Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/50815
Назва: Evaluating interoperability and data quality in FHIR-based AI assessment pipelines
Автори: Yavorska, Evhenia
Tsupryk, Halyna
Kotov, Yaroslav
Dzierżak, Róźa
Reshetnik, Oleksandr
Bokovets, Viktoriia
Приналежність: ТНТУ
ВНТУ
Lublin University of Technology, Poland
Бібліографічний опис: Yaroslav Kotov, Evhenia Yavorska, Halyna Tsupryk, Róźa Dzierżak, Oleksandr Reshetnik, and Viktoriia Bokovets "Evaluating interoperability and data quality in FHIR-based AI assessment pipelines", Proc. SPIE 14009, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2025, 140091F (30 December 2025); https://doi.org/10.1117/12.3100561
Конференція/захід: Proc. SPIE 14009, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2025
Дата публікації: гру-2025
Дата подання: 2025
Дата внесення: 31-гру-2025
Видавництво: Lublin, Poland
Країна (код): PL
Місце видання, проведення: Lublin, Poland
DOI: https://doi.org/10.1117/12.3100561
Теми: artificial intelligence
generative language models
medical history (anamnesis)
HL7 FHIR
service-oriented architecture; interoperability
medical image management
Діапазон сторінок: 1-6
Короткий огляд (реферат): We present a comprehensive implementation and evaluation of a Fast Healthcare Interoperability Resources (FHIR)–based pipeline for patient-facing AI assessment. In this pipeline, patient-reported symptoms are ingested via a FHIR-compliant REST API as Observation resources, processed by an AI inference engine, and returned as structured FHIR output (e.g. Condition or DiagnosticReport resources). We performed a synthetic comparative study against a traditional, non-standardized data exchange approach (such as ad-hoc JSON or HL7 v2), measuring key metrics: data transmission latency, information completeness, and semantic integrity. Our results show that the FHIR pipeline yields substantially higher data completeness and fidelity (capturing nearly all required fields with correct coding) compared to the legacy format, at the cost of only modest increases in payload size and processing time. In numbers, the FHIR approach retained about 95% of required data fields versus ~70% for the custom pipeline, illustrating the benefit of standardized resource profiles. These findings align with prior work on FHIR-enabled data harmonization pipelines. We conclude that using FHIR standards significantly enhances data quality and interoperability for AI-driven patient assessment, providing a reusable blueprint for clinical AI system developers. All code for pipeline diagrams and performance charts (using Graphviz, Mermaid, Matplotlib, etc.) is made available to support reproducibility.
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/50815
URL-посилання пов’язаного матеріалу: https://doi.org/10.1117/12.3100561
Перелік літератури: 1. Amar F., April A., and Abran A., "Electronic Health Record and Semantic Issues Using Fast Healthcare Interoperability Resources: Systematic Mapping Review," Journal of Medical Internet Research, vol. 26, p. e45209, (2024), doi: 10.2196/45209.
2. Namli T., et al., "A scalable and transparent data pipeline for AI-enabled health data ecosystems," Frontiers in Medicine, vol. 11, Art. 1393123, (2024), doi: 10.3389/fmed.2024.1393123
3. Chatterjee A., Pahari N., and Prinz A., "HL7 FHIR with SNOMED-CT to Achieve Semantic and Structural Interoperability in Personal Health Data: A Proof-of-Concept Study," Sensors, vol. 22, no. 10, Art. 3756, (2022), doi: 10.3390/s22103756.
4. The Method of Detection of Speech Process Signs in the Structure of Electroencephalographic Signals / V. Dozorskyi, O. Dozorska, E. Yavorska, L. Dediv, A. Kubashok // CEUR Workshop Proceedings. 2022. Vol. 3309. pp. 387–395.
5. Williams, E., Kienast, M., Medawar, E., Reinelt, J., Merola, A., Klopfenstein, S. A. I., Flint, A. R., Heeren, P., Poncette, A.-S., Balzer, F., Beimes, J., Von Bünau, P., Chromik, J., Arnrich, B., Scherf, N. and Niehaus, S., “A Standardized Clinical Data Harmonization Pipeline for Scalable AI Application Deployment (FHIR-DHP): Validation and Usability Study,” JMIR Med Inform 11, e43847 (2023). doi: 10.2196/43847.
6. Bikkanuri M., et al., "Measuring the Coverage of the HL7® FHIR® Standard in Supporting Data Acquisition for 3 Public Health Registries," Journal of Medical Systems, vol. 48, no. 1, (2024), doi: 10.1007/s10916-023-02033-z. [
7. Tabari P., et al., "State-of-the-Art FHIR-based Data Model and Structure Implementations: A Systematic Scoping Review (Preprint)," JMIR Medical Informatics, Preprint, (2024), doi: 10.2196/58445.
8. Marfoglia A., et al., "Towards Real-World Clinical Data Standardization: A Modular FHIR-Driven Transformation Pipeline to Enhance Semantic Interoperability in Healthcare," Computers in Biology and Medicine, vol. 187, p. 109745, (2025), doi: 10.1016/j.compbiomed.2025.109745.
9. Wójcik, W., Pavlov, S., Kalimoldayev, M., “Information Technology in Medical Diagnostics II,” London: Taylor & Francis Group, CRC Press, Balkema book, p. 336 (2019).
10. Pavlov, S.V., Sander, S.V., Kozlovska T.I., et al., "Laser photoplethysmography in integrated evaluation of collateral circulation of lower extremities", Proc. SPIE 8698, 869808 (2012).
11. Kukharchuk, V.V., Kazyv, S.S., Bykovsky S.A., et al., “Discrete wavelet transformation in spectral analysis of vibration processes at hydropower units”, Przeglad Elektrotechniczny, 93(3), 65–68 (2017).
12. Avrunin, O.G., Tymkovych, M.Yu., et al.,"Classification of CT-brain slices based on local histograms", Proc. SPIE 9816, 98161J (2015).
Тип вмісту: Proceedings Book
Розташовується у зібраннях:Наукові публікації працівників кафедри біотехнічних систем

Файли цього матеріалу:
Файл Опис РозмірФормат 
140091F.pdf291,24 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора