
Ministry of Education and Science of Ukraine

Ternopil Ivan Puluj National Technical University

Faculty of Computer Information System and Software Engineering
(full name of faculty)

Department of Computer Science
(full name of department)

QUALIFYING PAPER

For the degree of

Bachelor
(degree name)

topic: Parallel Processing for Real – Time Stream Analytics

Submitted by: student IV course, group ІСН-43

specialty 122 Computer science
 (шифр і назва спеціальності)

Emmanuel Yaw

Mac-Gatus
 (signature) (surname and initials)

Supervisor Roman Zolotyi
 (signature) (surname and initials)

Standards verified by

 (signature) (surname and initials)

Head of Department

Bodnarchuk I.O.
 (signature) (surname and initials)

Reviewer

 (signature) (surname and initials)

Ternopil

2026

Ministry of Education and Science of Ukraine

Ternopil Ivan Puluj National Technical University

Faculty Faculty of Computer Information System and Software Engineering
 (full name of faculty)

Department Department of Computer Science
 (full name of department)

 APPROVED BY

 Head of Department

 Bodnarchuk I.O.

 (signature) (surname and initials)

 « » 20___

ASSIGNMENT
for QUALIFYING PAPER

for the degree of Bachelor
 (degree name)

specialty 122 Computer science
 (code and name of the specialty)

student Emmanuel Yaw Mac-Gatus

 (surname, name, patronymic)

1. Paper topic Parallel Processing for Real – Time Stream Analytics

Paper supervisor Zolotyi R.Z., PhD
 (surname, name, patronymic, scientific degree, academic rank)

Approved by university order as of « __ » __ ____ № .

2. Student’s paper submission deadline

3. Initial data for the paper Literature sources about architecture, principles of operation and

development of information systems.

4. Paper contents (list of issues to be developed)

5. List of graphic material (with exact number of required drawings, slides)

6. Advisors of paper chapters

Chapter Advisor’s surname, initials and position

Signature, date

assignment was

given by

assignment

was received by

Life safety,

basics of labor

protection

7. Date of receiving the assignment 20.01.2025

TIME SCHEDULE

LN Paper stages Paper stages deadlines Notes

1 Analysis of the task for qualifying work. Selection Completed

 and work with literary sources.

2 Writing chapter 1 Completed

3 Writing chapter 2 Completed

4 Writing chapter 3 Completed

5 Writing chapter 4 Completed

6 Standartization control Completed

7 Plagiarism check Completed

8 Preliminary defense of qualifying paper Completed

9 Defense of qualifying paper

Student

Emmanuel Yaw Mac-Gatus
 (signature) (surname and initials)

Paper supervisor

Zolotyi R.Z.
 (signature) (surname and initials)

3

ANNOTATION

Parallel Processing for Real – Time Stream Analytics // Diploma thesis Bachelor

degree // Emmanuel Yaw Mac-Gatus // Ternopil’ Ivan Puluj National Technical

University, Faculty of Computer Information System and Software Engineering,

Department of Computer Science // Ternopil', 2026 // P. __, Fig. – __, Tables – __,

Annexes – __, References – __.

Kеуwоrds: Real-time stream analytics, parallel processing, distributed

systems, data streams, low-latency computing.

Parallel processing helps overcome limitations by distributing data and

computations across multiple processing units, allowing everything to run

simultaneously. This approach enables stream analytics systems to handle higher

volumes of data, respond more quickly, and scale more effectively. As a result,

they are ideally suited for continuous, unbounded data streams. This paper offers a

thorough review of methods for parallel processing in real-time stream analytics,

exploring key architectural designs, stream-processing models, and parallelization

strategies that improve the efficiency and scalability of live data analysis.

This paper also explores the everyday challenges faced when implementing

parallel stream processing. These include coordinating tasks, maintaining

consistent data states, tolerating faults, balancing workloads, and managing data

skew. If not properly handled, these issues can seriously affect how well the

system performs and how reliably it operates. By examining current solutions and

emerging trends in stream processing frameworks and hardware acceleration, the

study highlights the growing importance of parallel processing for real-time data

analysis. The results show that effective parallelization is crucial for supporting

modern, data-driven applications across various fields, including smart cities,

finance, healthcare, and industrial automation.

4

CONTENT

INTRODUCTION .. 5

1. ANALYSIS OF THE SUBJECT AREA AND STATEMENT OF THE TASK 7

1.1. Background and Motivation ... 7

1.2. Background and related work... 16

2. SYSTEM ARCHITECTURE FOR REAL-TIME STREAM ANALYTICS 22

2.1. Architectural Overview ... 22

2.2. Parallel processing techniques for real-time stream analytics 28

3. ALGORITHMS AND FRAMEWORKS FOR PARALLEL STREAM

PROCESSING .. 35

3.1. Stream Processing Algorithms ... 35

3.2. Challenges and limitations of parallel stream analytics 41

3.3. Statistical analysis of large data sets .. 48

3.4. Results of machine learning models ... 54

3.5. Discussion and future trends .. 59

4 SAFETY OF LIFE, BASIC LABOR PROTECTION 65

4.1. Labor protection requirements when working with electrical equipment 65

4.2. Safety requirements during work ... 69

4.3. Safety requirements after completion of repair and maintenance of electrical

equipment .. 71

CONCLUSIONS ... 73

REFERNCES ... 78

5

INTRODUCTION

The rapid growth of data-generating technologies has changed how

information is created and used in many fields. Devices such as those in the

Internet of Things, social media platforms, financial systems, and sensor networks

constantly generate large volumes of real-time data [1]. To extract meaningful

insights, immediate processing is essential. Delays, even brief ones, diminish

value—especially when monitoring for fraud, ensuring smooth traffic flow, or

maintaining system reliability. This is where challenges arise: traditional methods

weren’t built for this. They work through batch jobs, handling tasks sequentially,

which made sense years ago but falls apart when you’re drowning in data that

demands instant analysis [2].

Parallel processing helps overcome limitations by distributing data and

computations across multiple processing units, allowing everything to run

simultaneously. This approach enables stream analytics systems to handle higher

volumes of data, respond more quickly, and scale more effectively. As a result,

they are ideally suited for continuous, unbounded data streams [3]. This paper

offers a thorough review of methods for parallel processing in real-time stream

analytics, exploring key architectural designs, stream-processing models, and

parallelization strategies that improve the efficiency and scalability of live data

analysis [4].

This paper also explores the everyday challenges faced when implementing

parallel stream processing. These include coordinating tasks, maintaining

consistent data states, tolerating faults, balancing workloads, and managing data

skew. If not properly handled, these issues can seriously affect how well the

system performs and how reliably it operates [5]. By examining current solutions

and emerging trends in stream processing frameworks and hardware acceleration,

the study highlights the growing importance of parallel processing for real-time

data analysis. The results show that effective parallelization is crucial for

6

supporting modern, data-driven applications across various fields, including smart

cities, finance, healthcare, and industrial automation [6].

7

1. ANALYSIS OF THE SUBJECT AREA AND STATEMENT OF THE

TASK

1.1. Background and Motivation

The continuous progress in digital technologies has profoundly changed how

we create, share, and look at data. In the past, data was mainly gathered in separate

groups, stored in databases, and handled based on fixed plans. These datasets were

typically finite, systematically organized, and comparatively small in volume. In

contrast, contemporary systems frequently produce continuous data streams,

exemplifying an unceasing flow of information generated over time. A data stream

is a real-time, constant flow of data points that arrive in sequence and often require

immediate processing or rigorous temporal management.

These ongoing data streams come from many different sources. You might

find sensor networks monitoring the environment or industrial processes, wearable

and smart devices, Internet of Things (IoT) platforms, online transaction and

payment systems, web server and application logs, or social media sites. The data

from these sources usually has three main traits: it comes in quickly, it’s large in

volume, and it keeps coming without stopping. "High velocity" means data is

generated and sent very fast. "Large volume" refers to the enormous, often

limitless amount of data. "Continuous arrival" means the data flow has no clear

end. Because of these traits, storing all incoming data before analyzing it is often

not possible, so traditional batch processing methods don’t work well here.

To tackle these issues, the concept of real-time stream analytics has

emerged. This approach involves analyzing, transforming, and deriving insights

from streaming data as it arrives, with minimal delay between data arrival and the

resulting insights. Unlike batch analytics, which looks at past data, real-time

analytics focuses on immediate response. This is crucial in situations where data

loses its value quickly. For example, in financial systems, real-time analytics helps

8

spot fraudulent transactions early; in intelligent transportation, it supports live

traffic flow and congestion control; in stock markets, it enables quick trend

detection; and in healthcare, it allows continuous monitoring of patients’ vital

signs. In these cases, delays can lead to financial losses, lower system efficiency,

or even endanger human safety.

Despite its advantages, real-time stream analytics introduces significant

computational complexity. As data streams grow in speed and scale, sequential

processing models, where data items are processed one after another on a single

processing unit, become increasingly inefficient. Such models struggle to meet

strict latency and throughput requirements, leading to processing backlogs and

delayed responses. This limitation becomes more severe as modern applications

demand real-time analysis of millions of events per second.

To address these challenges, parallel processing has become a key technique

in stream analytics systems. Parallel processing is a computational approach in

which multiple processing units execute tasks simultaneously to solve problems

more efficiently. In stream analytics, it involves splitting incoming data streams

and analytical tasks across multiple processors, cores, or distributed machines. By

enabling concurrent execution, parallel processing greatly enhances throughput,

lowers processing latency, and improves system scalability.

As a result, it plays a critical role in meeting the performance demands of

modern real-time analytics applications.

As more industries rely on making quick, real-time decisions, it's essential to

explore how parallel processing can help analyze data streams effectively.

Understanding how to use parallelism effectively, along with the challenges it

entails, is key to building real-time data systems that are efficient, reliable, and

scalable.

9

Figure 1.1 - Definition and Flow of Continuous Data Streams

Real-Time Stream Analytics Overview

Building on the previous discussion, real-time stream analytics marks a shift

in how data is processed and analyzed in modern systems. Unlike batch analytics,

which collects data over a set period for later processing, stream analytics

processes data as it arrives. This approach enables systems to produce insights

continuously, rather than waiting for the entire dataset.

The primary goal of real-time stream analytics is to facilitate rapid decision-

making. Because data can quickly lose its relevance, delayed analysis often proves

ineffective. Consequently, stream analytics systems are designed to process events

rapidly, typically delivering results within milliseconds or seconds. This

distinguishes stream analytics from traditional data processing by prioritizing

speed, responsiveness, and system efficiency.

10

Figure 1.2 – Role of Parallel Processing in Reducing Latency

Real-time stream analytics systems have some key features. They keep

processing incoming data nonstop, so they need to run continuously. Their ability

to handle data quickly is essential because even minor delays can affect

performance and decision accuracy. These systems also often track context across

multiple events, which helps spot patterns, trends, or anomalies. Scalability is

essential too, since data volumes can suddenly grow.

These features really challenge computer resources and how systems are

built. Just using one machine and processing tasks one after another usually isn't

11

enough. That's why many modern stream analytics tools are moving toward

parallel and distributed computing models, helping them run faster and scale more

easily.

Figure 1.3 - Comparison of Batch Analytics and Stream Analytics

Role of Parallel Processing

To meet the performance demands of real-time stream analytics, parallel

processing plays a central and enabling role. Rather than executing operations

12

sequentially, parallel processing allows multiple computations to run concurrently

by distributing workloads across multiple processing units. In streaming

environments, this approach enables systems to handle large volumes of incoming

events without sacrificing responsiveness.

Figure 1.4 - Key Characteristics of Real-Time Stream Analytics

In real-time stream analytics, parallelism can be implemented at multiple

levels of the system architecture. A prevalent method is data-level parallelism, in

which incoming data streams are partitioned for independent processing. This

13

facilitates the concurrent analysis of multiple events, thereby substantially

enhancing throughput. Additionally, task-level parallelism involves executing

different analytical operations or processing stages simultaneously. Pipeline

parallelism extends this concept by enabling data to traverse a series of processing

stages that operate concurrently, thereby optimizing overall system efficiency.

By leveraging these forms of parallelism, stream processing systems can

scale horizontally by adding more processing resources as data rates increase. This

flexibility allows systems to adapt dynamically to changing workloads while

maintaining consistent performance across varying conditions. As a result, parallel

processing is not merely an optimization technique but a fundamental requirement

for achieving real-time performance in modern stream analytics systems.

Figure 1.5 - Levels of Parallelism in Stream Processing Systems

14

Challenges in Parallel Stream Processing

While running tasks in parallel can significantly boost performance, it also

introduces tricky technical challenges that require careful attention. One major

issue is handling shared state, since many stream analytics apps rely on it across

different tasks. Keeping everything consistent and correct can be quite challenging.

If the state isn’t managed properly or is poorly designed, it can lead to wrong

results or even make the system unstable.

Synchronization overhead is a significant concern because coordinating

parallel tasks often involves synchronization mechanisms that, if not optimized,

can decrease performance gains. Too much synchronization can cause delays that

negate the advantages of parallel execution. Moreover, data skew—where some

data partitions carry much more workload than others—can create load imbalance

among processing units. This imbalance hampers overall system efficiency and

restricts scalability.

Fault tolerance is crucial in systems that handle multiple streams of data

simultaneously. In big-scale setups, things like hardware breaking down, network

issues, and software bugs happen more often than you'd like. That's why these

systems need to bounce back from problems quickly, ensuring no data is lost and

everything keeps running smoothly. Finding ways to make these systems both

highly efficient and really reliable is an ongoing and exciting area of research.

Objectives and Scope of the Paper

The main goal of this paper is to explore and explain how parallel processing

techniques are used in real-time stream analytics systems. We want to improve

understanding of how parallelism enables the quick, scalable processing of

continuous data streams. Specifically, this paper aims to:

1. Describe the basic ideas behind analyzing live data streams and

handling multiple tasks at the same time.

2. Describe how systems are designed to handle tasks by breaking them

into smaller parts and working on them simultaneously across multiple machines.

15

Figure 1.6 - Common Challenges in Parallel Stream Processing

3. Examine the models and techniques used for parallel processing in

modern stream analytics platforms.

4. Identify the main challenges, limitations, and compromises involved

in processing data with parallel streams.

5. Explore new trends and future research paths in the field.

This paper primarily explores ideas, system designs, and processing methods

rather than delving into the nitty-gritty details of implementation. This way, the

16

discussion can be relevant and applicable across a variety of platforms and

applications.

Organization of the Paper

The remainder of this paper is organized to provide a logical and progressive

exploration of the topic. Section II reviews foundational concepts and related work

in real-time stream analytics and parallel processing. Section III discusses system

architectures for real-time stream analytics. Section IV examines parallel

processing models and techniques in detail. Section V explores algorithms and

frameworks commonly used in parallel stream processing systems. Section VI

discusses key challenges and limitations. Section VII presents discussion and

future research trends, and Section VIII concludes the paper.

1.2. Background and related work

Fundamentals of Stream Analytics

Stream analytics is a data processing paradigm that focuses on the real-time

or near-real-time analysis of continuously generated data. Unlike traditional data

analytics systems that operate on fixed, stored datasets, stream analytics systems

are designed to process data that arrives constantly and may have no predefined

end. This unbounded nature of streaming data requires systems to analyze

information as it flows through the system rather than waiting for complete

datasets to be collected.

At its core, the primary objective of stream analytics is to extract meaningful

insights, patterns, or anomalies from data as soon as it is generated. These insights

may include detecting abnormal behavior, identifying trends, triggering alerts, or

supporting automated decision-making. Because streaming data is often time-

sensitive, its usefulness can diminish rapidly if analysis is delayed. As a result,

stream analytics emphasizes immediacy, responsiveness, and efficiency.

17

Streaming data is commonly described using the well-known “three V’s”:

velocity, volume, and variety. Velocity refers to the speed at which data is

generated and transmitted, often at very high rates. Volume refers to the potentially

massive, continuously growing amount of data produced over time. Variety

indicates the heterogeneous nature of streaming data, which may include

structured, semi-structured, and unstructured formats originating from diverse

sources. Together, these characteristics distinguish stream analytics from

traditional data processing approaches and introduce unique computational

challenges.

In real-time stream analytics, data is typically processed either event-by-

event or in small batches. This incremental processing model allows applications

to respond quickly to changes in the data stream. As a result, stream analytics is

well-suited for time-critical domains such as financial trading systems,

cybersecurity monitoring, industrial automation, smart grids, and intelligent

transportation systems. In these environments, the ability to analyze and act on

data in real time can provide significant operational and strategic advantages.

Stream Processing Models

To enable real-time analysis of streaming data, different processing

approaches have been developed and are commonly used in practice. These

approaches dictate how incoming data is grouped, handled, and processed within a

system. The two most popular methods are processing data one event at a time and

processing it in small batches.

Event-at-a-time processing, also called true streaming, means handling each

new event as it arrives. This approach offers very low latency, making it ideal for

tasks that require quick responses, such as fraud detection, security breaches, or

real-time alerts. But processing one event at a time can also create extra work,

especially when it comes to tracking data or managing multiple tasks

simultaneously. Updating stored information and syncing everything can slow

things down if not done carefully.

18

Micro-batch processing groups incoming events into small batches that are

processed together over short time frames. This approach reduces workload by

spreading computation across multiple events, boosting overall speed. Although it

introduces a slight delay compared to processing each event alone, it still delivers

results fast enough for many uses. Plus, it simplifies error handling and state

management, which is why many modern stream processing systems favor this

approach.

Both processing methods really benefit from parallel techniques. Splitting

data or tasks across multiple processing units enables systems to handle high input

volumes without excessive delay. Deciding whether to process one event at a time

or in small batches usually depends on the application's needs, especially when

balancing speed, efficiency, and system complexity.

Overview of Parallel Processing Concepts

Parallel processing is a fundamental computing paradigm in which multiple

processing elements execute tasks simultaneously to solve problems more

efficiently. In the context of stream analytics, parallel processing is essential for

meeting real-time performance requirements and achieving scalability under high

data rates.

Parallelism in stream analytics can be applied in several forms. Data

parallelism involves partitioning incoming data streams into independent subsets

that can be processed concurrently using the same operations. This approach is

convenient when events are independent or can be grouped by keys such as user

identifiers or sensor IDs. Task parallelism, on the other hand, focuses on executing

different operations or analytical tasks in parallel. This model is useful when a

stream analytics application consists of multiple independent processing stages.

Pipeline parallelism is another essential form of parallelism, in which

different stages of a processing pipeline operate concurrently on distinct data

items. As data flows through the pipeline, each stage performs a specific function,

such as filtering, aggregation, or pattern detection. By overlapping execution

19

across stages, pipeline parallelism improves overall throughput and resource

utilization.

In practice, modern stream analytics systems often combine multiple forms

of parallelism to maximize performance. The effective use of parallel processing

allows systems to scale horizontally, adapt to fluctuating workloads, and maintain

low-latency processing even under heavy data loads.

Distributed Stream Processing Systems

Most real-time stream analytics platforms are implemented as distributed

systems due to the scale and complexity of modern data streams. In distributed

stream processing systems, computational tasks are executed across multiple

machines connected through a network. This distributed architecture enables

horizontal scalability, allowing systems to handle increasing data rates by adding

more processing nodes.

Distributed stream processing systems typically consist of several key

components. Data ingestion layers are responsible for collecting, buffering, and

distributing incoming data streams. Processing engines execute analytical

operations in parallel across multiple nodes. State management modules maintain

intermediate results required for stateful processing, such as windowed

aggregations or pattern detection. Finally, output sinks store processed results or

forward them to external systems for further analysis or action.

Parallel processing is fundamental to the operation of distributed stream

processing systems. By distributing computation and data across multiple

machines, these systems can efficiently utilize available resources and achieve high

throughput. However, distributed execution also introduces challenges related to

coordination, communication overhead, and fault tolerance, which must be

carefully addressed through system design.

Evolution from Batch Processing to Stream Processing

Early data analytics systems were primarily designed around batch

processing models. In batch-oriented systems, data is collected over time, stored

20

persistently, and processed periodically. While this approach is practical for

historical analysis and reporting, it is poorly suited for applications that require

immediate insights.

The limitations of batch processing, particularly its inability to provide

timely responses, led to the development of stream processing systems capable of

handling continuous data flows. Early stream processing systems were often

limited in scalability and reliability, making them challenging to deploy in large-

scale environments. However, advances in distributed computing, cloud

infrastructure, and parallel processing techniques have significantly improved the

robustness and scalability of modern stream analytics platforms.

The transition from batch to stream processing reflects a broader shift in

computing toward real-time, data-driven decision-making. Today, many systems

adopt hybrid architectures that combine batch and stream processing to support

both historical analysis and real-time insights. Parallel processing has played a

crucial role in enabling this transition by providing the computational power to

process large-scale data streams efficiently.

Related Work in Parallel Stream Analytics

A substantial body of research has investigated parallel processing

techniques for stream analytics. Early work in this area focused on parallel query

processing and operator parallelization, drawing inspiration from parallel database

systems. These studies explored how analytical operators could be executed

concurrently to improve performance.

Subsequent research introduced window-based processing models and

stateful stream operators, enabling more complex analytics, such as aggregations,

joins, and time-window-based pattern detection. As stream analytics systems grew

in scale, research attention shifted toward scalability, fault tolerance, and low-

latency processing.

More recent studies have proposed techniques such as dynamic load

balancing, adaptive parallelism, and efficient state management to address

21

challenges in parallel stream processing. Researchers have also examined trade-

offs between latency and throughput in different processing models, highlighting

the importance of selecting appropriate parallelization strategies based on

application requirements. This body of related work provides a strong foundation

for understanding modern parallel stream analytics systems.

Summary

This section presents a detailed overview of the fundamental concepts and

related work in real-time stream analytics and parallel processing. It discussed the

nature of streaming data, stream processing models, parallel processing paradigms,

and distributed system architectures. The evolution from batch-oriented systems to

real-time stream processing was also examined, along with key research

contributions in parallel stream analytics. These foundational concepts provide the

necessary background for analyzing system architectures and parallel processing

techniques, which are explored in the subsequent sections.

22

2. SYSTEM ARCHITECTURE FOR REAL-TIME STREAM ANALYTICS

2.1. Architectural Overview

A real-time stream analytics system is fundamentally designed to ingest,

process, and analyze continuous flows of data with minimal delay between data

arrival and result generation. Unlike traditional data processing architectures,

which are typically centralized and batch-oriented, real-time stream analytics

architectures must support continuous operation, rapid response times, and

dynamic scalability. These requirements make architectural design a critical factor

in the effectiveness of any stream analytics platform.

At a high level, real-time stream analytics systems adopt a modular,

distributed architecture. Instead of relying on a single centralized processing unit,

computation and data management responsibilities are distributed across multiple

components and nodes. This design enables the system to handle high-throughput

workloads, tolerate failures, and efficiently exploit parallel processing. Each

architectural component is responsible for a specific function, and together they

form a pipeline that supports continuous data flow.

A typical real-time stream analytics architecture consists of several key

components: data sources, a stream ingestion layer, a parallel processing engine,

state management mechanisms, window-based processing modules, and output and

integration layers. These components are interconnected and operate concurrently,

enabling the system to process large-scale streaming data in real time. The

effectiveness of the overall architecture depends on how well these components are

coordinated and how efficiently parallelism is applied across the system.

Data Sources and Stream Generation

Data sources represent the origin of streaming data in real-time analytics

systems. These sources may include physical sensors deployed in industrial or

environmental settings, smart and mobile devices, web servers and application

23

logs, financial transaction platforms, social media feeds, and Internet of Things

(IoT) infrastructures. Each source generates data continuously, often at high speed

and with varying levels of reliability.

One of the defining challenges associated with data sources is their

heterogeneity. Streaming data may be structured, semi-structured, or unstructured,

and it may arrive in different formats, sizes, and frequencies. Additionally, data

generation rates can fluctuate significantly due to user behavior, environmental

conditions, or system events. As a result, real-time stream analytics systems must

be designed to handle unpredictable workloads without compromising

performance or stability.

