Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://elartu.tntu.edu.ua/handle/lib/50227

Titel: Problems of intake air filtration for combustion engines of vehicles
Sonstige Titel: Проблеми фільтрації впускного повітря двигунів внутрішнього згоряння транспортних засобів
Autor(en): Дзюбак, Тадеуш
Дізо, Ян
Dziubak, Tadeusz
Dizo, Jan
Affiliation: Військова політехніка, Варшава, Польща
Жилінський університет, Жилін, Словаччина
Military University of Technology, Warsaw, Poland
University of Zilina, Žilina, Slovakia
Bibliographic description (Ukraine): Dziubak T. Problems of intake air filtration for combustion engines of vehicles / Tadeusz Dziubak, Jan Dizo // Scientific Journal of TNTU. — Tern. : TNTU, 2025. — Vol 118. — No 2. — P. 20–41.
Bibliographic reference (2015): Dziubak T., Dizo J. Problems of intake air filtration for combustion engines of vehicles // Scientific Journal of TNTU, Ternopil. 2025. Vol 118. No 2. P. 20–41.
Bibliographic citation (APA): Dziubak, T., & Dizo, J. (2025). Problems of intake air filtration for combustion engines of vehicles. Scientific journal of the ternopil national technical university, 118(2), 20-41. TNTU..
Bibliographic citation (CHICAGO): Dziubak T., Dizo J. (2025) Problems of intake air filtration for combustion engines of vehicles. Scientific journal of the ternopil national technical university (Tern.), vol. 118, no 2, pp. 20-41.
Is part of: Вісник Тернопільського національного технічного університету, 2 (118), 2025
Scientific journal of the ternopil national technical university, 2 (118), 2025
Journal/Collection: Вісник Тернопільського національного технічного університету
Issue: 2
Volume: 118
Erscheinungsdatum: 20-Mai-2025
Submitted date: 9-Jan-2025
Date of entry: 31-Okt-2025
Herausgeber: ТНТУ
TNTU
Place of the edition/event: Тернопіль
Ternopil
DOI: https://doi.org/10.33108/visnyk_tntu2025.02.020
UDC: 621
Stichwörter: забруднення повітря
двигуни внутрішнього згоряння
повітряний фільтр
ефективність розділення
поглинання пилу
точність фільтрації
перепад тиску
air pollution
combustion engines
air filter
separation efficiency
dust absorption
filtration accuracy
pressure drop
Number of pages: 22
Page range: 20-41
Start page: 20
End page: 41
Zusammenfassung: Досліджено проблему фільтрації повітря, що надходить у двигуни внутрішнього згоряння транспортних засобів. Основним забруднювачем є мінеральний пил, зокрема діоксид кремнію (SiO2) та оксид алюмінію (Al2O3), які спричиняють інтенсивне абразивне зношування деталей двигуна. Фільтрація повітря здійснюється за допомогою повітряних фільтрів, найпоширенішим типом яких є одноступінчасті фільтри з гофрованим фільтрувальним папером. Однак такі фільтри мають низьку ефективність затримання пилу менше 5 мкм, що є критичним для збереження ресурсу двигуна. Проаналізовано характеристики традиційних матеріалів (целюлозних, поліестерових), а також сучасні композитні рішення з використанням нанофібр. Показано, що застосування нанофібр, виготовлених методом електроспінінгу, значно підвищує ефективність фільтрації дрібнодисперсного пилу. Окрему увагу приділено інноваційним фільтрам PowerCore з аксіальним потоком повітря, що дозволяють зменшити габарити фільтра, знизити втрати тиску та підвищити ресурс. Фільтри з нанофібрами скорочують початковий період низької ефективності, підвищуючи загальний ступінь очищення. Представлено результати експериментів, які демонструють вищу ефективність фільтрів із нанофібрами порівняно з традиційними. Найбільшу шкоду завдають частки пилу діаметром 5–20 мкм, тому фільтрація часток розміром понад 1 мкм є критично важливою. Також розглянуто механізми утримання пилу в пористих середовищах – інерційний, дифузійний, гравітаційний та сита. Комплексна дія цих механізмів забезпечує очищення повітря в двигуні. Показано, що вибір фільтра має враховувати допустиму швидкість фільтрації, геометрію вставки, параметри матеріалу й умови експлуатації. Наголошено на важливості дослідження нових матеріалів для зменшення зношування та продовження терміну служби двигунів
he air intake to the engine are air filters. Passenger cars will be equipped with single-stage filters with a filter insert (porous partition) in the form of a panel made of pleated filter paper. Filter papers show insufficient filtration accuracy of dust grains below 5 µm. The principles of shaping traditional filter partitions made of pleated filter paper and the principles of selecting a filter insert for a car engine using the criterion of permissible filtration speed are presented. The principle of operation and construction as well as the properties of filters with axial air flow, which are made in the modern PowerCore technology, are shown, which reduces the filter dimensions, at the same time resulting in lower pressure drop and greater dust absorption, and therefore a longer period of operation. The article pays special attention to the properties of nanofibers, which are produced from polymers using the «electrospinning» technology, and their filtration properties enable the improvement of the efficiency and accuracy of engine intake air filtration. The results of experimental tests of the efficiency and accuracy of filtration and pressure drop performed for several filter beds differing in structure parameters are presented. It has been shown that the nanofiber layer significantly increases the efficiency and accuracy of filtration of dust grains below 5 µm. Low filtration parameters of the filter beds in the initial filtration period have been demonstrated, which negatively affects engine wear
URI: http://elartu.tntu.edu.ua/handle/lib/50227
ISSN: 2522-4433
Copyright owner: © Тернопільський національний технічний університет імені Івана Пулюя, 2025
URL for reference material: https://doi.org/10.1007/BF03222663
https://doi.org/10.4271/680536
https://doi.org/10.1016/0921-3449(95)00045-3
https://doi.org/10.3390/en15113871
https://doi.org/10.1016/S0015-1882(97)80292-3
https://doi.org/10.1007/s35146-014-0556-5
https://doi.org/10.4271/1999-01-0002
https://doi.org/10.1504/IJSURFSE.2020.105891
https://doi.org/10.3390/ma11102038
https://doi.org/10.4271/03-14-06-0051
https://doi.org/10.3390/en15031182
https://doi.org/10.1007/s11249-010-9733-y
https://doi.org/10.19206/CE-116863
https://doi.org/10.3390/ma14226839
https://doi.org/10.19206/CE-2017-114
https://doi.org/10.3390/en14123577
https://doi.org/10.1007/s41321-019-0023-9
https://doi.org/10.1007/BF03226488
https://doi.org/10.1007/BF03225494
https://doi.org/10.3390/ma13163498
https://doi.org/10.17531/ein.2015.4.6
https://doi.org/10.1371/journal.pone.0282026
https://doi.org/10.3390/polym12081714
https://doi.org/10.1002/mame.201600353
https://doi.org/10.1021/acs.iecr.0c04400
https://doi.org/10.1016/j.jaerosci.2014.02.002
https://doi.org/10.4271/2001-01-1356
https://doi.org/10.1016/j.enbenv.2024.03.008
https://doi.org/10.1016/j.seppur.2020.116680
https://doi.org/10.2139/ssrn.4426974
https://doi.org/10.1016/j.seppur.2018.11.014
https://doi.org/10.1016/j.seppur.2019.116333
https://doi.org/10.1016/j.powtec.2014.06.011
https://www.donaldson.com/content/dam/donaldson/engine-hydraulics-bulk/literature/north-america/air/f111632-eng/Genuine-PowerCore.pdf
https://www.donaldson.com/pl-pl/engine/filters/products/air-intake/replacement-filters/powercore-filters/
https://www.donaldson.com/content/dam/donaldson/engine-hydraulics-bulk/catalogs/air-intake/north-america/F11002
https://www.donaldsonaerospace-defense.com/library/files/documents/pdfs/059806.pdf
https://www.donaldson.com/content/dam/donaldson/engine-hydraulics-bulk/catalogs/air-intake/emea/f116005/Air-Intake-Product-Guide.pdf
https://boschrexroth.africa/public/front_end/pdfs/products/d87431247a985c8500a37deb4796d719.pdf
http://www.airnowsupply.com/BACKUP/catalogs/M+H%20PICOFLEX%20BROCHURE.PDF
https://www.baldwinfiltersrus.com/media/baldwin-filters-pdf/channel.pdf
https://www.sciencelearn.org.nz/resources/1675-nanofibres-are-nanoscale-materials
http://www.ajptr.com/
https://doi.org/10.1021/acs.nanolett.2c00704
https://doi.org/10.3390/polym13111864
https://doi.org/10.1016/j.gee.2022.03.012
https://doi.org/10.3390/fib10020015
https://truckfocus.pl/nowosci/7520/mann-filter-wprowadza-wysokowydajne-filtry-z-nanowlokien
https://doi.org/10.1177/0040517507078241
https://doi.org/10.1177/155892500600100101
https://doi.org/10.1016/j.seppur.2019.03.087
References (International): 1. Bojdo N., Filippone A. Effect of desert particulate composition on helicopter engine degradation rate, 40th European Rotorcraft Forum, Southampton, Conference Paper. September 2014.
2. Smialek J. L., Archer F. A., Garlick R. G. Turbine Airfoil Degradation in the Persian Gulf War. The Journal of The Minerals. Metals & Materials Society (TMS) 1994, 46 (12), pp. 39–41. https://doi.org/10.1007/BF03222663
3. Thomas G. E., Culbert R. M. Ingested Dust, Filters, and Diesel Engine Ring Wear. Society Of Automotive Engineers, Inc. West Coast Meeting San Francisco, Calif. August 12–15, 1968. https://doi.org/10.4271/680536
4. Wei-Han Su. Dust and atmospheric aerosol. Resources, Conservation and Recycling 1996, 16, pp. 1–14. https://doi.org/10.1016/0921-3449(95)00045-3
5. Juda J., Nowicki M. Urządzenia odpylające. PWN: Warszawa, 1986. (In Polish).
6. Dziubak T. Experimental Investigation of Possibilities to Improve Filtration Efficiency of Tangential Inlet Return Cyclones by Modification of Their Design. Energies 2022, 15, 3871. https://doi.org/10.3390/en15113871
7. Dzierżanowski P., Kordziński W., Otyś J., Szczeciński S., Wiatrek R. Napędy Lotnicze. Turbinowe silniki śmigłowe i śmigłowcowe; WKŁ:Warszawa, Poland, 1985. (In Polish)
8. Schaeffer J. W., Olson L. M. Air Filtration Media for Transportation Applications. Filtr. Sep. 1998, 35, pp. 124–129. https://doi.org/10.1016/S0015-1882(97)80292-3
9. Jaroszczyk T., Pardue B. A., Heckel S. P., Kallsen K. J. Engine air cleaner filtration performance – Theoretical and experimental background of testing. In Proceedings of the AFS Fourteenth Annual Technical Conference and 10. Exposition, Tampa, FL, USA, 1 May 2001.
10. Barbolini M., Di Pauli F., Traina M. Simulation der luftfiltration zur auslegung von filterelementen. MTZ – Motortechnische Zeitschrift, 2014, 5, pp. 52–57. https://doi.org/10.1007/s35146-014-0556-5
11. Barris M. A. Total Filtration™: The Influence of Filter Selection on Engine Wear, Emissions, and Performance. SAE Technical Paper 952557. Fuels & Lubricants Meeting & Exposition Toronto: Toronto, ON, Canada, Ontario, October 16–19, 1995. ttps://doi.org/10.4271/952557
12. Jaroszczyk T., Fallon S. L., Liu Z. G., Heckel S. P. Development of a Method to Measure Engine Air Cleaner Fractional Efficiency. SAE Trans, 1999, 108, pp. 9–18. https://doi.org/10.4271/1999-01-0002
13. Alfadhli A., Alazemi A., Khorshid E. Numerical minimisation of abrasive-dust wear in internal combustion engines. International Journal of Surface Science and Engineering, 2020, 14 (1), pp. 68–88. https://doi.org/10.1504/IJSURFSE.2020.105891
14. Bojdo N., Filippone A. Effect of desert particulate composition on helicopter engine degradation rate, 40th European Rotorcraft Forum, Southampton, Conference Paper. September 2014.
15. Long J., Tang M., Sun Z., Liang Y., Hu J. Dust Loading Performance of a Novel Submicro-Fiber Composite Filter Medium for Engine. Materials 2018. 11 (10). 2038. https://doi.org/10.3390/ma11102038
16. Nagy J. Filtration and engine life. Combust. Engines, 1973, 3, pp. 43–47.
17. Wróblewski P., Koszalka G. An Experimental Study on Frictional Losses of Coated Piston Rings with Symmetric and Asymmetric Geometry. SAE Int. J. Engines, 2021, 14, pp. 853–866. https://doi.org/10.4271/03-14-06-0051
18. Dziubak T., Dziubak S. D. A Study on the Effect of Inlet Air Pollution on the Engine Component Wear and Operation. Energies 2022, 15, 1182. https://doi.org/10.3390/en15031182
19. Woś P., Michalski J. Effect of Initial Cylinder Liner Honing Surface Roughness on Aircraft Piston Engine Performances. Tribology Letters, 2011, 41 (3), pp. 555–567, doi:10.1007/s11249-010-9733-y. https://doi.org/10.1007/s11249-010-9733-y
20. Koszałka G., Suchecki A. Changes in performance and wear of small diesel engine during durability test // Combustion Engines 2015, 162 (3), pp. 34–40. https://doi.org/10.19206/CE-116863
21. Wróblewski P., Rogólski R. Experimental Analysis of the Influence of the Application of TiN, TiAlN, CrN and DLC1 Coatings on the Friction Losses in an Aviation Internal Combustion Engine Intended for the Propulsion of Ultralight Aircraft. Materials 2021, 14, 6839. https://doi.org/10.3390/ma14226839
22. Wróblewski P. Effect of asymmetric elliptical shapes of the sealing ring sliding surface on the main parameters of the oil film. Combustion Engines. 2017, 168 (1), pp. 84–93. https://doi.org/10.19206/CE-2017-114
23. Dziubak T. Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two- Stage Air Filter. Energies 2021, 14 (12), 3577. https://doi.org/10.3390/en14123577
24. Rieger M., Hettkamp P., Löhl T., Madeira P. M. P. Effcient engine air filter for tight installation spaces. ATZ Heavy Duty Worldw, 2019, 02. https://doi.org/10.1007/s41321-019-0023-9
25. Dziubak T. Filtracja powietrza wlotowego do silników spalinowych pojazdów mechanicznych. WAT Warszawa 2012. (In Polish).
26. Filtracja i filtry w pojazdach. AUTO-Technika Motoryzacyjna, nr 4, 1998. (In Polish).
27. Motyliński S. Poradnik mechanika samochodowego. PWT, Warszawa 1955. (in Polish).
28. Kordziński C., Środulski T. Układy dolotowe silników spalinowych. WKiŁ, Warszawa 1968. (In Polish).
29. Enderich A., Handel R. Mündungsschallprognose mit der Finiten Elemente Methode. MTZ Motortechnische Zeitschrift 60 1999, 1. https://doi.org/10.1007/BF03226488
30. Fleck S., Heim M., Beck A., Moser N., Durst M. Realitätsnahe Prüfung von Motoransaugluftfiltern. MTZ 2009, Jahrgang 70. https://doi.org/10.1007/BF03225494
31. Materiały informacyjne firmy WIX Filtron. Gostyń 2012.
32. Dziubak T. Analiza procesu filtracji powietrza wlotowego do silników pojazdów specjalnych. WAT Warszawa 2008.
33. Dziubak T, Dziubak S. D. Experimental Study of Filtration Materials Used in the Car Air Intake. Materials 2020, 13 (16), 3498. https://doi.org/10.3390/ma13163498
34. Dziubak T., Szwedkowicz S. Operating properties of non-woven fabric panel filters for internal combustion engine inlet air in single and two-stage filtration systems. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015, 17 (4), pp. 519–527. https://doi.org/10.17531/ein.2015.4.6
35. Teng G., Shi G., Zhu J., Qi J. (2023) A numerical simulation method for pressure drop and normal air velocity of pleated filters during dust loading. PLoS ONE 18 (2): e0282026. https://doi.org/10.1371/journal.pone.0282026
36. Jung S., Jooyoun Kim J. Advanced Design of Fiber-Based Particulate Filters: Materials, Morphology, and Construction of Fibrous Assembly. Polymers 2020, 12, 1714. https://doi.org/10.3390/polym12081714
37. Zhu M., et al. Electrospun Nanofibers Membranes for Effective Air Filtration. Macromol. Mater. Eng. 2017, 302, 1600353. https://doi.org/10.1002/mame.201600353
38. Bai H., et al. Theoretical Model of Single Fiber Efficiency and the Effect of Microstructure on Fibrous Filtration Performance: A Review. Ind. Eng. Chem. Res, 2021, 60, pp. 3–36. https://doi.org/10.1021/acs.iecr.0c04400
39. Ardkapan S. R., Johnson M. S., Yazdi S., Afshari A., Bergsøe N. C. Filtration E_ciency of an Electrostatic Fibrous Filter: Studying Filtration Dependency on Ultrafine Particle Exposure and Composition. J. Aerosol Sci, 2014, 72, pp. 14–20. https://doi.org/10.1016/j.jaerosci.2014.02.002
40. Trautmann P. Durst M., Pelz A., Moser N. High Performance Nanofibre Coated Filter Media for Engine Intake Air Filtration. AFS 2005 Conference and Expo, April 10–13, 2005.
