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ABSTRACT 

We present a comprehensive implementation and evaluation of a Fast Healthcare Interoperability Resources (FHIR)–

based pipeline for patient-facing AI assessment. In this pipeline, patient-reported symptoms are ingested via a FHIR-

compliant REST API as Observation resources, processed by an AI inference engine, and returned as structured FHIR 

output (e.g. Condition or DiagnosticReport resources). We performed a synthetic comparative study against a traditional, 

non-standardized data exchange approach (such as ad-hoc JSON or HL7 v2), measuring key metrics: data transmission 

latency, information completeness, and semantic integrity. Our results show that the FHIR pipeline yields substantially 

higher data completeness and fidelity (capturing nearly all required fields with correct coding) compared to the legacy 

format, at the cost of only modest increases in payload size and processing time. In numbers, the FHIR approach retained 

about 95% of required data fields versus ~70% for the custom pipeline, illustrating the benefit of standardized resource 

profiles. These findings align with prior work on FHIR-enabled data harmonization pipelines. We conclude that using 

FHIR standards significantly enhances data quality and interoperability for AI-driven patient assessment, providing a 

reusable blueprint for clinical AI system developers. All code for pipeline diagrams and performance charts (using 

Graphviz, Mermaid, Matplotlib, etc.) is made available to support reproducibility. 
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1. INTRODUCTION   

Contemporary artificial intelligence software utilized in the health sector (e.g., symptom checkers, virtual health 

questionnaires) needs formatted and normalized data input and output in order to perform at its best. However, patient-

generated health information is frequently created from a variety of sources and types, presenting integration difficulties. 

For instance, older systems can transmit patient information in unstructured communication formats (e.g., HL7 v2 strings 

or bespoke JSON objects), making subsequent AI analysis and electronic health record integration impossible. In our 

previous conceptual research, we stressed the necessity of standard data formats for the creation of scalable and 

interoperable AI testing systems
1,2,3

. 

This project will transcend paradigmatic theories to create an actual FHIR-based pipeline and stringently evaluate its 

performance in comparison to a traditional exchange method. We'll utilize HL7 FHIR, a modern standard for healthcare 

data centered on web-aware principles (RESTful APIs, JSON/XML payloads) and a library of modular "resources" (e.g., 

Patient, Observation, Condition). FHIR builds on concepts from previous HL7 versions (v2/v3) but is intended to 

"simplify implementation without sacrificing information integrity." FHIR has been embraced by national and global 

health care IT initiatives (e.g. U.S. 21st Century Cures Act and the SMART on FHIR initiative) to facilitate effortless 

data sharing
4,5,6

. 

Use of FHIR allows developers to leverage a standardized schema with coded terminologies like LOINC and SNOMED 

CT, all contributing to semantic consistency across systems
7,8,9

. 
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Within our architecture, patient symptom information (e.g., returns from a symptom checklist) will be mapped into FHIR 

Observation resources via a REST API. An artificial intelligence analysis module, serving as a diagnostic-support model, 

will then leverage these observations to produce findings (e.g., a diagnosis or risk score). Subsequently, these AI-

produced results will be encoded as FHIR Condition or DiagnosticReport resources using standard coding. This 

structured output will readily integrate into downstream electronic health records (EHRs) or clinical decision-support 

systems. To measure this design, we will compare it against a more ad hoc strategy, such as collecting symptom data in 

an unstructured JSON and responding with results in a proprietary schema. In our next development cycle, we intend to 

measure round-trip latency for data exchange that exists between methodologies, calculate the completeness of 

mandatory data fields, and assess semantic correctness of coded values for both methodologies
10,11,12

. 

2. RELATED WORK 

FHIR-based data harmonization for AI and research has attracted much interest recently. Marfoglia et al. describe a 

modular FHIR conversion pipeline with five stages (Input, Refinement, Mapping, Validation, Export) that transforms 

heterogeneous clinical datasets into standardized FHIR resources, enabling uniform downstream analysis
1
. This work 

emphasizes that templating and validation can systematically enforce FHIR compliance on complex source data. 

Similarly, Williams et al. developed a FHIR Data Harmonization Pipeline (FHIR-DHP): an on-premises ETL framework 

that queries hospital databases, applies FHIR mappings, and exports the result as “AI-friendly” flat tables. In their 

validation, automating the FHIR mapping improved collaboration and data quality, echoing our goal of scalable 

interoperability
2
. Systematic studies have underscored FHIR’s promise and limits. Tabari et al. performed a broad review 

of FHIR data models, noting that standardized FHIR exports “facilitate integration, transmission, and analysis” across 

systems
3
. In practice, combining FHIR’s web-friendly structure with coded vocabularies (LOINC for observations, 

SNOMED-CT for conditions, etc.) yields strong semantic interoperability. Chatterjee et al. similarly observed that most 

personal health record systems historically used cumbersome, document-centric formats (CCD/CDA), whereas FHIR is a 

“new, flexible, easy to use” web standard with RESTful JSON exchange, inherently simplifying integration
4
. This 

structural ease, when augmented with FHIR profiles and terminology bindings, helps preserve meaning end-to-end. 

Several mapping studies quantify FHIR’s coverage of common data elements. A recent systematic mapping review finds 

that significant effort has gone into structuring and mapping clinical data to FHIR to achieve semantic interoperability. 

In practical terms, these reviews report that core FHIR resources can represent roughly 70–90% of common clinical data 

elements (e.g. registry fields or routine clinical measurements). The remaining unmapped items often require custom 

FHIR profiles or extensions. In summary, prior work establishes FHIR as a robust framework for interoperable 

healthcare pipelines. However, there have been few quantitative comparisons between fully FHIR-compliant exchange 

and legacy formats in an AI context. Our work fills this gap by implementing an end-to-end AI assessment pipeline and 

measuring data-quality metrics. We draw on these existing FHIR pipeline architectures and best practices (e.g. using 

FHIR Mapping Language, enforcing terminology bindings) to guide our design.  

3. METHODOLOGY 

Our pipeline (Figure 1) simulates a patient’s symptom report flowing through a FHIR-based AI system. The architecture 

has three main stages: 

1. Data Intake: A FHIR R4–compliant REST API endpoint accepts patient symptom responses as Observation 

resources. Each observation corresponds to a questionnaire item (e.g. “fever present?”), coded using standard 

value sets (LOINC codes for question prompts, SNOMED CT for answers). The API enforces FHIR schemas 

and records security metadata (e.g. OAuth2 tokens) on each request. 

2. AI Analysis: An inference module retrieves the submitted observations from the FHIR store. This module 

(representing a trained diagnostic support model) extracts the relevant values from the FHIR JSON, applies its 

logic (e.g. a probabilistic classifier or rule engine), and produces AI findings. For example, if the model predicts 

the likely diagnosis “Influenza”, it generates a result. 

3. Output Generation: The AI result is encapsulated into standard FHIR resource(s): for instance, a Condition 

resource for a diagnosis, or a DiagnosticReport for a composite risk assessment. These resources include coded 

entries (e.g. the diagnosis coded in SNOMED CT, observation results in LOINC) and references back to the 

original patient. The system then sends these FHIR resources to the client or an EHR endpoint via FHIR 

messaging or bulk export. All communications use the FHIR REST API or FHIR Bulk Data (Flat FHIR) 

protocols. 
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This modular design leverages FHIR’s features. We use FHIR Mapping Language templates to transform incoming 

questionnaire data (possibly from a local database) into validated FHIR Observation JSON. An authentication layer (e.g. 

OAuth2) ensures only authorized access (omitted from the diagram). 

 
Figure 1. Pipeline architecture of the FHIR-based AI assessment system. Symptom data are captured via a FHIR API, 
processed by the AI module, and results returned as structured FHIR resources. 

We also consider the end-to-end data lifecycle (see Figure 2). Patients submit data through a secure interface, after which 

data are validated and transformed into FHIR resources. AI inference produces new FHIR bundles which are exchanged 

bidirectionally with provider systems (e.g. EHRs). A dotted line indicates feedback (e.g. personalized advice) to the 

patient. This lifecycle emphasizes that standardization (the FHIR conversion steps) is integrated throughout the 

workflow. 

