Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elartu.tntu.edu.ua/handle/lib/50226
| Назва: | The deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates |
| Інші назви: | Деформаційна поведінка довгоексплуатованих трубопроводів в імітованому ґрунтовому електроліті |
| Автори: | Побережний, Любомир Poberezhnyi, Liubomyr |
| Приналежність: | Університет Гельмута Шмідта/Університет федеральних збройних сил, Гамбург, Німеччина Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Germany |
| Бібліографічний опис: | Poberezhnyi L. The deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates / Liubomyr Poberezhnyi // Scientific Journal of TNTU. — Tern. : TNTU, 2025. — Vol 118. — No 2. — P. 5–19. |
| Бібліографічне посилання: | Poberezhnyi L. The deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates // Scientific Journal of TNTU, Ternopil. 2025. Vol 118. No 2. P. 5–19. |
| Bibliographic citation (APA): | Poberezhnyi, L. (2025). The deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates. Scientific journal of the ternopil national technical university, 118(2), 5-19. TNTU.. |
| Bibliographic citation (CHICAGO): | Poberezhnyi L. (2025) The deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates. Scientific journal of the ternopil national technical university (Tern.), vol. 118, no 2, pp. 5-19. |
| Є частиною видання: | Вісник Тернопільського національного технічного університету, 2 (118), 2025 Scientific journal of the ternopil national technical university, 2 (118), 2025 |
| Журнал/збірник: | Вісник Тернопільського національного технічного університету |
| Випуск/№ : | 2 |
| Том: | 118 |
| Дата публікації: | 20-тра-2025 |
| Дата подання: | 1-лют-2025 |
| Дата внесення: | 31-жов-2025 |
| Видавництво: | ТНТУ TNTU |
| Місце видання, проведення: | Тернопіль Ternopil |
| DOI: | https://doi.org/10.33108/visnyk_tntu2025.02.005 |
| УДК: | 681.2.543 |
| Теми: | main gas pipelines hydrogen pipeline transport soil electrolytes corrosion-mechanical degradation deformation bearing capacity main gas pipelines hydrogen pipeline transport soil electrolytes corrosion-mechanical degradation deformation bearing capacity |
| Кількість сторінок: | 15 |
| Діапазон сторінок: | 5-19 |
| Початкова сторінка: | 5 |
| Кінцева сторінка: | 19 |
| Короткий огляд (реферат): | Досліджено деформаційну поведінку сталей магістральних трубопроводів 17ГС та 19Г,
які перебували в експлуатації понад 40 років, у середовищах, що імітують ґрунтові електроліти. У процесі
тривалої експлуатації сталі труб накопичують мікродефекти, що спричиняють деградацію фізико-
механічних властивостей. Особливу небезпеку становлять ділянки трубопроводів, розташовані в
нестабільних ґрунтах або місцях із пошкодженим антикорозійним покриттям. Для оцінювання стійкості
матеріалу до деформацій проведено серію корозійно-механічних випробувань на спеціальних зразках за
різних рівнів навантаження (330, 420, 510 МПа). Результати свідчать, що після 41 року експлуатації
сталь демонструє зростання деформації до 30% в агресивних середовищах. Абсолютне збільшення
деформації становить 3–7%, що є допустимим, однак це свідчить про потенційне зниження несучої
здатності. Найнебезпечнішими середовищами виявилися SEI2 (0.05 М NaCl), SEI5 і SEI6 (змішані
хлоридно-сульфатні електроліти), які спричинили прискорену деформацію й посилену нестабільність
процесу. Сталь 17ГС менш чутлива до деградації, ніж 19Г, що пояснюється відмінностями в хімічному
складі та структурі. Зокрема, у сталі 19Г на початковому етапі деформація відбувається на 20–30%
швидше. Встановлено, що воднева деградація й накопичення локальних пошкоджень можуть значно
знизити термін експлуатації. Водень, проникаючи в мікропорожнини та дефекти, сприяє окрихченню
металу, що особливо критично в умовах несподіваних перевантажень – природних катаклізмів, воєнних