To address these challenges, modern architectures incorporate mechanisms

that allow multiple data streams to be ingested simultaneously. Parallelism often

begins at the data source level, where independent streams are treated as separate

input channels. This approach enables the system to scale horizontally and

prevents delays caused by bottlenecks at a single input point. Efficient handling of

data sources is therefore a foundational requirement for achieving real-time

performance.

Stream Ingestion Layer

The stream ingestion layer serves as the interface between data sources and

the stream processing engine. Its primary role is to collect incoming data, buffer it,

and distribute it to downstream processing components. Because it operates at the

front of the processing pipeline, the ingestion layer must handle high input rates

while maintaining reliability and low latency.

Scalability is a critical requirement for the ingestion layer, as data arrival

rates can spike due to bursts of activity. To support scalability, ingestion systems

typically use parallel ingestion mechanisms that partition incoming data streams

and distribute them across multiple ingestion nodes. This prevents overload on

individual nodes and ensures balanced utilization of system resources.

24

In addition to data collection and distribution, the ingestion layer often

provides important system-level features. These include buffering to absorb short-

term spikes in data volume, ordering mechanisms to preserve event sequence

where required, and backpressure handling to regulate data flow when downstream

components become congested. Fault tolerance is also a key concern, and ingestion

systems are often designed to recover quickly from failures without losing data.

Through these capabilities, the ingestion layer plays a vital role in maintaining the

stability and efficiency of the overall architecture.

Parallel Processing Engine

The parallel processing engine is the core computational component of a

real-time stream analytics system. It is responsible for executing analytical

operations on incoming data streams using parallel and distributed computing

techniques. This engine performs tasks such as filtering, transformation,

aggregation, correlation, and pattern detection, all under strict latency constraints.

Processing logic within the engine is typically represented as a directed

graph of operators, where each operator performs a specific computation on the

data. Data flows from one operator to the next, forming a processing pipeline.

Parallelism can be applied at multiple levels within this engine to maximize

performance and scalability.

One common approach is operator parallelism, in which multiple instances

of the same operator execute concurrently across different partitions of the data

stream. Task parallelism allows different operators within the processing graph to

execute simultaneously on separate processing nodes. Pipeline parallelism enables

different stages of the processing pipeline to operate concurrently on different data

items. By combining these forms of parallelism, the processing engine can

efficiently handle large-scale data streams while maintaining low latency.

Effective scheduling and resource allocation are essential to the performance

of the parallel processing engine. Tasks must be assigned to processing nodes to

balance the workload and minimize communication overhead. When properly

25

designed, the parallel processing engine enables real-time analytics systems to

scale efficiently and respond rapidly to incoming data.

State Management in Parallel Systems

State management is a critical architectural concern in real-time stream

analytics, particularly for applications that require stateful processing. Stateful

operations include aggregations, joins, pattern detection, and window-based

computations, all of which rely on maintaining intermediate results across multiple

events.

In parallel and distributed environments, managing state becomes

significantly more complex. The state must be partitioned and distributed across

multiple processing nodes to enable parallel execution while minimizing access

latency. Many systems store state locally on processing nodes to improve

performance, but this approach requires mechanisms to ensure consistency and

correctness.

Checkpointing is a commonly used technique for state management in

parallel systems. Periodic snapshots of the system state are saved to stable storage,

allowing the system to recover from failures without losing progress. In the event

of a failure, the system can restore state from the most recent checkpoint and

resume processing. Designing efficient, minimally disruptive checkpointing

mechanisms is a major architectural challenge.

Synchronization overhead is another critical consideration. Excessive

synchronization among parallel tasks can reduce performance gains. As a result,

modern architectures aim to minimize coordination while still ensuring accurate

and consistent results. Effective state management is therefore essential for

balancing performance, correctness, and fault tolerance in real-time stream

analytics systems.

Window-Based Processing Architecture

Window-based processing is a widely used architectural technique in real-

time stream analytics for analyzing subsets of data over specific intervals. Rather

26

than processing an entire unbounded stream at once, windowing divides the stream

into manageable segments based on time or event count. Common window types

include tumbling, sliding, and casement windows.

Parallel processing significantly enhances window-based analytics by

enabling multiple windows to be processed concurrently. Data can be partitioned

by keys or window boundaries, enabling windowed computations to be distributed

across multiple processing nodes. This approach improves scalability and reduces

processing latency.

However, window-based processing introduces additional architectural

challenges. Late-arriving data that arrives after a window has closed must be

handled carefully to avoid incorrect results. Window alignment across parallel

tasks is also critical to ensure consistent computations. Architectural support for

event-time processing, watermarking, and window coordination is often required

to address these challenges while maintaining real-time performance.

Output and Integration Layer

The output and integration layer is responsible for delivering processed

results to downstream systems or end users. Outputs may be written to databases,

transmitted to dashboards, forwarded to messaging systems, or used to trigger

automated actions such as alerts or control signals. Because real-time analytics

often supports time-sensitive decisions, this layer must deliver data with low

latency and reliability.

Parallelism in the output layer ensures that result generation and

transmission do not become bottlenecks. Multiple output streams can be handled

concurrently, allowing the system to maintain high throughput even when

delivering results to various destinations. Integration with external systems also

requires flexibility, as different applications may use other data formats and have

varying delivery requirements.

27

An efficient design of the output layer ensures that insights from the

analytics engine are delivered promptly and reliably, completing the end-to-end

real-time processing pipeline.

Scalability and Fault Tolerance

Scalability and fault tolerance are essential properties of real-time stream

analytics architectures. As data volumes and processing demands increase, systems

must scale without significant redesign. Parallel processing enables horizontal

scalability by allowing additional processing nodes to be added dynamically.

Fault tolerance is equally important, as failures are inevitable in distributed

environments. Mechanisms such as task replication, checkpointing, and automatic

recovery ensure the system continues operating despite hardware or software

failures. These mechanisms are closely integrated with parallel processing models

to minimize downtime and data loss.

A well-designed architecture balances scalability, performance, and

reliability, ensuring continuous operation under varying workloads and failure

conditions.

Summary

This section presents a comprehensive examination of system architectures

for real-time stream analytics. It discussed the roles of data sources, ingestion

layers, parallel processing engines, state management mechanisms, window-based

processing, and output integration. The section emphasized how parallel

processing underpins scalability, low latency, and fault tolerance across the entire

architecture. Understanding these architectural principles provides a strong

foundation for analyzing parallel processing techniques and models, which are

explored in the subsequent sections.

28

2.2. Parallel processing techniques for real-time stream analytics

Overview of Parallelism in Stream Processing

Parallel processing underpins modern real-time stream analytics systems. As

discussed in earlier sections, streaming data arrives continuously and often at very

high speeds, making sequential processing approaches insufficient for meeting

strict latency and throughput requirements. Parallelism enables stream analytics

systems to divide workloads into smaller units that can be processed

simultaneously across multiple computing resources, such as processor cores,

machines, or distributed clusters.

In the context of stream processing, parallelism must be carefully designed

to account for several unique factors, unlike batch processing, which processes

finite, static datasets; stream processing processes unbounded, evolving data.

Processing logic often depends on a state that is continuously updated as new

events arrive. Additionally, many applications operate under tight time constraints,

requiring results to be produced within milliseconds or seconds. These

characteristics make the design of parallel stream processing techniques more

complex than those used in traditional data analytics.

Effective parallel processing in stream analytics requires balancing multiple

objectives, including low latency, high throughput, scalability, and correctness.

Tasks must be coordinated to ensure that parallel execution does not compromise

data consistency or processing guarantees. As a result, stream processing

frameworks adopt specialized parallelization techniques that are tailored to the

characteristics of streaming workloads.

Data Parallelism

Data parallelism is one of the most widely adopted parallel processing

techniques in real-time stream analytics. In this approach, the incoming data stream

is divided into multiple partitions, often called substreams, which can be processed

independently and concurrently. Each partition is assigned to a parallel instance of

29

the same processing logic, allowing the system to handle high data rates

efficiently.

Partitioning in data parallelism is commonly based on keys extracted from

incoming events. Examples of such keys include user identifiers, sensor IDs,

geographic regions, or transaction types. By grouping events with the same key

into the same partition, systems can ensure that related data is processed together,

which is particularly important for stateful operations such as aggregations and

joins.

Data parallelism is highly effective for stateless operations, such as filtering,

mapping, and transformation, since these operations do not require shared state

across partitions. It can also be applied to stateful operations when state is

partitioned in a way that aligns with the data. This alignment allows each parallel

task to manage its own portion of the state independently, reducing

synchronization overhead.

Despite its advantages, data parallelism introduces challenges related to

workload distribution. One common issue is data skew, where some partitions

receive significantly more data than others. This imbalance can cause specific

processing tasks to become overloaded while others remain underutilized, reducing

overall system efficiency. To address this problem, stream analytics systems often

employ techniques such as dynamic repartitioning, load-aware scheduling, and

adaptive key assignment. These mechanisms help distribute workload more evenly

and maintain stable performance under varying data distributions.

Task Parallelism

Task parallelism focuses on executing different processing tasks or operators

concurrently within a stream analytics pipeline. Instead of dividing data among

identical operations, task parallelism allows distinct operations to run in parallel on

separate computing resources. This approach is beneficial in complex analytics

workflows that consist of multiple independent or loosely coupled tasks.

30

In a typical stream-processing application, tasks may include data ingestion,

preprocessing, filtering, aggregation, enrichment, machine-learning inference, and

output generation. Task parallelism enables these operations to run in parallel,

reducing end-to-end processing latency. By overlapping computations across

different pipeline stages, systems can better utilize available resources and improve

overall responsiveness.

Task parallelism is especially beneficial when different tasks have varying

computational requirements. For example, lightweight filtering operations can

execute in parallel with more computationally intensive analytics tasks. However,

implementing task parallelism requires careful coordination to manage task

dependencies. Data produced by one task must be correctly routed to downstream

tasks, and synchronization mechanisms may be necessary to ensure that results are

generated in the correct order when ordering guarantees are needed.

Designing effective task-parallel stream processing pipelines involves

balancing concurrency with coordination overhead. Excessive synchronization can

reduce performance gains, while insufficient coordination may lead to incorrect or

inconsistent results. As a result, task parallelism is often combined with other

parallelization techniques to achieve optimal performance.

Pipeline Parallelism

Pipeline parallelism is a specialized form of task parallelism in which data

flows through a sequence of processing stages that operate concurrently. Each

stage in the pipeline performs a specific function, and different stages process

different data items simultaneously. As one data item moves to the next stage,

subsequent items can enter earlier stages, keeping the pipeline continuously active.

In real-time stream analytics, pipeline parallelism improves resource

utilization by ensuring that all processing stages run concurrently. This approach is

efficient when processing stages have similar computational complexity and can be

balanced evenly across resources. Pipeline parallelism reduces idle time and

increases throughput by overlapping execution across stages.

31

However, pipeline parallelism introduces important latency considerations.

The overall latency of a data item depends on the slowest stage in the pipeline,

often called the bottleneck. If one stage requires significantly more processing time

than others, it can limit the performance of the entire pipeline. Consequently,

careful performance tuning and load balancing are needed to maximize the benefits

of pipeline parallelism.

Pipeline parallelism is commonly used in stream analytics applications that

involve multi-stage processing, such as data cleansing, feature extraction, analysis,

and result generation. When properly designed, it enables systems to achieve both

high throughput and low latency.

Window-Level Parallelism

Window-based processing is a fundamental concept in real-time stream

analytics, enabling computations over finite subsets of an otherwise unbounded

data stream. Window-level parallelism exploits the independence of these subsets

to allow parallel execution of window-based computations.

In many cases, windows can be processed independently, making them well-

suited for parallelization. For example, tumbling windows that do not overlap can

be assigned to different processing tasks and computed concurrently without

coordination. This approach enables efficient scaling of time-based aggregations

and summaries.

Sliding windows and session windows present additional challenges, as they

may overlap or depend on event timing. Overlapping windows require careful

coordination to manage shared data and avoid redundant computation. To address

this, stream processing systems often use incremental computation techniques,

where results are updated as new events arrive rather than recomputed from

scratch. Parallel processing frameworks also employ window partitioning

strategies to distribute window computations across multiple tasks while

maintaining correctness.

