure 

everything is correct but can lead to higher delays and more coordination work. On 

the other hand, more relaxed consistency methods, like eventual consistency, tend 

to boost performance but might result in brief periods of inconsistency. 

For example, in a distributed system that combines data from multiple 

sources, updates to counters need to be shared among all the connected nodes. 

Ensuring that every node shows the same value at all times requires ongoing 

communication and coordination, which can slow down performance. Allowing 

nodes to temporarily have different values and to synchronize later can increase 

speed, but might lead to short periods of inaccuracy. 
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Designers must carefully choose consistency models based on application 

requirements, balancing correctness, latency, and system complexity. 

Resource Management and Cost 

Parallel stream analytics systems are typically deployed on distributed 

infrastructure, including cloud clusters, on-premises servers, or hybrid 

environments. While additional nodes and cores improve scalability, they also 

incur operational costs, including computing resources, energy consumption, and 

maintenance. 

Efficient resource management is crucial to balance performance and cost. 

Over-provisioning ensures low latency and high throughput but increases 

expenses, while under-provisioning may lead to performance degradation, missed 

deadlines, or dropped events. 

Adjusting the number of active processing nodes based on workload changes 

helps manage resource demands and maintain performance. However, setting up 

these adjustments can make operations more complicated. For instance, in cloud 

environments, scaling up too quickly can increase costs without providing 

significant performance improvements, while scaling too slowly might cause 

delays during traffic spikes. 

Resource management also relates to handling unexpected issues. Creating 

copies and saving system states requires extra memory and processing work, so 

careful planning is needed to keep the system affordable while ensuring it stays 

reliable. 

Additional Challenges 

Beyond the primary limitations discussed, several other challenges affect 

parallel stream analytics systems: 

1. Data Heterogeneity: Streams often originate from diverse sources with 

different formats, units, and schemas. Transforming and normalizing these 

heterogeneous streams in parallel can introduce additional complexity. 
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2. Backpressure Handling: Systems need to deal with situations where 

they can't process data fast enough. Backpressure signals are sent upstream to 

control the flow, but managing these signals efficiently in environments with many 

processes requires careful planning. 

3. Security and Privacy: Streaming systems often handle sensitive 

information, such as financial transactions or personal health records. Protecting 

this data through secure processing methods, including encryption, access controls, 

and privacy measures, makes things more complicated. 

4. Monitoring and Debugging: Observing and diagnosing performance 

or correctness issues in parallel, distributed systems is challenging due to their 

dynamic and non-deterministic behavior. 

Summary 

This section has examined the main challenges and limitations of analyzing 

data simultaneously across multiple streams, highlighting that while working in 

parallel allows for growth, quick responses, and handling large amounts of data, it 

also adds complexity in various ways. Growing systems can face difficulties due to 

coordinating different parts, uneven data distribution, and competition for 

resources. Reducing delays requires careful tuning of communication and 

processing steps. Managing state, ensuring reliability, keeping processes 

synchronized, and maintaining accuracy are additional hurdles in building 

dependable systems. Finally, managing resources and controlling costs are 

important factors in practical implementations. 

Understanding these limitations is essential for designing effective stream 

processing architectures, selecting appropriate parallel processing techniques, and 

evaluating existing solutions. Addressing these challenges remains an active area 

of research, with ongoing efforts to improve adaptive scheduling, state 

management, consistency models, and fault-tolerant frameworks. 
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3.3. Statistical analysis of large data sets 

 

In the previous sections, the results and graphs of a regular dataset were 

demonstrated, the dataset was collected according to the technical specifications. 

The results of machine learning methods did not meet the needs of the customer. 

So it was decided to collect the data in a different way, as a result, a large dataset 

was obtained1815696 – expired. You must first connect to the librarydask and 

allocate the amount of memory that is needed, in this case 8 GB. The results are 

shown in Figure 3.1. The data are shown in Fig. 3.2. 

 

Figure 3.1 – Result of connecting to the library 

 

 

Figure 3.2 – Building a new data set 



49 

 

 

After the data was collected and displayed, the next step was the primary 

analysis, that is, to understand that the data does not have gaps or other characters. 

First, we will check the list in percentage terms by the proportion of missing 

records for each feature. The result is shown in Fig.3.3. 

 

Figure 3.3 – Checking for missing sample values 

 

Next, we will check for text values. The result is shown in Fig. 3.4. 

 

Figure 3.4 – Non-standard missing values 
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The next step was to create a target sample distribution graph, blue.–

workout, orange–testing, green common. How similar the target variables are to 

each other. The density plot is shown in Fig. 3.5. 

 

Figure 3.5 – Density plot of the distribution of target variables 

 

The scatter plot shown in Figure 3.6 shows us how dependent the data is on 

each other, as well as the spread of the data. This plot can help us determine 

whether we need to clean the data with other methods, or apply a different 

approach to the data. 

In order to make sure how often certain values occur, we construct a 

frequency diagram. Each column of the histogram shows the frequency of the 

sample value falling within the value interval – the higher the bar, the more likely 

the corresponding indicator values   are. The histogram is shown in Figure 3.7. 
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Figure 3.6 – Scatter plots of dependent and explanatory variables 

 

 

Figure 3.7–Data distribution histograms 
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The next step was to use a correlation map. Here we can see how the 

parameters (features) depend on each other. Based on the previous graphs, our 

assumptions are correct, where 1 in the previous graph was the perimeter 

distribution. The map is shown in Fig.3.8. 

 

 

Figure 3.8 – Correlation map – matrix 

 

After the correlation map, it was decided to remove those variables that have 

a very high correlation, i.e. they do not carry any informative value. The following 

variables were removed: x7, x5, x8, x10, x14, x15, x16. 

After removing the data, we obtained a sample that looks like the one shown 

in Fig. 3.9. 

Data has two types such as integer and floating point numbers. To make 

them look the same, standardization has been applied. The idea behind 

standardization is that it transforms the data so that its distribution will have a 

mean of 0 and a standard deviation of 1. Given the distribution of the data, each 

value in the data set will be subtracted from the sample mean and then divided by 

the standard deviation of the entire data set. Mathematical explanation: 
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Figure 3.9 – Data after removing non-informative variables 

 

    (3.1) 

where and are given as the minimum and maximum allowable values, for 

default , . Standardized data are shown in Fig. 3.10. 
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Figure 3.10 – Standardized data 

 

3.4. Results of machine learning models 

 

Next, we build machine learning models. Since we have come to the point 

where we have a regression problem, the main task is to predict the target 

variables. We will build the same models that were built on past data. Since the 

unsatisfactory results made it clear that there is not enough data, the models are 

retrained. Therefore, it was decided to use such methods as: linear regression, 

random forest, decision tree and determine the best predictive model. All methods 

will be considered from the point of view of regression. The following metrics of 

predictive quality were used, as well as the coefficient of determination 𝑅2: 
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– coefficient 𝑅2: 

   (3.2) 

where  –residual sum of squares; 

 - total sum of squares. 

– root mean square error: 

   (3.3) 

– mean absolute error: 

   (3.4) 

– average absolute percentage error: 

   (3.5) 

– average percentage error: 

   (3.6) 

Results of the error of the predictive quality, as well as the coefficient of 

determination 𝑅2, given for models such as, linear regression, trees solutions, 

random forest. The results are shown in Table 3.1. 

In addition to visualizing the predictive quality, regression trees were 

constructed graphically for both target variables. It is graphically that we can 

understand how the distribution is going. The tree for target1 is shown in Fig. 3.15. 

The tree for target2 is shown in Fig. 3.16. As you can see, we take a subset of the 

data and decide how best to divide the subset. 

Our initial subset was the entire data set, and we divided it according to the 

rule  <= 0.258 . Then for each subset we performed additional splitting until they 

could correctly predict the target variable without adhering to the constraint on the 

depth of the tree. 
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Table 3.1 - Results of forecast error of the methods used 

Method Error 

forecast 

qualities 

Target 1 (target variable) Target 2 (target variable) 

train test train test 

Linear 

regression 

MSE  0.02 0.04 0.01 0.02 

MAE 0.13 0.17 0.9 0.11 

MAPE 14.20 16.67 14.28 16.41 

SCORE 0.13 0.10 0.13 0.13 

Decision 

tree 

MSE  0.01 0.02 0.0 0.01 

MAE 0.06 0.11 0.03 0.07 

MAPE 7.49 10.63 3.15 6.55 

SCORE 0.76 0.53 0.75 0.58 

Random 

forest 

MSE  0.02 0.04 0.01 0.03 

MAE 0.01 0.03 0.02 0.04 

MAPE 2.54 3.46 1.0 1.96 

SCORE 0.90 0.88 0.93 0.91 

 

 

Figure 3.14 – Tree for target variable (target1) 
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Figure 3.15 – Tree for target variable (target2) 

 

Fig. 3.16 visualizes the results of the methods. The graphs show the actual 

and forecast data. It can be seen that the random forest model predicts the target 

variables much better, since the forecast values are close to the actual ones along 

the bisector, and this is also visible in the forecast quality estimates that were 

shown in Table 3.1. These results meet the needs of the customer and will be 

transferred to him. 
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Figure 3.16 – Results of forecast and actual data 

 

All the results that were demonstrated, they say that the most effective was 

the random forest machine learning model. After that, a convenient program code 

was developed so that the customer could easily operate this system. In order to 

predict other data, it is necessary to download the data to the root directory, and 

then run the program code through the command line of the operating system. All 

results will be received and stored in the excel file in the form shown in Fig. 3.18. 

 

Figure 3.18–Output result 
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3.5. Discussion and future trends 

 

Discussion of Parallel Stream Analytics 

The rapid evolution of data-generating technologies has made real-time 

stream analytics a cornerstone of modern information systems. The analysis 

presented in the preceding sections highlights that parallel processing is essential 

for enabling real-time stream analytics at scale. By distributing computations 

across multiple processing units, these systems can handle high-volume, high-

velocity data streams while maintaining stringent latency requirements. 

Parallel stream processing allows multiple events to be processed 

concurrently, improving throughput and ensuring that results are delivered in near 

real-time. For example, consider an intelligent traffic management system in a 

metropolitan area. Sensors embedded in roads and traffic signals generate 

continuous streams of data, including vehicle counts, speeds, and congestion 

levels. Without parallel processing, the sequential handling of these streams would 

delay insights, rendering the system ineffective at managing live traffic flows. By 

leveraging data-level and task-level parallelism, the system can process multiple 

streams simultaneously, detect congestion patterns in real time, and issue adaptive 

traffic signals. 

However, the effectiveness of parallel processing depends heavily on system 

design choices. Several factors influence performance, scalability, and resource 

efficiency: 

1. Data Partitioning Strategies: How incoming streams are divided 

among processing nodes significantly affects workload distribution. Poor 

partitioning can lead to data skew, where some nodes are overloaded while others 

remain underutilized, resulting in bottlenecks. Effective partitioning strategies 

must account for both event distribution and the nature of computations being 

performed. 
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2. Parallel Execution Models: Whether a system relies on data 

parallelism, task parallelism, pipeline parallelism, or a hybrid approach affects 

throughput, latency, and system flexibility. Systems optimized for stateless 

operations may underperform when handling stateful analytics unless their 

execution model efficiently handles shared state. 

3. State Management Techniques: Stateful stream processing, such as 

computing moving averages or detecting patterns across multiple events, 

introduces complexity. Systems must manage state consistently across parallel 

tasks while supporting fault tolerance and recovery. Inefficient state management 

can degrade performance and increase processing latency. 

4. Resource Allocation and Scheduling: How computational resources 

are allocated and tasks are scheduled across nodes directly impacts system 

efficiency. Over- or under-provisioning resources can either waste infrastructure or 

compromise real-time performance. 

An important point is that no single method of parallel processing works 

best for everything. Different jobs have their own needs for speed, capacity, 

accuracy, and reliability. For example, a system that detects fraud in stock trading 

needs to respond quickly and give accurate results, since delays or mistakes could 

cost money. On the other hand, a product recommendation system for an online 

shopping site might focus on handling many requests at once, even if it causes 

small delays, as this won't affect the customer's experience much because of this, 

systems that analyze data in real-time need to be built to be adaptable and flexible 

so they can meet the specific needs of each task. 

Trade-offs in System Design 

Designing effective parallel real-time stream analytics systems involves 

navigating a complex landscape of trade-offs between competing objectives. These 

trade-offs manifest across several dimensions: 

1. Throughput vs. Latency: Increasing parallelism generally improves 

throughput by enabling more events to be processed simultaneously. However, 
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additional parallel tasks introduce communication overhead, synchronization 

delays, and coordination complexity, which may increase overall latency. For time-

sensitive applications, balancing throughput with minimal latency is critical. 

2. Consistency vs. Performance: Strong consistency guarantees 

correctness across all parallel tasks but can require extensive coordination and 

synchronization, which may slow down processing. Eventual consistency models 

improve performance by reducing synchronization but may temporarily produce 

inconsistent or approximate results. Designers must assess the acceptable level of 

consistency for the application domain. For example, in healthcare monitoring 

systems, strong consistency is critical for patient safety, whereas in social media 

trend analysis, temporary inconsistencies may be tolerable. 

3. Fault Tolerance vs. Resource Utilization: Replication, checkpointing, 

and other fault-tolerance mechanisms consume computational resources and 

network bandwidth. While these mechanisms improve system reliability, they 

increase operational costs and may reduce effective throughput. Optimizing this 

trade-off involves carefully selecting checkpoint intervals, replication strategies, 

and recovery protocols to balance reliability with performance. 

4. Complexity vs. Maintainability: Hybrid parallel models and adaptive 

algorithms enhance performance but increase system complexity. Highly complex 

systems may be more challenging to maintain, debug, and scale, especially in 

distributed environments. System designers must consider long-term 

maintainability alongside immediate performance improvements. 

5. Centralized vs. Edge Processing: Deploying processing closer to data 

sources (edge computing) reduces network latency but may limit the available 

computational resources compared to cloud-based centralized systems. Conversely, 

centralized systems provide virtually unlimited resources but can introduce higher 

latency due to data transmission delays. 

Effectively navigating these trade-offs requires profiling workloads, 

understanding application requirements, and dynamically adapting system 
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configurations. Adaptive scheduling, dynamic repartitioning, and elastic resource 

management are key strategies for optimizing these trade-offs in real-time 

deployments. 

Emerging Trends in Parallel Stream Processing 

The field of parallel real-time stream analytics is rapidly evolving, driven by 

advances in hardware, software, and computing paradigms. Several key trends are 

shaping the future of this domain: 

1. Edge and Fog Computing Integration 

Edge computing refers to processing data closer to the source rather than 

sending it to a centralized cloud or data center. In stream analytics, this reduces 

network overhead, minimizes latency, and enables faster decision-making. Edge-

based parallel processing partitions computation between edge devices and central 

servers, allowing local event filtering, aggregation, or pattern detection before 

transmitting results upstream. 

For example, in autonomous vehicles, onboard edge devices process sensor 

data in real time to make immediate driving decisions, while aggregated 

information is sent to central cloud servers for fleet-wide analytics. Fog 

computing, an intermediate layer between edge and cloud, further enhances this 

architecture by distributing computation hierarchically. 

2. Adaptive and Elastic Parallelism 

Modern stream analytics systems increasingly adopt adaptive parallelism, 

dynamically adjusting the degree of parallelism in response to workload 

fluctuations. This elasticity ensures that resources are used efficiently while 

maintaining performance across variable input rates. Techniques such as dynamic 

operator scaling, load-aware task scheduling, and stream auto-repartitioning enable 

systems to respond to sudden spikes or drops in data volume. 

Adaptive parallelism is particularly beneficial in applications such as social 

media monitoring or e-commerce analytics, where traffic patterns can be highly 
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unpredictable. By automatically reallocating resources and scaling processing 

tasks, systems can maintain low latency without over-provisioning infrastructure. 

3. Hardware Acceleration 

Advances in hardware are influencing the design and optimization of 

parallel stream analytics systems. Multi-core CPUs, GPUs, and specialized 

accelerators such as Field Programmable Gate Arrays (FPGAs) and Tensor 

Processing Units (TPUs) provide high-throughput parallel computation 

capabilities. 

Parallel stream analytics frameworks increasingly leverage these 

accelerators for tasks such as pattern matching, machine learning inference, and 

large-scale aggregations. GPUs, for example, excel at executing the same operation 

across thousands of data items simultaneously, making them ideal for data-parallel 

stream processing. FPGAs provide low-latency, customizable hardware pipelines 

for specialized tasks, such as real-time signal processing in industrial or healthcare 

applications. 

4. Integration of Machine Learning and AI 

The integration of streaming machine learning and AI is transforming real-

time analytics. Techniques such as incremental learning, online clustering, 

anomaly detection, and reinforcement learning allow systems to adapt to changing 

data patterns and evolving environments. 

Parallel execution is critical for streaming AI workloads. Model partitioning, 

distributed feature extraction, and parallel inference pipelines enable machine 

learning algorithms to process high-velocity streams in real time. Research is 

ongoing to optimize consistency, minimize communication overhead, and improve 

convergence speed for streaming machine learning models. 

5. Unified Batch-Stream Processing Frameworks 

There is a growing trend toward unified frameworks that combine batch and 

stream processing. These frameworks provide consistent abstractions for both 
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historical and real-time data, enabling organizations to leverage the same pipelines, 

operators, and parallelism strategies across different workloads. 

For instance, systems such as Apache Flink and Apache Spark Structured 

Streaming allow incremental processing of streaming data while also supporting 

batch-style computation on historical datasets. Unified frameworks simplify 

system design, reduce maintenance overhead, and enable optimization of parallel 

execution across both batch and streaming workloads. 
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4 SAFETY OF LIFE, BASIC LABOR PROTECTION 

 

4.1. Labor protection requirements when working with electrical 

equipment 

 

General provisions 

The labor protection instructions for an electrician when performing repair 

and maintenance work on electrical equipment were developed in accordance with 

the Law of Ukraine “On Labor Protection” (Resolution of the Verkhovna Rada of 

Ukraine dated 10/14/1992 No. 2694-XII) as amended on 01/20/2018, based on the 

“Regulations on the Development of Labor Protection Instructions”, approved by 

the Order of the Labor Protection Supervision Committee of the Ministry of Labor 

and Social Policy of Ukraine dated January 29, 1998 No. 9 as amended on 

September 1, 2017, taking into account the “Rules for the Technical Operation of 

Consumer Electrical Installations”, approved by the Order of the Ministry of Fuel 

and Energy dated July 25, 2006. No. 258 (as amended by the order of the Ministry 

of Energy and Coal Industry of Ukraine dated 13.02.2012 No. 91, “Rules for the 

safe operation of electrical installations of consumers”, approved by the order of 

the State Supervision Service of Ukraine dated 09.01.1998 No. 4. 

All provisions of this labor protection instruction apply to electricians of an 

educational institution who perform repair and maintenance work on electrical 

equipment. 

Persons not younger than 18 years old who have undergone training in the 

specialty and who are also allowed to perform repair and maintenance work on 

electrical equipment independently are: 

a medical examination and do not have contraindications due to health to 

perform this work; 

introductory and primary workplace briefings on labor protection; 

training in safe methods and techniques of work; 
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testing of knowledge of the rules for installing electrical installations, safety 

rules for operating electrical installations, labor protection requirements; 

when repairing and maintaining electrical equipment voltage up to 1000V 

have an electrical safety group not lower than III, and over 1000V - not lower than 

IV. 

Electricians must know and comply with the requirements of the labor 

protection instructions when performing work on the repair and maintenance of 

electrical equipment, instructions for working with hand tools, power tools and 

ladders. 

Electricians when performing work on the repair and maintenance of 

electrical equipment must comply with the requirements of the Rules for the safe 

operation of electrical installations of consumers and the Rules for the technical 

operation of electrical installations of consumers, and have an appropriate 

electrical safety group in accordance with the requirements of these Rules. 

When performing work on the repair and maintenance of electrical 

equipment, the impact of the following harmful and dangerous production factors 

may be observed: 

fall from a height; 

electric shock; 

increased electric field strength; 

increased dustiness of the air in the work area; 

increased vibration level; 

insufficient illumination of the work area; 

physical overload; 

neuropsychic overload. 

Electricians when performing repairs and maintenance of electrical 

equipment must use the following PPE: 

cotton overalls - for 12 months; 

gloves for - 3 months; 
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leather boots for - 24 months; 

dielectric galoshes - on duty; 

dielectric gloves - on duty; 

dielectric mats - on duty. 

An electrician when repairing and maintaining electrical equipment is 

obliged to: 

keep his workplace clean and tidy; 

comply with the Rules of Internal Labor Regulations; 

be able to use personal and collective protective equipment, fire 

extinguishing equipment; 

be able to provide first aid to accident victims; 

know and comply with all requirements of regulatory acts on labor 

protection, fire protection rules and industrial sanitation. 

immediately inform your immediate supervisor about any accident that 

occurred at work, about signs of an occupational disease, as well as about a 

situation that poses a threat to the life and health of people; 

know the testing dates of protective equipment and devices, the rules for 

their operation, care and use. It is not allowed to use protective equipment and 

devices with an expired inspection period; 

perform only the assigned work; 

comply with the requirements of the equipment operating instructions; 

know where the first aid facilities, primary fire extinguishing equipment, 

main and emergency exits, evacuation routes in the event of an accident or fire are 

located; 

know the telephone numbers of a medical institution (103) and fire 

department (101). 

An electrician may refuse to perform the work assigned to him if a 

production situation arises that poses a threat to his life and health of others, or to 

the environment, and report this to his immediate supervisor. 
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Smoking, drinking alcoholic beverages and other substances that have a 

narcotic effect on the human body are prohibited in the workplace. 

In order to prevent injuries and the occurrence of dangerous situations, the 

following requirements must be observed: it is impossible to involve third parties 

in the work; 

do not start work if there are no conditions for its safe performance; 

perform work only on serviceable equipment, with serviceable devices and 

tools; 

if a malfunction is detected, immediately report it directly to 

to the manager or eliminate them on their own, if this applies to their job 

duties; 

not to touch uninsulated or damaged wires; 

not to perform work that is not part of their professional duties. 

Be able to provide first aid for bleeding, fractures, burns, electric shock, 

sudden illness or poisoning. 

Follow the rules of personal hygiene: 

outerwear, hats and other personal belongings should be left in the 

wardrobe; 

work in clean overalls; 

eat in the designated place. 

Be able to correctly use PPE and collective protection equipment, primary 

fire extinguishing equipment, fire-fighting equipment, know where they are. 