41. Bugli N. Automotive Engine Air Cleaners - Performance Trends. SAE Technical Paper 2001-01-1356. https://doi.org/10.4271/2001-01-1356
42. Durst M., Klein G., Moser N. Filtration in Fahrzeugen, Mann+Hummel GMBH, Ludwigsburg, Germany 2005.
43. Erdmannsdörfer H. Lesttingmoglichkeiten von Papierfiltern zur Reinigung der Ansaugluft von Diselmotoren. MTZ 1971, 32, pp. 123–131.
44. Taufkirch G., Mayr G. Papierluftfilter für Motoren in Nutzfahrzeugen. MTZ 1984, 45 (3), pp. 95–105.
45. Gao J., et al. The Relationship between the Resistance Characteristics and Structural Parameters of the Elongated Filter Cartridge in the Dust Collector. Energy and Built Environment. Available online 1 April 2024. https://doi.org/10.1016/j.enbenv.2024.03.008
46. Allam S., Elsaid A. M. Parametric study on vehicle fuel economy and optimization criteria of the pleated air filter designs to improve the performance of an I.C diesel engine: Experimental and CFD approaches. Separation and Purification Technology 2020,. 241, 116680. https://doi.org/10.1016/j.seppur.2020.116680
47. Shi B., Yu X., Pu Y., Wang D. A theoretical study on the filtration efficiency and dust holding performance of pleated air filters. Heliyon 2023, 9, 7944. https://doi.org/10.2139/ssrn.4426974
48. Maddinenia A. K., Dasa D., Damodaran R. M. Numerical investigation of pressure and flow characteristics of pleated air filter system for automotive engine intake application. Separation and Purification Technology 2019, 212, pp. 126–134. https://doi.org/10.1016/j.seppur.2018.11.014
49. Kang S., Bock N., Swanson J., Pui D. Y. H. Characterization of pleated filter media using particle image velocimetry. Sep Purif Technol, 2020, 237, 116333. https://doi.org/10.1016/j.seppur.2019.116333
50. Saleh A. M., Fotovati S., Vahedi Tafreshi H., Pourdeyhimi B. Modeling service life of pleated filters exposed to poly-dispersed aerosols. Powder Technol, 2014, 266, pp. 79–89. https://doi.org/10.1016/j.powtec.2014.06.011
51. Genuine PowerCore® Air Filter Technology. Available at https://www.donaldson.com/content/dam/donaldson/engine-hydraulics-bulk/literature/north-america/air/f111632-eng/Genuine-PowerCore.pdf (accessed: 23 September 2024).
52. PowerCore®. Available at https://www.donaldson.com/pl-pl/engine/filters/products/air-intake/replacement-filters/powercore-filters/ (accessed: 23 September 2024).
53. Engine Air Filtration for Light, Medium, & Heavy Dust Conditions. Available at: https://www.donaldson.com/content/dam/donaldson/engine-hydraulics-bulk/catalogs/air-intake/north-america/F11002 7-ENG/Air-Intake-Systems-Product-Guide.pdf (accessed: 17 September 2022).
54. PowerCore® G2 and Ultra-Web® Filtration Technology. Available at: https://www.donaldsonaerospace-defense.com/library/files/documents/pdfs/059806.pdf (accessed: 23 September 2024).