32

Window-level parallelism is significant for applications such as trend

analysis, anomaly detection, and time-series analytics, where timely insights are

critical. By enabling multiple windows to be processed concurrently, systems can

deliver real-time results even under high data rates.

Operator Parallelism

Operator parallelism refers to replicating processing operators so that

multiple instances of the same operator can execute concurrently across different

data partitions. Each operator instance performs identical computations but

operates on a distinct subset of the input stream. This technique enables fine-

grained scalability and is a key mechanism for handling large-scale streaming

workloads.

In practice, operator parallelism is often combined with data parallelism.

Data is first partitioned into multiple streams, and each partition is assigned to a

separate operator instance. As data volume increases, additional operator instances

can be dynamically deployed to distribute the workload evenly.

Managing state in operator-parallel systems presents significant challenges,

particularly for stateful operators. Each operator instance must maintain its own

state, and systems must ensure that state updates are applied correctly and

consistently. Synchronization and coordination mechanisms are required to prevent

inconsistencies while minimizing performance overhead.

Operator parallelism is a powerful technique for achieving horizontal

scalability, but its effectiveness depends on careful design of state management,

data partitioning, and fault tolerance mechanisms.

Hybrid Parallel Processing Models

In real-world applications, no single parallel processing technique is

sufficient to meet all performance and scalability requirements. As a result, modern

real-time stream analytics systems employ hybrid parallel processing models that

combine multiple forms of parallelism. For example, a system may use data

33

parallelism to partition incoming streams, pipeline parallelism to structure

processing stages, and window-level parallelism to support time-based analytics.

Hybrid models provide flexibility, enabling systems to adapt to varying

workloads and application requirements. By combining different parallelization

strategies, systems can optimize performance across multiple dimensions,

including latency, throughput, and resource utilization. However, hybrid models

also increase system complexity, as they require sophisticated scheduling,

coordination, and monitoring mechanisms.

Designing effective hybrid parallel processing models involves careful

consideration of application characteristics, workload patterns, and system

constraints. When implemented correctly, hybrid models offer the best balance

between performance and scalability in real-time stream analytics.

Performance Considerations

While parallel processing provides substantial performance benefits, it also

introduces overhead that can limit its effectiveness if not carefully managed.

Communication between parallel tasks, synchronization delays, and state

management overhead can all reduce the gains achieved through parallelization.

Performance optimization strategies in stream analytics systems focus on

minimizing unnecessary communication, optimizing data partitioning schemes,

and reducing synchronization overhead. In-memory processing techniques are

widely used to reduce data access latency and improve throughput. Monitoring and

adaptive tuning mechanisms enable systems to adjust parallelism levels in response

to changing workloads dynamically.

Achieving optimal performance requires continuous evaluation and tuning

of parallel processing strategies. Systems must balance the benefits of increased

parallelism with the costs of coordination and resource contention.

Summary

This section presents a detailed examination of parallel processing

techniques used in real-time stream analytics. It discussed data parallelism, task

34

parallelism, pipeline parallelism, window-level parallelism, operator parallelism,

and hybrid parallel processing models. The section also highlighted key

performance considerations and trade-offs associated with parallel execution.

Together, these techniques form the foundation of scalable and efficient real-time

stream analytics systems. Understanding their strengths and limitations is essential

for designing high-performance analytics solutions that meet modern real-time data

processing demands.

35

3. ALGORITHMS AND FRAMEWORKS FOR PARALLEL STREAM

PROCESSING

3.1. Stream Processing Algorithms

Real-time stream analytics algorithms differ fundamentally from traditional

batch-processing algorithms due to the continuous and unbounded nature of

streaming data. In batch analytics, algorithms operate on static datasets with finite

size, often allowing multiple passes over the data. In contrast, streaming data

arrives continuously and must be processed incrementally, often under strict

latency constraints. As a result, stream processing algorithms must be designed to

operate with limited memory, process events in real time, and produce timely

results that support immediate decision-making.

Parallel processing is central to the scalability and efficiency of these

algorithms. By leveraging multiple processing units simultaneously, streaming

algorithms can maintain high throughput and low latency even when dealing with

massive data volumes. Parallel execution is critical when applications require

processing millions of events per second, such as in financial trading platforms,

smart city monitoring systems, or industrial IoT networks.

Streaming algorithms are broadly categorized into four main classes:

filtering, aggregation, pattern detection, and machine learning–based algorithms.

Each class addresses specific types of analytics requirements and benefits from

parallel execution in distinct ways. Filtering algorithms handle selection tasks,

aggregation algorithms summarize or condense data, pattern detection algorithms

identify sequences or correlations within the stream, and machine learning

algorithms provide predictive or adaptive analytics. Understanding these classes is

crucial for designing high-performance, parallel stream analytics systems.

Parallel Filtering and Transformation Algorithms

36

Filtering and transformation are fundamental building blocks in stream

analytics pipelines. Filtering algorithms select events that meet specific criteria,

such as network packets containing anomalies or financial transactions exceeding a

threshold. Transformation algorithms, on the other hand, convert raw data into

meaningful formats or enrich events with additional context, such as converting

timestamps, extracting features, or adding geographical metadata.

These operations are typically stateless, meaning that each event can be

processed independently without relying on prior events. This property makes

them particularly well-suited for data parallelism. In parallel stream processing, the

incoming data stream can be partitioned, with multiple parallel tasks independently

filtering or transforming their assigned partitions.

Operator replication is another technique used to enhance parallel filtering

and transformation. Multiple instances of the same operator can run concurrently

across separate data partitions, enabling systems to handle high event rates without

introducing latency. For example, in an online recommendation system, filtering

user interactions by relevance and transforming them into feature vectors can be

distributed across multiple parallel tasks, enabling personalized recommendations

to be generated in real time.

Despite their stateless nature, parallel filtering and transformation algorithms

must still manage practical challenges such as load balancing and resource

utilization. Uneven arrival rates of data can cause specific processing tasks to

become overloaded while others remain underutilized. Adaptive partitioning and

dynamic scheduling are therefore commonly implemented to maintain consistent

throughput.

Parallel Aggregation Algorithms

Aggregation algorithms compute summary statistics over streaming data,

including counts, sums, averages, minimum and maximum values, and more

complex metrics such as quantiles and histograms. These algorithms are inherently

37

stateful, as they maintain intermediate results over time or within specific event

windows.

Parallel aggregation is achieved primarily through data partitioning.

Incoming events are partitioned according to keys, such as user IDs, device

identifiers, or sensor types, and local aggregates are maintained within each

partition. Once partial aggregates are computed, they are merged to produce global

results. This hierarchical approach reduces communication overhead and allows

aggregation tasks to scale efficiently across multiple processing units.

However, parallel aggregation introduces several challenges. Maintaining

state consistency across partitions is critical to ensure correct results. Window

alignment, where aggregates are computed over time-based or count-based

windows, must also be carefully managed, especially when windows overlap or

events arrive late. Additionally, fault-tolerance mechanisms such as checkpointing

must be integrated to enable recovery from node failures without losing

intermediate results.

A practical example is traffic monitoring, where sensors along a highway

continuously count vehicles. By partitioning data by sensor location and

computing local aggregates in parallel, the system can provide timely congestion

analysis across the entire network. The combination of regional and global

aggregation ensures both scalability and accuracy.

Pattern Detection and Complex Event Processing

Pattern-detection algorithms identify sequences or combinations of events

that match predefined criteria. These algorithms are crucial in applications such as

fraud detection, cybersecurity monitoring, industrial equipment failure prediction,

and automated alerting systems. Pattern detection often requires maintaining

temporal and logical relationships between events, making it more complex than

simple filtering or aggregation.

Parallel processing enhances pattern detection by dividing the stream into

segments that can be analyzed concurrently. Task parallelism is frequently used to

38

assign different detection rules to separate processing units, while window-level

parallelism allows temporal patterns to be detected within specific intervals. This

combination ensures timely detection even under high event rates.

Complex Event Processing (CEP) systems extend pattern detection by

enabling more sophisticated event correlation, temporal reasoning, and hierarchical

pattern recognition. CEP frameworks leverage parallelism to execute multiple

pattern-matching tasks concurrently and maintain state across distributed nodes. A

significant challenge in CEP is ensuring correct event ordering and

synchronization across parallel tasks, as misaligned events can lead to false

positives or missed detections.

For instance, in financial fraud detection, sequences of suspicious

transactions across multiple accounts must be monitored in real time. Parallel

pattern detection allows the system to evaluate various transaction sequences

simultaneously, ensuring rapid identification of potential fraudulent behavior.

Machine Learning Algorithms for Streaming Data

Machine learning (ML) algorithms are increasingly applied to streaming

data for real-time prediction, classification, anomaly detection, and adaptive

decision-making. Unlike traditional batch ML, streaming ML algorithms must

continuously update models as data distributions evolve, often without revisiting

past events. This incremental nature makes them well-suited for parallel execution.

Parallelism in streaming ML can be implemented in several ways:

1. Model Partitioning – Different components of a model, such as layers

of a neural network, are distributed across multiple processing units for concurrent

execution.

2. Parallel Feature Extraction – Features are computed in parallel from

raw events before feeding them into the learning model.

3. Incremental Learning – Model parameters are updated concurrently

across partitions of the stream, enabling the system to adapt to changing data

patterns.

39

Despite these advantages, parallel machine learning in streaming

environments introduces challenges. Ensuring model consistency across parallel

updates, minimizing communication overhead, and controlling prediction latency

are critical concerns. For example, in real-time recommendation engines,

inconsistent model updates can result in incorrect recommendations, while

excessive synchronization delays can increase response time.

Emerging research continues to explore novel parallelization strategies for

streaming ML, including federated learning across distributed nodes, approximate

model updates, and asynchronous parallel training techniques. These strategies aim

to maximize throughput while maintaining prediction accuracy and model stability.

Stream Processing Frameworks

To simplify the development and deployment of real-time stream analytics

applications, several stream processing frameworks have been introduced. These

frameworks provide abstractions for defining processing pipelines, managing

parallel execution, handling fault tolerance, and supporting stateful operations.

Key features of modern frameworks include:

• Support for parallel and distributed execution: Frameworks

automatically partition data and distribute tasks across multiple nodes.

• Built-in state management and checkpointing: Stateful operators are

supported with mechanisms for consistent state updates and recovery.

• Window-based processing capabilities: Time- or count-based

windows are natively supported, with optimizations for overlapping or sliding

windows.

• Scalability and fault tolerance mechanisms: Systems can dynamically

scale out to additional nodes and recover from failures without data loss.

Popular stream processing frameworks include Apache Flink, Apache Spark

Structured Streaming, Apache Storm, and Apache Samza. Each framework

provides unique features and optimizations tailored to different application

scenarios. For instance, Apache Flink offers low-latency, exactly-once state

40

consistency, making it suitable for financial or industrial monitoring applications.

At the same time, Spark Structured Streaming provides strong integration with

batch analytics pipelines and large-scale data warehouses.

Frameworks abstract much of the complexity of parallel processing,

allowing developers to focus on application-specific logic rather than low-level

system concerns such as resource scheduling, checkpointing, or operator

replication.

Algorithm–Framework Interaction

The effectiveness of parallel stream processing depends heavily on the

interaction between the algorithms and the underlying framework. Algorithms

must be designed to exploit the framework's parallelism. In contrast, frameworks

must provide flexible, efficient execution models that accommodate stateful,

stateless, and hybrid processing tasks.

For example, stateless algorithms such as filtering or transformation can be

easily scaled using simple data parallelism. In contrast, stateful algorithms such as

aggregation or pattern detection require careful alignment of state partitions with

data partitions to ensure correctness. Frameworks that support dynamic load

balancing, operator replication, and stateful checkpointing make it easier to

implement parallel algorithms efficiently.

Understanding this interaction is crucial for achieving high-performance

analytics. Poor alignment between algorithm design and framework capabilities

can lead to underutilized resources, increased latency, or incorrect results.

Conversely, well-integrated algorithms and frameworks can deliver near-linear

scalability and robust, fault-tolerant processing.