Persons who violate this labor protection instruction for an electrician when 

performing repair and maintenance work on electrical equipment shall bear 

disciplinary, administrative, material and criminal liability in accordance with the 

current legislation of Ukraine. 

Safety requirements before starting work 

Wear overalls, inspect and prepare the workplace, remove unnecessary 

objects. 
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Remove unauthorized persons from the work area and clear the workplace of 

foreign materials and other objects, fence off the work area and install safety signs. 

Make sure that the workplace is sufficiently illuminated, that there is no 

electrical voltage on the repaired equipment. 

Inspect the serviceability of switches, electrical outlets, power cords, 

electrical wires, connecting cables, make sure that PPE (personal protective 

equipment) and warning devices (dielectric gloves, safety glasses, galoshes, mats, 

etc.) are available and in good condition. 

When working with a tool, it is necessary to make sure that it is in good 

condition, that there is no mechanical damage to the insulating coating and that the 

tool has been tested in a timely manner. 

Inspect the workplace for compliance with fire safety requirements and for 

adequate workplace lighting. 

If you find any deficiencies or violations in electrical and fire safety, 

immediately report them to your immediate supervisor. 

 

4.2. Safety requirements during work 

 

When performing your duties, an electrician must have a certificate of 

knowledge testing on labor protection. In the absence of a certificate or a 

certificate with an expiration date, the employee is not allowed to work. 

Work in electrical installations is divided into 3 categories in terms of safety 

measures: 

with voltage relief; 

without voltage relief on or near live parts; 

without voltage relief away from live parts. 

Employees performing special types of work that require additional safety 

requirements must be trained in the safe conduct of such work and have a 

corresponding entry in the knowledge test certificate. 
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An employee who serves electrical installations assigned to him with a 

voltage of up to 1000 V alone must have a III group on electrical safety. 

When performing work in electrical installations, it is necessary to carry out 

organizational measures that ensure the safety of work: 

draw up work orders-permits, orders in accordance with the list of works 

performed in the order of current operation; 

prepare workplaces; 

admittance to work; 

exercise control over the performance of work; 

transfer to another workplace; 

establish breaks in work and its completion. 

To prepare the workplace for work that requires voltage relief, it is necessary 

to apply, in a certain order, the following technical measures: 

perform the necessary shutdowns and take all measures that exclude 

erroneous or unauthorized switching on of switching equipment; 

hang prohibition posters on the drives of manual and remote control keys of 

switching equipment; 

check for the absence of voltage on conductive parts that must be grounded 

to protect people from electric shock; 

install grounding (turn on grounding knives, use portable grounding); 

install fences, if necessary, near workplaces or live parts that remain under 

voltage, and also hang safety posters on these fences. 

depending on local conditions, fence live parts before or after their 

grounding. 

At least two workers should work without removing voltage on or near live 

parts, one of whom, the work supervisor, must have group IV; the others must 

have group III with mandatory registration of the work with a work permit or 

order. 
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When removing and installing fuses under voltage in electrical installations 

with voltage up to 1000 V, all loads connected to the specified fuses should be 

disconnected in advance; use insulating pliers or dielectric gloves, and if there are 

open fuse inserts, then safety glasses. 

Work using ladders must be carried out by two people, one of the workers 

must be at the bottom. Standing on boxes or other objects is prohibited. P 

When installing extension ladders on beams, elements of metal structures, 

etc., the upper and lower parts of the ladder should be securely fixed to the 

structures. 

During maintenance and repair of electrical installations, it is prohibited to 

use metal ladders. 

 

4.3. Safety requirements after completion of repair and maintenance of 

electrical equipment 

 

Disconnect (disconnect) the necessary electrical equipment, power tools 

from the network. 

Clean up the workplace, remove parts, material, garbage and waste to 

special places. 

Remove all tools and devices to the designated place. 

Remove and remove overalls, PPE, wash hands thoroughly. 

Inspect the workplace for compliance with all fire protection requirements. 

Notify your immediate supervisor of any deficiencies and malfunctions that 

occurred during the work. Record this in the operational log. 

Safety requirements in emergency situations 

In case of fire: 

turn off electrical equipment, supply and exhaust ventilation, if any; 

notify the fire department by calling 101 and report this to your supervisor, 

and in his absence, to another official; 
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proceed to eliminate the source of the fire, using the fire extinguishing 

agents provided for this purpose. Extinguish electrical equipment that is under 

voltage can only be extinguished with carbon dioxide fire extinguishers of the OU 

type or sand. It is prohibited to extinguish them with water or foam fire 

extinguishers. 

The electrician must remember that in the event of a sudden power outage, it 

can be supplied again without warning. 