In this algorithm, key factors include the choice of neural network architecture, the configuration of training parameters, 

and the quality of the input data. 

 

Figure 2. End-to-end lifecycle of patient-generated symptom data: secure ingestion through a FHIR API, validation and 

transformation, AI inference, and bidirectional exchange of structured FHIR bundles with provider systems. Dashed arrow 

depicts the personalized feedback channel to the patient. 

For comparison, we implement a traditional (non-FHIR) pipeline with the same functionality. In this baseline, patient 

data are transmitted as a custom JSON message without enforced schema or codes. The AI module reads these raw 

JSON fields and outputs a plain JSON result. This legacy approach mimics many current systems where structured 

standards are lacking. All other system components (authentication, database access, AI logic) are held constant between 

the two pipelines, isolating the effect of the data format. 
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4. EVALUATION 

We conducted a synthetic evaluation of the two pipelines. Using representative symptom questionnaires and test patient 

profiles, we measured three metrics: 

 Latency: The round-trip processing time for a patient request (symptom submission to AI response). We 

measure end-to-end latency as the elapsed time for the HTTP FHIR transactions plus AI processing. We pay 

particular attention to any additional overhead introduced by the FHIR schema (e.g. larger payloads) versus the 

simpler JSON case. 

 Data Completeness: The fraction of required data fields in the scenario that are successfully transmitted and 

interpreted. We define a set of critical attributes (e.g. patient demographics, symptom codes, test results) 

expected in the output. A missing field or unmapped item counts as a loss of completeness. 

 Semantic Integrity: The accuracy of the transmitted coded values. For fields using standard terminologies (e.g. 

symptom codes in SNOMED CT, lab values with LOINC), we check whether the intended codes and units are 

preserved exactly. Any error or ambiguity (such as free-text answers or missing units) reduces semantic 

integrity. 

Figure 3 summarizes the comparative results (higher values are better for completeness and semantic integrity, lower is 

better for latency). Our synthetic tests used a varied set of symptom inputs and kept the AI model constant. The chart 

shows that the FHIR-based pipeline exhibits significantly higher completeness and semantic fidelity than the traditional 

pipeline. In other words, nearly all required data elements were retained and properly coded when using FHIR; in 

contrast, the custom pipeline often omitted fields or used inconsistent representations. The FHIR pipeline’s latency was 

modestly higher due to larger message size and the overhead of JSON parsing and validation, but the difference was 

small relative to the overall processing time in our tests. 

 

Figure 3. Comparative evaluation of latency (round-trip processing time), completeness (fraction of required fields 
transmitted), and semantic integrity (accuracy of coded values) for FHIR-based versus traditional custom JSON pipelines 

 Latency: The FHIR approach took on the order of a few tens of milliseconds longer per transaction than the 

baseline. This is due to larger message payloads (the FHIR JSON includes full resource structure) and 

additional processing (schema validation). However, in absolute terms the latency remained low (sub-second) 

and can be mitigated by techniques like batching or compression. 

 Completeness: The FHIR pipeline achieved about 95% coverage of required fields, whereas the traditional 

pipeline covered only around 70%. The missing 5% in the FHIR case corresponded to highly domain-specific 

items (e.g. a rare questionnaire item not yet profiled), whereas the custom pipeline’s missing 30% were mostly 

structural (fields the AI module expected but were never defined in the ad hoc schema). 

 Semantic Integrity: Nearly 100% of coded values (including units and data types) were preserved in the FHIR 

pipeline. In the traditional pipeline, semantic errors occurred frequently: e.g. numerical values lost their units, or 

local codes were used without mapping to standard ontologies. 

CNN provides effective feature extraction, downsampling, and classification of image features, enhancing the accuracy 

of classification. 
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This synthetic evaluation confirms the expected trade-offs: FHIR adds some message overhead (reflected in slightly 

higher latency) but yields far better data fidelity and consistency. In practice, this overhead is usually small relative to 

model inference time and can be engineered around (for example, using bulk FHIR Export or efficient network settings). 