Summary

This section provides an in-depth examination of algorithms and frameworks

used in parallel real-time stream analytics. It covered key classes of algorithms,

including filtering, transformation, aggregation, pattern detection, and

machine learning, and explained how parallelism enhances their performance.

41

Additionally, it discussed popular stream processing frameworks and the critical

interplay between algorithm design and framework capabilities. Together, these

elements form the backbone of scalable, low-latency, and reliable real-time

analytics systems, enabling applications across diverse domains such as finance,

healthcare, smart cities, cybersecurity, and industrial automation.

3.2. Challenges and limitations of parallel stream analytics

Real-time stream analytics systems powered by parallel processing are

critical for modern data-driven applications, yet they are not without significant

challenges. Parallelism enables high throughput, scalability, and low-latency

processing, but it also introduces complexities that can impact system

performance, reliability, and manageability. In this section, we examine these

challenges in detail, highlighting key limitations and considerations for designing

robust real-time analytics platforms.

Scalability Challenges

Scalability is one of the principal motivations for applying parallel

processing to real-time stream analytics. In theory, adding more processing nodes

should proportionally increase system throughput. In practice, however, achieving

linear scalability is rarely straightforward. Several factors limit performance as the

system grows:

1. Coordination Overhead: As the number of nodes or cores increases,

the need to coordinate processing across them becomes more significant. Task

scheduling, load balancing, and state synchronization introduce communication

overhead that can negate the benefits of adding resources.

2. Communication Latency: Distributed stream processing systems

require data to be exchanged between nodes. Network latency,

serialization/deserialization costs, and protocol overhead can slow down data

42

movement, particularly when events must traverse multiple nodes for stateful

computations.

3. Resource Contention: Multiple parallel tasks may compete for shared

resources, such as CPU, memory, disk, or network bandwidth. High contention can

cause processing delays, leading to missed deadlines in time-sensitive applications.

A particularly challenging issue is data skew, in which specific partitions of

the input stream receive disproportionately large volumes of data. This uneven

distribution can cause specific processing tasks to become bottlenecks, while other

tasks remain underutilized. For example, in a social media analytics application,

popular hashtags or topics may generate a flood of events for a small subset of

partitions, overwhelming their corresponding processing nodes. Addressing data

skew requires adaptive strategies, such as dynamic stream repartitioning, load-

aware scheduling, or predictive partitioning based on historical data trends.

However, implementing these solutions adds complexity to system design and may

introduce additional overhead, which itself can affect performance.

Another consideration is horizontal scalability. While distributed systems

can theoretically scale out by adding more nodes, the cost, coordination, and

management overhead grow with system size. Cloud-based solutions offer elastic

scaling, but dynamic node provisioning introduces transient performance

variability and may require careful orchestration to maintain processing

guarantees.

Latency Constraints

Many real-time stream analytics applications are latency-sensitive, requiring

results within milliseconds or seconds of event arrival. Examples include fraud

detection in financial systems, emergency alerts in smart cities, anomaly detection

in industrial equipment, and recommendation systems for e-commerce platforms.

Meeting these stringent latency requirements is a key challenge in parallel

processing environments.

43

Parallelism can reduce processing latency by enabling the simultaneous

execution of multiple tasks. However, it also introduces latency due to

communication and synchronization overheads. In distributed settings, data must

be transmitted between nodes, serialized, deserialized, and coordinated among

parallel tasks. Each of these steps adds to the overall end-to-end latency.

Moreover, task dependencies can exacerbate latency. Certain computations

depend on the results of prior tasks or on state maintained across nodes.

Synchronization mechanisms, such as barriers, locks, or consensus protocols,

ensure correctness but may delay downstream processing.

Network topology, inter-node bandwidth, and congestion also affect latency.

In geographically distributed deployments, the physical distance between nodes

can introduce additional delays, making it difficult to maintain consistent low-

latency processing across the system.

Optimizing latency in parallel stream analytics requires careful system

design. Strategies include minimizing inter-task communication, using in-memory

processing, optimizing task placement based on network proximity, and employing

incremental computation techniques that reduce the need to recompute results from

scratch. However, achieving a balance between latency and throughput remains a

fundamental challenge, as optimizations that reduce latency may increase resource

usage or reduce overall system efficiency.

State Management Complexity

Stateful processing is at the heart of many real-time analytics tasks,

including aggregations, joins, pattern detection, and window-based computations.

Maintaining and managing this state in a parallel, distributed environment is a

complex, error-prone task.

State in parallel systems must satisfy several requirements:

1. Consistency: Updates to shared state across parallel tasks must be

consistent, even when events are processed out of order or nodes fail.

44

2. Fault Tolerance: Systems must recover state correctly after failures to

avoid incorrect analytics results.

3. Efficiency: Maintaining state should not impose significant overhead

that degrades throughput or increases latency.

To achieve these goals, stream analytics frameworks often employ

checkpointing and state partitioning techniques. State is periodically saved to

persistent storage, enabling recovery in case of node failures. However, frequent

checkpoints introduce performance overhead, while infrequent checkpoints

increase recovery time and the risk of data loss.

Distributed state management also requires careful partitioning to ensure that

parallel tasks can efficiently access and update the relevant portions of state.

Poorly designed state partitioning can lead to bottlenecks and increased

synchronization costs. For example, in a real-time recommendation system, user

session data must be partitioned such that updates and lookups can occur in

parallel without conflicts.

Late-arriving events and out-of-order processing further complicate state

management. In windowed computations, events may arrive after the window has

been partially processed, requiring updates to previously computed results.

Handling these scenarios efficiently while maintaining correctness is an ongoing

research challenge in stream analytics.

Fault Tolerance and Reliability

In distributed parallel systems, failures are inevitable. Hardware faults,

software errors, network outages, and resource exhaustion can all disrupt stream

processing. Real-time analytics systems must tolerate such failures without data

loss or significant downtime.

Fault tolerance mechanisms, such as operator replication, checkpointing, and

log-based recovery, are widely used to maintain reliability. In operator replication,

multiple instances of a processing task are run concurrently, allowing another

instance to take over if one fails. Checkpointing periodically saves the system

45

state, enabling recovery without recomputing from scratch. Log-based recovery

involves storing event streams in durable storage so that processing can resume

from the last consistent point.

Despite their effectiveness, these mechanisms introduce performance

overhead. Maintaining replicas consumes additional resources, checkpointing

interrupts processing, and log replay can increase latency. Striking a balance

between fault tolerance and performance is a key challenge for designers of

parallel stream analytics systems.

Applications with strict reliability requirements, such as financial transaction

monitoring or autonomous vehicle systems, require high-availability guarantees.

Ensuring minimal downtime in these systems adds further complexity to system

architecture and resource management.

Synchronization and Consistency Issues

Executing tasks simultaneously requires careful coordination to ensure

accurate results. Methods like locks, barriers, and agreement procedures help make

sure that shared information is updated correctly and that related calculations

happen in the right sequence.

The choice of consistency approach greatly influences how well the system

performs and how complex it is. Ensuring strong consistency makes sure

everything is correct but can lead to higher delays and more coordination work. On

the other hand, more relaxed consistency methods, like eventual consistency, tend

to boost performance but might result in brief periods of inconsistency.

For example, in a distributed system that combines data from multiple

sources, updates to counters need to be shared among all the connected nodes.

Ensuring that every node shows the same value at all times requires ongoing

communication and coordination, which can slow down performance. Allowing

nodes to temporarily have different values and to synchronize later can increase

speed, but might lead to short periods of inaccuracy.

46

Designers must carefully choose consistency models based on application

requirements, balancing correctness, latency, and system complexity.

Resource Management and Cost

Parallel stream analytics systems are typically deployed on distributed

infrastructure, including cloud clusters, on-premises servers, or hybrid

environments. While additional nodes and cores improve scalability, they also

incur operational costs, including computing resources, energy consumption, and

maintenance.

Efficient resource management is crucial to balance performance and cost.

Over-provisioning ensures low latency and high throughput but increases

expenses, while under-provisioning may lead to performance degradation, missed

deadlines, or dropped events.

Adjusting the number of active processing nodes based on workload changes

helps manage resource demands and maintain performance. However, setting up

these adjustments can make operations more complicated. For instance, in cloud

environments, scaling up too quickly can increase costs without providing

significant performance improvements, while scaling too slowly might cause

delays during traffic spikes.

Resource management also relates to handling unexpected issues. Creating

copies and saving system states requires extra memory and processing work, so

careful planning is needed to keep the system affordable while ensuring it stays

reliable.

Additional Challenges

Beyond the primary limitations discussed, several other challenges affect

parallel stream analytics systems:

1. Data Heterogeneity: Streams often originate from diverse sources with

different formats, units, and schemas. Transforming and normalizing these

heterogeneous streams in parallel can introduce additional complexity.

47

2. Backpressure Handling: Systems need to deal with situations where

they can't process data fast enough. Backpressure signals are sent upstream to

control the flow, but managing these signals efficiently in environments with many

processes requires careful planning.

3. Security and Privacy: Streaming systems often handle sensitive

information, such as financial transactions or personal health records. Protecting

this data through secure processing methods, including encryption, access controls,

and privacy measures, makes things more complicated.

4. Monitoring and Debugging: Observing and diagnosing performance

or correctness issues in parallel, distributed systems is challenging due to their

dynamic and non-deterministic behavior.

Summary

This section has examined the main challenges and limitations of analyzing

data simultaneously across multiple streams, highlighting that while working in

parallel allows for growth, quick responses, and handling large amounts of data, it

also adds complexity in various ways. Growing systems can face difficulties due to

coordinating different parts, uneven data distribution, and competition for

resources. Reducing delays requires careful tuning of communication and

processing steps. Managing state, ensuring reliability, keeping processes

synchronized, and maintaining accuracy are additional hurdles in building

dependable systems. Finally, managing resources and controlling costs are

important factors in practical implementations.

Understanding these limitations is essential for designing effective stream

processing architectures, selecting appropriate parallel processing techniques, and

evaluating existing solutions. Addressing these challenges remains an active area

of research, with ongoing efforts to improve adaptive scheduling, state

management, consistency models, and fault-tolerant frameworks.

48

3.3. Statistical analysis of large data sets

In the previous sections, the results and graphs of a regular dataset were

demonstrated, the dataset was collected according to the technical specifications.

The results of machine learning methods did not meet the needs of the customer.

So it was decided to collect the data in a different way, as a result, a large dataset

was obtained1815696 – expired. You must first connect to the librarydask and

allocate the amount of memory that is needed, in this case 8 GB. The results are

shown in Figure 3.1. The data are shown in Fig. 3.2.

Figure 3.1 – Result of connecting to the library

Figure 3.2 – Building a new data set

49

After the data was collected and displayed, the next step was the primary

analysis, that is, to understand that the data does not have gaps or other characters.

First, we will check the list in percentage terms by the proportion of missing

records for each feature. The result is shown in Fig.3.3.

Figure 3.3 – Checking for missing sample values

Next, we will check for text values. The result is shown in Fig. 3.4.

Figure 3.4 – Non-standard missing values

50

The next step was to create a target sample distribution graph, blue.–

workout, orange–testing, green common. How similar the target variables are to

each other. The density plot is shown in Fig. 3.5.

Figure 3.5 – Density plot of the distribution of target variables

The scatter plot shown in Figure 3.6 shows us how dependent the data is on

each other, as well as the spread of the data. This plot can help us determine

whether we need to clean the data with other methods, or apply a different

approach to the data.

In order to make sure how often certain values occur, we construct a

frequency diagram. Each column of the histogram shows the frequency of the

sample value falling within the value interval – the higher the bar, the more likely

the corresponding indicator values are. The histogram is shown in Figure 3.7.

51

Figure 3.6 – Scatter plots of dependent and explanatory variables

Figure 3.7–Data distribution histograms

52

The next step was to use a correlation map. Here we can see how the

parameters (features) depend on each other. Based on the previous graphs, our

assumptions are correct, where 1 in the previous graph was the perimeter

distribution. The map is shown in Fig.3.8.

Figure 3.8 – Correlation map – matrix

After the correlation map, it was decided to remove those variables that have

a very high correlation, i.e. they do not carry any informative value. The following

variables were removed: x7, x5, x8, x10, x14, x15, x16.