Mechanisms and devices should be quickly turned off: 

in the event of a sudden power outage; 

if their further operation threatens the safety of employees; 

in the event of a feeling of electric current when touching metal parts of the 

starting equipment; 

in case of sparking; 

at the slightest sign of ignition, smoke, or a burning smell; 

if an unfamiliar noise appears. 

In the event of a short circuit in the power supply network, it is necessary to 

de-energize the equipment and notify your immediate supervisor. 

If an electric shock occurs, the victim should be released from the action of 

the electric current, for which purpose the electrical network should be turned off 

or the victim should be disconnected from the conductive parts using dielectric 

protective equipment and other insulating items and objects (dry clothing, dry pole, 

rubberized material, etc.), or the wire should be cut (chopped) with any tool with 

an insulating handle, carefully, without causing additional injuries to the victim. 

Before the arrival of a medical worker, it is necessary to provide the victim with 

first aid. 

In the event of accidents (injury to a person), immediately notify the 

immediate supervisor. 
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CONCLUSIONS 

 

In today’s highly connected, data-filled world, real-time stream analysis has 

become a key part of modern computer systems. The incredible rise in data 

creation, fueled by the Internet of Things (IoT), banking systems, social media, 

sensor networks, and factory automation, has changed how organizations gather, 

process, and use information. Unlike old-fashioned static data sets, today’s data is 

continuous, fast, and diverse, coming in streams that need quick analysis. Being 

able to get useful insights from these streams instantly has become vital in many 

areas, including finance, healthcare, transportation, smart cities, and industrial 

oversight. 

Traditional methods of handling data, which involve gathering, storing, and 

analyzing information in batches over time, no longer meet the needs of today's 

rapidly flowing data streams. Although these batch systems still work well for 

reviewing past data and managing large volumes of information, they can't deliver 

the quick responses required for real-time situations. For example, in stock trading, 

a delay in detecting fraudulent activity can cause significant financial loss; in 

autonomous vehicles, slow analysis of sensor data can compromise safety; and in 

health monitoring, delays in identifying issues with a patient’s vital signs can be 

dangerous. These examples demonstrate that delays in processing constant streams 

of data are more than just operational problems—they can lead to serious financial, 

safety, and personal risks. 

To tackle these problems, parallel processing has become a key technology 

for real-time stream analysis, enabling systems to handle many events at once. This 

greatly increases speed and reduces delays, which is crucial for managing the 

growing volume and complexity of data in today’s applications. 

This paper has provided a thorough look at how computers process data in 

real-time, stressing its important role in today's technology. It started by explaining 

the basic ideas behind analyzing data streams and using multiple processors at 
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once, along with reasons why these methods are popular. Data stream analysis 

involves processing ongoing, unpredictable data quickly to get immediate results. 

Multiple processing is a way of doing many tasks at the same time to increase 

speed and reduce delays. These ideas form the core of today's data handling, where 

managing continuous, fast-moving information is essential for staying competitive 

and efficient. 

Building on this basic idea, the paper looked into different system setups 

created to support real-time stream analysis. Usually, these systems have several 

main parts: data sources, ways to collect the data, processing engines that work in 

parallel, tools to keep track of the system’s state, and layers to share or connect 

results. Each of these parts is essential to ensure that data flows smoothly, 

processing is quick, the system’s memory stays accurate, and results get to users 

without much delay. 

Data sources in these setups are becoming more diverse, including 

everything from smart gadgets and sensors to websites and social media platforms. 

Since the data can arrive at different speeds, in various formats, and with varying 

levels of reliability, we need robust systems to gather it—especially during sudden 

increases in activity—while keeping everything organized and dependable. This is 

when multiple collection points start working simultaneously, ensuring all 

incoming data is captured quickly and efficiently. 

The system's main component is the processing engine, which handles 

complex analysis tasks on incoming data streams. By using different forms of 

parallelism, such as splitting data, dividing tasks, lining up processes, and working 

on windows, these engines can process millions of events every second while 

keeping delays manageable. For instance, data parallelism means processing 

different parts of a stream in parallel, and pipeline parallelism allows data to flow 

smoothly through each step. Often, these methods are mixed to create flexible and 

scalable systems that reduce the chance of slowdowns. 
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A crucial part of these systems is handling their state, which helps with 

ongoing tasks like merging data, linking different groups, and spotting complex 

events. Managing the state well requires careful organization, saving progress, and 

fixing issues to keep everything accurate and reliable across all parts. It gets harder 

in systems that run tasks at the same time, where keeping everyone's state in sync 

takes more effort. Still, good state management is vital for providing accurate, real-

time insights in applications that depend on cumulative or time-based calculations. 

The output and integration layers complete the architecture by delivering 

processed results to downstream systems, dashboards, or automated decision-

making components. Parallelism is also applied here to allow multiple results to be 

transmitted or stored concurrently, ensuring that the output does not become a 

bottleneck in the overall system. In addition, fault tolerance, load balancing, and 

scalability mechanisms are integrated throughout the architecture to maintain 

continuous operation even under failure conditions or fluctuating workloads. 

The paper also provided a detailed analysis of parallel processing techniques 

for real-time stream analytics. These techniques include: 

1. Data parallelism, where streams are partitioned and processed 

independently, providing fine-grained scalability. 

2. Task parallelism, allowing multiple stages or operations to execute 

concurrently to reduce overall pipeline latency. 

3. Pipeline parallelism, which maintains continuous data flow through 

sequential processing stages executed in parallel. 

4. Window-level parallelism, enabling simultaneous computation over 

multiple temporal or event-based windows. 

5. Operator parallelism, which replicates operators across data partitions 

for efficient scaling. 

The combination of these techniques forms the backbone of high-

performance stream analytics systems, allowing them to meet the dual 

requirements of low latency and high throughput. 
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Furthermore, the study explored key algorithms and frameworks for parallel 

stream analytics, including filtering, aggregation, pattern detection, and streaming 

machine learning. Filtering and transformation algorithms benefit from stateless 

parallelism, while aggregation and pattern detection algorithms leverage stateful 

parallel execution. Machine learning algorithms for streaming data, including 

classification, anomaly detection, and predictive analytics, rely on distributed 

model execution and parallel feature extraction to scale effectively. Frameworks 

such as Apache Flink, Apache Spark Structured Streaming, and Apache Kafka 

Streams provide pre-built abstractions and runtime support, facilitating the 

implementation of these algorithms while transparently managing parallelism, 

state, and fault tolerance. 

Despite this progress, systems that analyze data in real time still face several 

problems and limits. Growing the system's capacity isn't always straightforward; 

uneven data distribution and workload imbalances can cause delays. Waiting times 

are still affected by the need for coordination, communication, and network traffic. 

Managing the state of data across multiple locations adds difficulty, especially 

when trying to find the right balance between saving checkpoints and maintaining 

system speed. While necessary, safety nets that prevent system failures can add 

extra work and storage needs. Additionally, managing resources and keeping 

operational costs down are key to ensuring the system works well and remains 

affordable. Recognizing and solving these issues is essential for creating systems 

that are dependable, efficient, and easy to maintain. 

The discussion of future trends underscores the field's dynamic, evolving 

nature. Integration with edge and fog computing is enabling real-time processing 

closer to the data source, reducing latency and bandwidth usage. Adaptive and 

elastic parallelism allows systems to dynamically adjust to fluctuating workloads, 

improving resource utilization and responsiveness. Hardware advancements, 

including multi-core processors, GPUs, FPGAs, and TPUs, provide new avenues 

for accelerating parallel stream processing. Data-driven analysis and learning 
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systems enhance predictive capabilities and decision-making, while unified batch-

stream processing frameworks simplify system design and maintenance. 

Looking ahead, there are many opportunities for research in this area. Future 

work could focus on simple, efficient ways to manage system state; better methods 

to evenly distribute workload and prevent data imbalance; quick fault recovery; 

running machine learning tasks in parallel on streaming data; energy-saving 

computing for devices at the edge; and secure, privacy-protected ways to analyze 

data together. Solving these problems will need teamwork across different fields, 

including computer systems, processing techniques, data analysis, and artificial 

intelligence. 

In conclusion, using multiple tasks at once is essential for analyzing data as 

it happens. It turns continuous, fast-moving data flows from a problem into an 

opportunity, allowing quick and useful insights that support making decisions in 

many areas. Companies and researchers need to keep exploring, improving, and 

creating new ways to design systems that handle data streams in parallel, so they 

can keep up with the growing needs of data-based applications. By making good 

use of handling many tasks at once, today's analysis systems can provide scalable, 

quick, and dependable real-time information, making sure the full value of 

streaming data is recognized. 

As digital systems keep advancing, analyzing data as it happens, driven by 

multiple computers working together, will continue to be a key foundation for 

responsive, intelligent, and adaptable systems. Its significance will keep growing, 

especially as data becomes more central to making operational decisions, 

forecasting outcomes, and automating responses across various fields such as 

finance, healthcare, industrial automation, smart cities, and others. The way 

advanced processing techniques, cutting-edge algorithms, and solid system 

structures work together will ultimately influence the efficiency, dependability, and 

future success of these real-time data analysis platforms. 
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