Importantly, the unmapped fields in FHIR (the ~5% gap) are mostly highly specialized clinical details; as other work has 

noted, these gaps motivate the use of FHIR profiling and extensions to capture domain-specific data
5
. Our observation of 

improved interoperability reflects the broader consensus that FHIR-enabled data exports vastly improve data quality and 

reuse across systems. By contrast, the traditional pipeline’s missing fields and ad hoc codes represent the typical 

semantic loss seen in bespoke formats. 

5. RESULTS AND DISCUSSION 

The analysis demonstrates that a completely standards-based pipeline significantly enhances semantic interoperability 

and data completeness in AI workflows aimed at patients. The structured FHIR resources contain extensive metadata; for 

example, every Observation has explicit coding systems and units, thereby ensuring that a laboratory result or symptom 

is clearly defined. Furthermore, even basic contextual fields (e.g., patient IDs, timestamps, and methods of data 

collection) are coded to FHIR standards. This would mean that downstream users of the AI output (e.g., analytics 

dashboards or EHRs) can directly interpret the data without additional mapping. Outputs from the legacy pipeline, 

however, required manual parsing and possible misinterpretation. 

From the perspective of AI development, FHIR output is useful. Machine-readable detail (standard codes, consistent data 

types) makes it easier to extract features: developers just query FHIR fields with FHIRPath expressions or libraries for 

FHIR, rather than writing ad-hoc parsers for yet another new data format. This allows code reusability across projects. 

For IT systems and clinicians, the benefit is obvious too. 

These advantages are subject to some qualifications. Our testing was under idealized circumstances: we didn't include 

the overhead of real-world authentication handshakes, and we're running on a high-speed local network. In the real 

world, secure API calls (OAuth2, TLS, etc.) introduce latency, and cellular or WAN connections will introduce jitter. 

Secondly, other FHIR server implementations (commercial vs open-source) will have different performance. Lastly, 

successful deployment involves agreement over value sets: FHIR's power is in applying consensus code systems (i.e. the 

same SNOMED code for "fever"), but this needs to be governed. Two adopters who implement FHIR but various 

versions of the codes may still break interoperability. In contrast, a legacy system (i.e. HL7 v2 messages) will have lower 

message size and raw transmission will be a bit faster, but usually at the expense of flexibility. For instance, HL7 v2 

employs fixed segments and char delimiters, which are efficient but notoriously difficult to extend. In our comparison 

model, any non-standard exchange suffers from the same limitations: absent semantics and fragile mappings. Although 

we only tried a custom JSON example, the lessons are valid for any non-FHIR format. In all, our FHIR-based solution 

provides better data quality for AI patient evaluation. Overhead in payload size and latency is minimal and generally 

tolerable with current computing resources. Important, the benefits in transparency and consistency help establish 

increased trust in the AI system: all AI inputs and outputs are traceable through standard FHIR logs and terminology. We 

suggest clinical AI vendors engage FHIR standards in design early to achieve these benefits. Future research should 

continue this evaluation with live clinical data (to capture real-world variability) and evaluate downstream effects, such 

as changes in diagnostic accuracy or physician satisfaction changes. 

6. CONCLUSIONS 

The present study is developing a FHIR-based pipeline for processing patient-reported symptoms—a mapped intake 

API, an AI analytics layer, and a structured FHIR result generator. Preliminary experiments show that with the use of 

standards, one can achieve much better completeness and semantic integrity of data exchanged between patient-facing 

applications and AI elements at the expense of moderate latency overhead. By imposing coded, transparent data streams, 

the method is anticipated to reinforce the trustworthiness and audibility of AI-supported evaluations and to harmonize 

with future regulatory and quality-of-care standards. 

Adopting FHIR enhances the trustworthiness of AI-assisted assessments by enforcing structured, coded data flows. This 

supports regulatory and quality-of-care goals—for example, standardized FHIR outputs make AI decisions more 

auditable and align with compliance frameworks
7
. Future efforts will complete profiles for still-unmapped elements, 

solidify security protections, and enlarge the prototype to real-world clinical environments in pace with the development 

of digital-health standards. 
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