After removing the data, we obtained a sample that looks like the one shown

in Fig. 3.9.

Data has two types such as integer and floating point numbers. To make

them look the same, standardization has been applied. The idea behind

standardization is that it transforms the data so that its distribution will have a

mean of 0 and a standard deviation of 1. Given the distribution of the data, each

value in the data set will be subtracted from the sample mean and then divided by

the standard deviation of the entire data set. Mathematical explanation:

53

Figure 3.9 – Data after removing non-informative variables

 (3.1)

where and are given as the minimum and maximum allowable values, for

default , . Standardized data are shown in Fig. 3.10.

54

Figure 3.10 – Standardized data

3.4. Results of machine learning models

Next, we build machine learning models. Since we have come to the point

where we have a regression problem, the main task is to predict the target

variables. We will build the same models that were built on past data. Since the

unsatisfactory results made it clear that there is not enough data, the models are

retrained. Therefore, it was decided to use such methods as: linear regression,

random forest, decision tree and determine the best predictive model. All methods

will be considered from the point of view of regression. The following metrics of

predictive quality were used, as well as the coefficient of determination 𝑅2:

55

– coefficient 𝑅2:

 (3.2)

where –residual sum of squares;

 - total sum of squares.

– root mean square error:

 (3.3)

– mean absolute error:

 (3.4)

– average absolute percentage error:

 (3.5)

– average percentage error:

 (3.6)

Results of the error of the predictive quality, as well as the coefficient of

determination 𝑅2, given for models such as, linear regression, trees solutions,

random forest. The results are shown in Table 3.1.

In addition to visualizing the predictive quality, regression trees were

constructed graphically for both target variables. It is graphically that we can

understand how the distribution is going. The tree for target1 is shown in Fig. 3.15.

The tree for target2 is shown in Fig. 3.16. As you can see, we take a subset of the

data and decide how best to divide the subset.

Our initial subset was the entire data set, and we divided it according to the

rule <= 0.258 . Then for each subset we performed additional splitting until they

could correctly predict the target variable without adhering to the constraint on the

depth of the tree.

56

Table 3.1 - Results of forecast error of the methods used

Method Error

forecast

qualities

Target 1 (target variable) Target 2 (target variable)

train test train test

Linear

regression

MSE 0.02 0.04 0.01 0.02

MAE 0.13 0.17 0.9 0.11

MAPE 14.20 16.67 14.28 16.41

SCORE 0.13 0.10 0.13 0.13

Decision

tree

MSE 0.01 0.02 0.0 0.01

MAE 0.06 0.11 0.03 0.07

MAPE 7.49 10.63 3.15 6.55

SCORE 0.76 0.53 0.75 0.58

Random

forest

MSE 0.02 0.04 0.01 0.03

MAE 0.01 0.03 0.02 0.04

MAPE 2.54 3.46 1.0 1.96

SCORE 0.90 0.88 0.93 0.91

Figure 3.14 – Tree for target variable (target1)

57

Figure 3.15 – Tree for target variable (target2)

Fig. 3.16 visualizes the results of the methods. The graphs show the actual

and forecast data. It can be seen that the random forest model predicts the target

variables much better, since the forecast values are close to the actual ones along

the bisector, and this is also visible in the forecast quality estimates that were

shown in Table 3.1. These results meet the needs of the customer and will be

transferred to him.

58

Figure 3.16 – Results of forecast and actual data

All the results that were demonstrated, they say that the most effective was

the random forest machine learning model. After that, a convenient program code

was developed so that the customer could easily operate this system. In order to

predict other data, it is necessary to download the data to the root directory, and

then run the program code through the command line of the operating system. All

results will be received and stored in the excel file in the form shown in Fig. 3.18.

Figure 3.18–Output result

59

3.5. Discussion and future trends

Discussion of Parallel Stream Analytics

The rapid evolution of data-generating technologies has made real-time

stream analytics a cornerstone of modern information systems. The analysis

presented in the preceding sections highlights that parallel processing is essential

for enabling real-time stream analytics at scale. By distributing computations

across multiple processing units, these systems can handle high-volume, high-

velocity data streams while maintaining stringent latency requirements.

Parallel stream processing allows multiple events to be processed

concurrently, improving throughput and ensuring that results are delivered in near

real-time. For example, consider an intelligent traffic management system in a

metropolitan area. Sensors embedded in roads and traffic signals generate

continuous streams of data, including vehicle counts, speeds, and congestion

levels. Without parallel processing, the sequential handling of these streams would

delay insights, rendering the system ineffective at managing live traffic flows. By

leveraging data-level and task-level parallelism, the system can process multiple

streams simultaneously, detect congestion patterns in real time, and issue adaptive

traffic signals.

However, the effectiveness of parallel processing depends heavily on system

design choices. Several factors influence performance, scalability, and resource

efficiency:

1. Data Partitioning Strategies: How incoming streams are divided

among processing nodes significantly affects workload distribution. Poor

partitioning can lead to data skew, where some nodes are overloaded while others

remain underutilized, resulting in bottlenecks. Effective partitioning strategies

must account for both event distribution and the nature of computations being

performed.

60

2. Parallel Execution Models: Whether a system relies on data

parallelism, task parallelism, pipeline parallelism, or a hybrid approach affects

throughput, latency, and system flexibility. Systems optimized for stateless

operations may underperform when handling stateful analytics unless their

execution model efficiently handles shared state.

3. State Management Techniques: Stateful stream processing, such as

computing moving averages or detecting patterns across multiple events,

introduces complexity. Systems must manage state consistently across parallel

tasks while supporting fault tolerance and recovery. Inefficient state management

can degrade performance and increase processing latency.

4. Resource Allocation and Scheduling: How computational resources

are allocated and tasks are scheduled across nodes directly impacts system

efficiency. Over- or under-provisioning resources can either waste infrastructure or

compromise real-time performance.

An important point is that no single method of parallel processing works

best for everything. Different jobs have their own needs for speed, capacity,

accuracy, and reliability. For example, a system that detects fraud in stock trading

needs to respond quickly and give accurate results, since delays or mistakes could

cost money. On the other hand, a product recommendation system for an online

shopping site might focus on handling many requests at once, even if it causes

small delays, as this won't affect the customer's experience much because of this,

systems that analyze data in real-time need to be built to be adaptable and flexible

so they can meet the specific needs of each task.

Trade-offs in System Design

Designing effective parallel real-time stream analytics systems involves

navigating a complex landscape of trade-offs between competing objectives. These

trade-offs manifest across several dimensions:

1. Throughput vs. Latency: Increasing parallelism generally improves

throughput by enabling more events to be processed simultaneously. However,

61

additional parallel tasks introduce communication overhead, synchronization

delays, and coordination complexity, which may increase overall latency. For time-

sensitive applications, balancing throughput with minimal latency is critical.

2. Consistency vs. Performance: Strong consistency guarantees

correctness across all parallel tasks but can require extensive coordination and

synchronization, which may slow down processing. Eventual consistency models

improve performance by reducing synchronization but may temporarily produce

inconsistent or approximate results. Designers must assess the acceptable level of

consistency for the application domain. For example, in healthcare monitoring

systems, strong consistency is critical for patient safety, whereas in social media

trend analysis, temporary inconsistencies may be tolerable.

3. Fault Tolerance vs. Resource Utilization: Replication, checkpointing,

and other fault-tolerance mechanisms consume computational resources and

network bandwidth. While these mechanisms improve system reliability, they

increase operational costs and may reduce effective throughput. Optimizing this

trade-off involves carefully selecting checkpoint intervals, replication strategies,

and recovery protocols to balance reliability with performance.

4. Complexity vs. Maintainability: Hybrid parallel models and adaptive

algorithms enhance performance but increase system complexity. Highly complex

systems may be more challenging to maintain, debug, and scale, especially in

distributed environments. System designers must consider long-term

maintainability alongside immediate performance improvements.

5. Centralized vs. Edge Processing: Deploying processing closer to data

sources (edge computing) reduces network latency but may limit the available

computational resources compared to cloud-based centralized systems. Conversely,

centralized systems provide virtually unlimited resources but can introduce higher

latency due to data transmission delays.

Effectively navigating these trade-offs requires profiling workloads,

understanding application requirements, and dynamically adapting system

62

configurations. Adaptive scheduling, dynamic repartitioning, and elastic resource

management are key strategies for optimizing these trade-offs in real-time

deployments.

Emerging Trends in Parallel Stream Processing

The field of parallel real-time stream analytics is rapidly evolving, driven by

advances in hardware, software, and computing paradigms. Several key trends are

shaping the future of this domain:

1. Edge and Fog Computing Integration

Edge computing refers to processing data closer to the source rather than

sending it to a centralized cloud or data center. In stream analytics, this reduces

network overhead, minimizes latency, and enables faster decision-making. Edge-

based parallel processing partitions computation between edge devices and central

servers, allowing local event filtering, aggregation, or pattern detection before

transmitting results upstream.

For example, in autonomous vehicles, onboard edge devices process sensor

data in real time to make immediate driving decisions, while aggregated

information is sent to central cloud servers for fleet-wide analytics. Fog

computing, an intermediate layer between edge and cloud, further enhances this

architecture by distributing computation hierarchically.

2. Adaptive and Elastic Parallelism

Modern stream analytics systems increasingly adopt adaptive parallelism,

dynamically adjusting the degree of parallelism in response to workload

fluctuations. This elasticity ensures that resources are used efficiently while

maintaining performance across variable input rates. Techniques such as dynamic

operator scaling, load-aware task scheduling, and stream auto-repartitioning enable

systems to respond to sudden spikes or drops in data volume.

Adaptive parallelism is particularly beneficial in applications such as social

media monitoring or e-commerce analytics, where traffic patterns can be highly

63

unpredictable. By automatically reallocating resources and scaling processing

tasks, systems can maintain low latency without over-provisioning infrastructure.

3. Hardware Acceleration

Advances in hardware are influencing the design and optimization of

parallel stream analytics systems. Multi-core CPUs, GPUs, and specialized

accelerators such as Field Programmable Gate Arrays (FPGAs) and Tensor

Processing Units (TPUs) provide high-throughput parallel computation

capabilities.

Parallel stream analytics frameworks increasingly leverage these

accelerators for tasks such as pattern matching, machine learning inference, and

large-scale aggregations. GPUs, for example, excel at executing the same operation

across thousands of data items simultaneously, making them ideal for data-parallel

stream processing. FPGAs provide low-latency, customizable hardware pipelines

for specialized tasks, such as real-time signal processing in industrial or healthcare

applications.

4. Integration of Machine Learning and AI

The integration of streaming machine learning and AI is transforming real-

time analytics. Techniques such as incremental learning, online clustering,

anomaly detection, and reinforcement learning allow systems to adapt to changing

data patterns and evolving environments.

Parallel execution is critical for streaming AI workloads. Model partitioning,

distributed feature extraction, and parallel inference pipelines enable machine

learning algorithms to process high-velocity streams in real time. Research is

ongoing to optimize consistency, minimize communication overhead, and improve

convergence speed for streaming machine learning models.

5. Unified Batch-Stream Processing Frameworks

There is a growing trend toward unified frameworks that combine batch and

stream processing. These frameworks provide consistent abstractions for both

64

historical and real-time data, enabling organizations to leverage the same pipelines,

operators, and parallelism strategies across different workloads.

For instance, systems such as Apache Flink and Apache Spark Structured

Streaming allow incremental processing of streaming data while also supporting

batch-style computation on historical datasets. Unified frameworks simplify

system design, reduce maintenance overhead, and enable optimization of parallel

execution across both batch and streaming workloads.

65

4 SAFETY OF LIFE, BASIC LABOR PROTECTION

4.1. Labor protection requirements when working with electrical

equipment

General provisions

The labor protection instructions for an electrician when performing repair

and maintenance work on electrical equipment were developed in accordance with

the Law of Ukraine “On Labor Protection” (Resolution of the Verkhovna Rada of

Ukraine dated 10/14/1992 No. 2694-XII) as amended on 01/20/2018, based on the

“Regulations on the Development of Labor Protection Instructions”, approved by

the Order of the Labor Protection Supervision Committee of the Ministry of Labor

and Social Policy of Ukraine dated January 29, 1998 No. 9 as amended on

September 1, 2017, taking into account the “Rules for the Technical Operation of

Consumer Electrical Installations”, approved by the Order of the Ministry of Fuel

and Energy dated July 25, 2006. No. 258 (as amended by the order of the Ministry

of Energy and Coal Industry of Ukraine dated 13.02.2012 No. 91, “Rules for the

safe operation of electrical installations of consumers”, approved by the order of

the State Supervision Service of Ukraine dated 09.01.1998 No. 4.