55. PowerCore® G2 Filtration Technology for Engine Air Intake Systems. Available at: https://www.donaldson.com/content/dam/donaldson/engine-hydraulics-bulk/catalogs/air-intake/emea/f116005/Air-Intake-Product-Guide.pdf (accessed: 23 September 2024).
56. Fleetguard Direct Flow™. Available at: https://boschrexroth.africa/public/front_end/pdfs/products/d87431247a985c8500a37deb4796d719.pdf (accessed: 23 September 2024).
57. Mann+Hummel PicoFlex® The New Compact Air Cleaner for Highest Requirements. Available at: http://www.airnowsupply.com/BACKUP/catalogs/M+H%20PICOFLEX%20BROCHURE.PDF (accessed: 23 September 2024).
58. Baldwin’s Channel Flow Air Filters. Available at: https://www.baldwinfiltersrus.com/media/baldwin-filters-pdf/channel.pdf (accessed: 23 September 2024).
59. Nanofibres are nanoscale materials. Available at: https://www.sciencelearn.org.nz/resources/1675-nanofibres-are-nanoscale-materials (accessed: 23 September 2024).
60. Graham K., Ouyang M., Raether T., Grafe T., Mc Donald B., Knauf P. Polymeric Nanofibers in Air Filtration Applications, 5th Annual Technical Conference & Expo of the American Filtration & Separations Society, Galveston, Texas, April 9–12, 2002.
61. Kattamuri S. B., Potti L., Vinukonda A., Bandi V., Chagantipati S., Mogili R. K. Nanofibers In Pharmaceuticals – A Review. American Journal of PharmTech Research 2012, 2 (6). Available at: http://www.ajptr.com/.
62. Liu Y., et al. Mass Production of Hierarchically Designed Engine-Intake Air Filters by Multinozzle Electroblow Spinning. Nano Letters 2022, 22 (11), рр. 4354–4361. https://doi.org/10.1021/acs.nanolett.2c00704
63. Sanyal A., Sinha-Ray S. Ultrafine PVDF Nanofibers for Filtration of Air-Borne Particulate Matters: A Comprehensive Review. Polymers 2021, 13, 1864. https://doi.org/10.3390/polym13111864
64. Jі X., Huang J., Teng L., Li S., Li X., Cai W., Chen Z., Lai Y. Advances in particulate matter filtration: Materials, performance, and application. Green Energy & Environment 2023, 8, рр. 673–697. https://doi.org/10.1016/j.gee.2022.03.012
65. Borojeni I. A., Gajewski G., Riahi R. A. Application of Electrospun Nonwoven Fibers in Air Filters. Fibers 2022, 10, 15. https://doi.org/10.3390/fib10020015
66. Mann-Hummel – wysokowydajne filtry z nanowłókien. Available at: https://truckfocus.pl/nowosci/7520/mann-filter-wprowadza-wysokowydajne-filtry-z-nanowlokien (accessed: 21 September 2024).
67. Jaroszczyk T., et al. Direct flow air filters – a new approach to high performance Engine filtration. Published in Filtration, the international journal for filtration and separation, 2006, 6 (4), pp. 280–286.
68. Grafe T., Gogins M., Barris M., Schaefer J., Canepa R. Nanofibers in Filtration Applications in Transportation, Filtration 2001 International Conference and Exposition, Chicago, Illinois, December 3–5, 2001.
69. Heikkilä P., Sipilä A., Peltola M., Harlin A. Electrospun PA-66 Coating on Textile Surfaces. Textile Research Journal 2007, 77 (11), pp. 864–870. https://doi.org/10.1177/0040517507078241
70. Li L., Frey M. W., Green T. B. Modification of Air Filter Media with Nylon-6 Nanofibers. Journal of Engineered Fibers and Fabrics 2006, 1 (1), pp. 1–22. https://doi.org/10.1177/155892500600100101
71. Sun Z., Liang Y., He W., Jiang F., Song Q., Tanga M., Wang J. Filtration performance and loading capacity of nano-structured composite filter media for applications with high soot concentrations. Separation and Purification Technology 2019, 221, pp. 175–182. https://doi.org/10.1016/j.seppur.2019.03.087
Content type: Article
Enthalten in den Sammlungen:Вісник ТНТУ, 2025, № 2 (118)



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.