All provisions of this labor protection instruction apply to electricians of an

educational institution who perform repair and maintenance work on electrical

equipment.

Persons not younger than 18 years old who have undergone training in the

specialty and who are also allowed to perform repair and maintenance work on

electrical equipment independently are:

a medical examination and do not have contraindications due to health to

perform this work;

introductory and primary workplace briefings on labor protection;

training in safe methods and techniques of work;

66

testing of knowledge of the rules for installing electrical installations, safety

rules for operating electrical installations, labor protection requirements;

when repairing and maintaining electrical equipment voltage up to 1000V

have an electrical safety group not lower than III, and over 1000V - not lower than

IV.

Electricians must know and comply with the requirements of the labor

protection instructions when performing work on the repair and maintenance of

electrical equipment, instructions for working with hand tools, power tools and

ladders.

Electricians when performing work on the repair and maintenance of

electrical equipment must comply with the requirements of the Rules for the safe

operation of electrical installations of consumers and the Rules for the technical

operation of electrical installations of consumers, and have an appropriate

electrical safety group in accordance with the requirements of these Rules.

When performing work on the repair and maintenance of electrical

equipment, the impact of the following harmful and dangerous production factors

may be observed:

fall from a height;

electric shock;

increased electric field strength;

increased dustiness of the air in the work area;

increased vibration level;

insufficient illumination of the work area;

physical overload;

neuropsychic overload.

Electricians when performing repairs and maintenance of electrical

equipment must use the following PPE:

cotton overalls - for 12 months;

gloves for - 3 months;

67

leather boots for - 24 months;

dielectric galoshes - on duty;

dielectric gloves - on duty;

dielectric mats - on duty.

An electrician when repairing and maintaining electrical equipment is

obliged to:

keep his workplace clean and tidy;

comply with the Rules of Internal Labor Regulations;

be able to use personal and collective protective equipment, fire

extinguishing equipment;

be able to provide first aid to accident victims;

know and comply with all requirements of regulatory acts on labor

protection, fire protection rules and industrial sanitation.

immediately inform your immediate supervisor about any accident that

occurred at work, about signs of an occupational disease, as well as about a

situation that poses a threat to the life and health of people;

know the testing dates of protective equipment and devices, the rules for

their operation, care and use. It is not allowed to use protective equipment and

devices with an expired inspection period;

perform only the assigned work;

comply with the requirements of the equipment operating instructions;

know where the first aid facilities, primary fire extinguishing equipment,

main and emergency exits, evacuation routes in the event of an accident or fire are

located;

know the telephone numbers of a medical institution (103) and fire

department (101).

An electrician may refuse to perform the work assigned to him if a

production situation arises that poses a threat to his life and health of others, or to

the environment, and report this to his immediate supervisor.

68

Smoking, drinking alcoholic beverages and other substances that have a

narcotic effect on the human body are prohibited in the workplace.

In order to prevent injuries and the occurrence of dangerous situations, the

following requirements must be observed: it is impossible to involve third parties

in the work;

do not start work if there are no conditions for its safe performance;

perform work only on serviceable equipment, with serviceable devices and

tools;

if a malfunction is detected, immediately report it directly to

to the manager or eliminate them on their own, if this applies to their job

duties;

not to touch uninsulated or damaged wires;

not to perform work that is not part of their professional duties.

Be able to provide first aid for bleeding, fractures, burns, electric shock,

sudden illness or poisoning.

Follow the rules of personal hygiene:

outerwear, hats and other personal belongings should be left in the

wardrobe;

work in clean overalls;

eat in the designated place.

Be able to correctly use PPE and collective protection equipment, primary

fire extinguishing equipment, fire-fighting equipment, know where they are.

Persons who violate this labor protection instruction for an electrician when

performing repair and maintenance work on electrical equipment shall bear

disciplinary, administrative, material and criminal liability in accordance with the

current legislation of Ukraine.

Safety requirements before starting work

Wear overalls, inspect and prepare the workplace, remove unnecessary

objects.

69

Remove unauthorized persons from the work area and clear the workplace of

foreign materials and other objects, fence off the work area and install safety signs.

Make sure that the workplace is sufficiently illuminated, that there is no

electrical voltage on the repaired equipment.

Inspect the serviceability of switches, electrical outlets, power cords,

electrical wires, connecting cables, make sure that PPE (personal protective

equipment) and warning devices (dielectric gloves, safety glasses, galoshes, mats,

etc.) are available and in good condition.

When working with a tool, it is necessary to make sure that it is in good

condition, that there is no mechanical damage to the insulating coating and that the

tool has been tested in a timely manner.

Inspect the workplace for compliance with fire safety requirements and for

adequate workplace lighting.

If you find any deficiencies or violations in electrical and fire safety,

immediately report them to your immediate supervisor.

4.2. Safety requirements during work

When performing your duties, an electrician must have a certificate of

knowledge testing on labor protection. In the absence of a certificate or a

certificate with an expiration date, the employee is not allowed to work.

Work in electrical installations is divided into 3 categories in terms of safety

measures:

with voltage relief;

without voltage relief on or near live parts;

without voltage relief away from live parts.

Employees performing special types of work that require additional safety

requirements must be trained in the safe conduct of such work and have a

corresponding entry in the knowledge test certificate.

70

An employee who serves electrical installations assigned to him with a

voltage of up to 1000 V alone must have a III group on electrical safety.

When performing work in electrical installations, it is necessary to carry out

organizational measures that ensure the safety of work:

draw up work orders-permits, orders in accordance with the list of works

performed in the order of current operation;

prepare workplaces;

admittance to work;

exercise control over the performance of work;

transfer to another workplace;

establish breaks in work and its completion.

To prepare the workplace for work that requires voltage relief, it is necessary

to apply, in a certain order, the following technical measures:

perform the necessary shutdowns and take all measures that exclude

erroneous or unauthorized switching on of switching equipment;

hang prohibition posters on the drives of manual and remote control keys of

switching equipment;

check for the absence of voltage on conductive parts that must be grounded

to protect people from electric shock;

install grounding (turn on grounding knives, use portable grounding);

install fences, if necessary, near workplaces or live parts that remain under

voltage, and also hang safety posters on these fences.

depending on local conditions, fence live parts before or after their

grounding.

At least two workers should work without removing voltage on or near live

parts, one of whom, the work supervisor, must have group IV; the others must

have group III with mandatory registration of the work with a work permit or

order.

71

When removing and installing fuses under voltage in electrical installations

with voltage up to 1000 V, all loads connected to the specified fuses should be

disconnected in advance; use insulating pliers or dielectric gloves, and if there are

open fuse inserts, then safety glasses.

Work using ladders must be carried out by two people, one of the workers

must be at the bottom. Standing on boxes or other objects is prohibited. P

When installing extension ladders on beams, elements of metal structures,

etc., the upper and lower parts of the ladder should be securely fixed to the

structures.

During maintenance and repair of electrical installations, it is prohibited to

use metal ladders.

4.3. Safety requirements after completion of repair and maintenance of

electrical equipment

Disconnect (disconnect) the necessary electrical equipment, power tools

from the network.

Clean up the workplace, remove parts, material, garbage and waste to

special places.

Remove all tools and devices to the designated place.

Remove and remove overalls, PPE, wash hands thoroughly.

Inspect the workplace for compliance with all fire protection requirements.

Notify your immediate supervisor of any deficiencies and malfunctions that

occurred during the work. Record this in the operational log.

Safety requirements in emergency situations

In case of fire:

turn off electrical equipment, supply and exhaust ventilation, if any;

notify the fire department by calling 101 and report this to your supervisor,

and in his absence, to another official;

72

proceed to eliminate the source of the fire, using the fire extinguishing

agents provided for this purpose. Extinguish electrical equipment that is under

voltage can only be extinguished with carbon dioxide fire extinguishers of the OU

type or sand. It is prohibited to extinguish them with water or foam fire

extinguishers.

The electrician must remember that in the event of a sudden power outage, it

can be supplied again without warning.

Mechanisms and devices should be quickly turned off:

in the event of a sudden power outage;

if their further operation threatens the safety of employees;

in the event of a feeling of electric current when touching metal parts of the

starting equipment;

in case of sparking;

at the slightest sign of ignition, smoke, or a burning smell;

if an unfamiliar noise appears.

In the event of a short circuit in the power supply network, it is necessary to

de-energize the equipment and notify your immediate supervisor.

If an electric shock occurs, the victim should be released from the action of

the electric current, for which purpose the electrical network should be turned off

or the victim should be disconnected from the conductive parts using dielectric

protective equipment and other insulating items and objects (dry clothing, dry pole,

rubberized material, etc.), or the wire should be cut (chopped) with any tool with

an insulating handle, carefully, without causing additional injuries to the victim.

Before the arrival of a medical worker, it is necessary to provide the victim with

first aid.

In the event of accidents (injury to a person), immediately notify the

immediate supervisor.

73

CONCLUSIONS

In today’s highly connected, data-filled world, real-time stream analysis has

become a key part of modern computer systems. The incredible rise in data

creation, fueled by the Internet of Things (IoT), banking systems, social media,

sensor networks, and factory automation, has changed how organizations gather,

process, and use information. Unlike old-fashioned static data sets, today’s data is

continuous, fast, and diverse, coming in streams that need quick analysis. Being

able to get useful insights from these streams instantly has become vital in many

areas, including finance, healthcare, transportation, smart cities, and industrial

oversight.

Traditional methods of handling data, which involve gathering, storing, and

analyzing information in batches over time, no longer meet the needs of today's

rapidly flowing data streams. Although these batch systems still work well for

reviewing past data and managing large volumes of information, they can't deliver

the quick responses required for real-time situations. For example, in stock trading,

a delay in detecting fraudulent activity can cause significant financial loss; in

autonomous vehicles, slow analysis of sensor data can compromise safety; and in

health monitoring, delays in identifying issues with a patient’s vital signs can be

dangerous. These examples demonstrate that delays in processing constant streams

of data are more than just operational problems—they can lead to serious financial,

safety, and personal risks.

To tackle these problems, parallel processing has become a key technology

for real-time stream analysis, enabling systems to handle many events at once. This

greatly increases speed and reduces delays, which is crucial for managing the

growing volume and complexity of data in today’s applications.

This paper has provided a thorough look at how computers process data in

real-time, stressing its important role in today's technology. It started by explaining

the basic ideas behind analyzing data streams and using multiple processors at

74

once, along with reasons why these methods are popular. Data stream analysis

involves processing ongoing, unpredictable data quickly to get immediate results.

Multiple processing is a way of doing many tasks at the same time to increase

speed and reduce delays. These ideas form the core of today's data handling, where

managing continuous, fast-moving information is essential for staying competitive

and efficient.

Building on this basic idea, the paper looked into different system setups

created to support real-time stream analysis. Usually, these systems have several

main parts: data sources, ways to collect the data, processing engines that work in

parallel, tools to keep track of the system’s state, and layers to share or connect

results. Each of these parts is essential to ensure that data flows smoothly,

processing is quick, the system’s memory stays accurate, and results get to users

without much delay.

Data sources in these setups are becoming more diverse, including

everything from smart gadgets and sensors to websites and social media platforms.

Since the data can arrive at different speeds, in various formats, and with varying

levels of reliability, we need robust systems to gather it—especially during sudden

increases in activity—while keeping everything organized and dependable. This is

when multiple collection points start working simultaneously, ensuring all

incoming data is captured quickly and efficiently.

The system's main component is the processing engine, which handles

complex analysis tasks on incoming data streams. By using different forms of

parallelism, such as splitting data, dividing tasks, lining up processes, and working

on windows, these engines can process millions of events every second while

keeping delays manageable. For instance, data parallelism means processing

different parts of a stream in parallel, and pipeline parallelism allows data to flow

smoothly through each step. Often, these methods are mixed to create flexible and

scalable systems that reduce the chance of slowdowns.

75

A crucial part of these systems is handling their state, which helps with

ongoing tasks like merging data, linking different groups, and spotting complex

events. Managing the state well requires careful organization, saving progress, and

fixing issues to keep everything accurate and reliable across all parts. It gets harder

in systems that run tasks at the same time, where keeping everyone's state in sync

takes more effort. Still, good state management is vital for providing accurate, real-

time insights in applications that depend on cumulative or time-based calculations.

The output and integration layers complete the architecture by delivering

processed results to downstream systems, dashboards, or automated decision-

making components. Parallelism is also applied here to allow multiple results to be

transmitted or stored concurrently, ensuring that the output does not become a

bottleneck in the overall system. In addition, fault tolerance, load balancing, and

scalability mechanisms are integrated throughout the architecture to maintain

continuous operation even under failure conditions or fluctuating workloads.

The paper also provided a detailed analysis of parallel processing techniques

for real-time stream analytics. These techniques include:

1. Data parallelism, where streams are partitioned and processed

independently, providing fine-grained scalability.

2. Task parallelism, allowing multiple stages or operations to execute

concurrently to reduce overall pipeline latency.

3. Pipeline parallelism, which maintains continuous data flow through

sequential processing stages executed in parallel.

4. Window-level parallelism, enabling simultaneous computation over

multiple temporal or event-based windows.

5. Operator parallelism, which replicates operators across data partitions

for efficient scaling.

The combination of these techniques forms the backbone of high-

performance stream analytics systems, allowing them to meet the dual

requirements of low latency and high throughput.

76

Furthermore, the study explored key algorithms and frameworks for parallel

stream analytics, including filtering, aggregation, pattern detection, and streaming

machine learning. Filtering and transformation algorithms benefit from stateless

parallelism, while aggregation and pattern detection algorithms leverage stateful

parallel execution. Machine learning algorithms for streaming data, including

classification, anomaly detection, and predictive analytics, rely on distributed

model execution and parallel feature extraction to scale effectively. Frameworks

such as Apache Flink, Apache Spark Structured Streaming, and Apache Kafka

Streams provide pre-built abstractions and runtime support, facilitating the

implementation of these algorithms while transparently managing parallelism,

state, and fault tolerance.

Despite this progress, systems that analyze data in real time still face several

problems and limits. Growing the system's capacity isn't always straightforward;

uneven data distribution and workload imbalances can cause delays. Waiting times

are still affected by the need for coordination, communication, and network traffic.

Managing the state of data across multiple locations adds difficulty, especially

when trying to find the right balance between saving checkpoints and maintaining

system speed. While necessary, safety nets that prevent system failures can add

extra work and storage needs. Additionally, managing resources and keeping

operational costs down are key to ensuring the system works well and remains

affordable. Recognizing and solving these issues is essential for creating systems

that are dependable, efficient, and easy to maintain.

The discussion of future trends underscores the field's dynamic, evolving

nature. Integration with edge and fog computing is enabling real-time processing

closer to the data source, reducing latency and bandwidth usage. Adaptive and

elastic parallelism allows systems to dynamically adjust to fluctuating workloads,

improving resource utilization and responsiveness. Hardware advancements,

including multi-core processors, GPUs, FPGAs, and TPUs, provide new avenues

for accelerating parallel stream processing. Data-driven analysis and learning

77

systems enhance predictive capabilities and decision-making, while unified batch-

stream processing frameworks simplify system design and maintenance.

Looking ahead, there are many opportunities for research in this area. Future

work could focus on simple, efficient ways to manage system state; better methods

to evenly distribute workload and prevent data imbalance; quick fault recovery;

running machine learning tasks in parallel on streaming data; energy-saving

computing for devices at the edge; and secure, privacy-protected ways to analyze

data together. Solving these problems will need teamwork across different fields,

including computer systems, processing techniques, data analysis, and artificial

intelligence.

In conclusion, using multiple tasks at once is essential for analyzing data as

it happens. It turns continuous, fast-moving data flows from a problem into an

opportunity, allowing quick and useful insights that support making decisions in

many areas. Companies and researchers need to keep exploring, improving, and

creating new ways to design systems that handle data streams in parallel, so they

can keep up with the growing needs of data-based applications. By making good

use of handling many tasks at once, today's analysis systems can provide scalable,

quick, and dependable real-time information, making sure the full value of

streaming data is recognized.

As digital systems keep advancing, analyzing data as it happens, driven by

multiple computers working together, will continue to be a key foundation for

responsive, intelligent, and adaptable systems. Its significance will keep growing,

especially as data becomes more central to making operational decisions,

forecasting outcomes, and automating responses across various fields such as

finance, healthcare, industrial automation, smart cities, and others. The way

advanced processing techniques, cutting-edge algorithms, and solid system

structures work together will ultimately influence the efficiency, dependability, and

future success of these real-time data analysis platforms.

78

REFERNCES

1. The Internet of Things: A survey / M. G. J. van den Brand et al. IEEE

Communications Surveys & Tutorials. 2013. Vol. 15, no. 1. P. 164–181. URL:

https://www.sciencedirect.com/science/article/pii/S1389128610001568 (дата

звернення: 25.01.2026).

2. Turkington B. Real-time Stream Analytics. 1st ed. Birmingham, UK :

Packt Publishing, 2016. 320 p. URL: https://www.packtpub.com/product/real-

time-stream-analytics/9781785282643.

3. Sakr S., Gaber A. Large Scale and Big Data: Processing and

Management. CRC Press, 2014. 614 p. URL: https://www.routledge.com/Large-

Scale-and-Big-Data-Processing-and-Management/Sakr-

Gaber/p/book/9781466581096.

4. StreamCloud: An Elastic and Scalable Data Streaming System / V.

Gulisano et al. IEEE Transactions on Parallel and Distributed Systems. 2012. Vol.

23, no. 12. P. 2351–2365. URL:

https://oa.upm.es/16848/1/INVE_MEM_2012_137816.pdf.

5. The Dataflow Model: A Practical Approach to Balancing Correctness,

Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data Processing /

T. Akidau et al. Proceedings of the VLDB Endowment. 2015. Vol. 8, no. 12. P.

1792–1803. URL: https://www.vldb.org/pvldb/vol8/p1792-akidau.pdf.

6. Hirzel M. et al. A Catalog of Stream Processing Patterns. ACM

Computing Surveys. 2014. Vol. 46, no. 4. P. 1–45. URL:

https://dl.acm.org/doi/10.1145/2543581.

7. Chen C. L. P., Zhang C. Y. Data-intensive applications, challenges,

techniques and technologies: A survey on Big Data. Information Sciences. 2014.

Vol. 275. P. 314–347. URL:

https://www.sciencedirect.com/science/article/pii/S002002551400374X.

79

8. Apache Flink: Stream and Batch Processing in a Single Engine / P.

Carbone et al. IEEE Data Engineering Bulletin. 2015. Vol. 38, no. 4. P. 28–38.

URL: https://ieeexplore.ieee.org/document/7343867.

9. Zaharia M. et al. Discretized Streams: Fault-Tolerant Streaming

Computation at Scale. Proc. ACM SOSP. 2013. P. 423–438. URL:

https://dl.acm.org/doi/10.1145/2517349.2522737.

10. The Design of the Borealis Stream Processing Engine / D. J. Abadi et

al. Proc. CIDR. 2005. URL: http://cidrdb.org/cidr2005/papers/3_Abadi.pdf.

11. Kreps J., Narkhede N., Rao J. Kafka: A Distributed Messaging

System for Log Processing. Proc. NetDB. 2011. URL:

https://www.usenix.org/system/files/conference/netdb11/netdb11-final8.pdf.

12. Trill: A High-Throughput Incremental Query Engine for Diverse

Analytics / S. Chandramouli et al. Proceedings of the VLDB Endowment. 2014.

Vol. 8, no. 4. P. 401–412. URL: https://www.vldb.org/pvldb/vol8/p401-

chandramouli.pdf.

13. The Power of Both Worlds: A Hybrid Approach to Scalable Real-

Time Stream Processing / M. A. U. Nasir et al. Proc. IEEE ICDE. 2015. URL:

https://ieeexplore.ieee.org/document/7113126.

14. Lohachab K. S., Karambir B. A Review of Real-Time Stream

Analytics Frameworks. Journal of Big Data. 2019. Vol. 6, no. 1. URL:

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0216-3.

15. State Management in Apache Flink / P. Carbone et al. Proc. ACM

SIGMOD. 2017. URL: https://dl.acm.org/doi/10.1145/3035918.3064035.

16. Structured Streaming: A Declarative API for Real-Time Applications

in Apache Spark / M. Armbrust et al. Proc. ACM SIGMOD. 2018. URL:

https://dl.acm.org/doi/10.1145/3183713.3190664.

17. MillWheel: Fault-Tolerant Stream Processing at Scale / T. Akidau et

al. Proceedings of the VLDB Endowment. 2013. Vol. 6, no. 11. URL:

https://www.vldb.org/pvldb/vol6/p1128-akidau.pdf.

80

18. S-Store: Streaming Meets Transaction Processing / J. Meehan et al.

Proceedings of the VLDB Endowment. 2015. Vol. 8, no. 13. P. 2134–2145. URL:

https://www.vldb.org/pvldb/vol8/p2134-meehan.pdf.

19. Gedik B. et al. SPADE: The System S Declarative Stream Processing

Engine. Proc. ACM SIGMOD. 2008. URL:

https://dl.acm.org/doi/10.1145/1376616.1376671.

20. Edge Computing: Vision and Challenges / W. Shi et al. IEEE Internet

of Things Journal. 2016. Vol. 3, no. 5. P. 637–646. URL:

https://ieeexplore.ieee.org/document/7462615.

21. George G. et al. Parallel processing using GPU for real-time data

streaming. Proc. IEEE ICSPC. 2017. URL:

https://ieeexplore.ieee.org/document/8327318.

22. Y. Leshchyshyn, L. Scherbak, O. Nazarevych, V. Gotovych, P.

Tymkiv and G. Shymchuk, «Multicomponent Model of the Heart Rate Variability

Change-point,» 2019 IEEE XVth International Conference on the Perspective

Technologies and Methods in MEMS Design (MEMSTECH), Polyana, Ukraine,

2019, pp. 110-113, doi: 10.1109/MEMSTECH.2019.8817379

23. Lytvynenko, S. Lupenko, O. Nazarevych, G. Shymchuk and V.

Hotovych, «Mathematical model of gas consumption process in the form of cyclic

random process,» 2021 IEEE 16th International Conference on Computer Sciences

and Information Technologies (CSIT), LVIV, Ukraine, 2021, pp. 232-235, doi:

10.1109/CSIT52700.2021.9648621

24. Bodnarchuk, I., Kunanets, N., Martsenko, S., Matsiuk, O., Matsiuk,

A., Tkachuk, R., Shymchuk, H.: Information system for visual analyzer disease

diagnostics. CEUR Workshop Proceedings 2488, pp. 43-56 (2019).

25. Шимчук Г. В. Дослідження методів захисту відомих хмарних

платформ : кваліфікаційна робота освітнього рівня „Магістр“ „125 –

Кібербезпека“ / Г. В. Шимчук. – Тернопіль : ТНТУ, 2022. – 74 с.

81

26. Методичні вказівки розроблені у відповідності з навчальним

планом для студентів освітнього рівня бакалавр спеціальності 126

«Інформаційні системи та технології» / Уклад.: О. Б. Назаревич, Г. В.

Шимчук, Н. М. Шведа. – Тернопіль : ТНТУ 2020. – 22 c.

27. V. Kozlovskyi, Y. Balanyuk, H. Martyniuk, O. Nazarevych, L.

Scherbak and G. Shymchuk, «Information Technology for Estimating City Gas

Consumption During the Year,» 2022 International Conference on Smart

Information Systems and Technologies (SIST), Nur-Sultan, Kazakhstan, 2022, pp.

1-4, doi: 10.1109/SIST54437.2022.9945786.