дій чи аварій. Дослідження вказують на необхідність урахування мультифакторного впливу – механічних
навантажень, довготривалої експлуатації, середовища з високою корозійною агресивністю та
дії водню. Усі ці фактори в сукупності визначають рівень експлуатаційного ризику. Запропоновано
використовувати нахил фінального відрізка кривої деформації як індикатор для прогнозування вичерпання
ресурсу трубопроводу Pipeline transportation of hydrocarbon energy is one of the cheapest and most environmentally friendly transport methods. In the context of the green energy transition and implementing ambitious plans to reduce carbon emissions. The issue of optimal future use of the released pipeline capacities arises. One promising option is to use existing pipeline networks to transport green hydrogen and methane-hydrogen mixtures. The pipeline steel is subject to defect accumulation during long-term operation, which causes degradation of physical and mechanical properties. The influence of operational degradation on the resistance to deformation of 19G and 17GS pipe steels in soil electrolytes of different chemical compositions was studied. It is shown that the strain growth in corrosive environments can be up to 30%, which will increase operational risks, especially in areas that run in structurally unstable soils. At the same time, the absolute values of the strain increase are in the range of 3...7% and are not very dangerous since they are within the range of tolerable damage. In the future, it will be advisable to study in more detail the behaviour of pipe steels after long-term operation in the environment of hydrogen gas and methane-hydrogen mixtures to assess the prospects for using existing pipelines for their transportation |
| URI (Уніфікований ідентифікатор ресурсу): | http://elartu.tntu.edu.ua/handle/lib/50226 |
| ISSN: | 2522-4433 |
| Власник авторського права: | © Тернопільський національний технічний університет імені Івана Пулюя, 2025 |
| URL-посилання пов’язаного матеріалу: | https://doi.org/10.1016/j.ijhydene.2018.06.064 https://doi.org/10.1115/IPC2010-31311 https://doi.org/10.1016/j.prostr.2020.11.060 https://doi.org/10.1016/j.triboint.2018.01.036 https://doi.org/10.2478/kom-2018-0017 https://doi.org/10.1007/s11003-015-9790-3 https://doi.org/10.5402/2012/570143 https://doi.org/10.2478/scjme-2019-0008 https://doi.org/10.1016/j.ijpvp.2010.04.003 https://doi.org/10.1016/j.jlp.2021.104718 https://doi.org/10.1108/13552510410553226 https://doi.org/10.1016/j.scs.2018.01.021 https://doi.org/10.2478/scjme-2020-0011 https://doi.org/10.2788/47096 https://doi.org/10.31073/agrovisnyk201901-09 https://doi.org/10.1016/j.engfailanal.2017.07.015 https://doi.org/10.1016/j.tws.2020.107254 https://doi.org/10.1016/j.prostr.2020.06.052 https://doi.org/10.1016/j.corsci.2021.109511 https://doi.org/10.1016/j.jnucmat.2011.04.047 https://doi.org/10.1007/BF01115686 https://doi.org/10.1016/j.ijhydene.2022.06.158 https://doi.org/10.3221/IGF-ESIS.59.26 https://doi.org/10.1016/j.ijhydene.2022.10.254 https://doi.org/10.3390/en15103582 https://doi.org/10.1007/s11003-008-9010-5 https://doi.org/10.1016/j.jngse.2022.104534 https://doi.org/10.1016/j.jmst.2019.10.023 https://doi.org/10.1016/j.ijpvp.2017.05.002 https://doi.org/10.1016/j.strusafe.2013.11.001 https://doi.org/10.1007/s40194-023-01501-x https://doi.org/10.4028/www.scientific.net/AMM.501-504.2331 https://doi.org/10.20964/2017.08.07 https://doi.org/10.1016/j.matpr.2017.06.049 https://www.jstor.org/stable/resrep11987.18 https://doi.org/10.1016/j.engfracmech.2016.10.006 https://doi.org/10.1016/j.tws.2006.08.006 |
| References: | 1. E. Ohaeri, U. Eduok and J. Szpunar, “Hydrogen related degradation in pipeline steel: A review” International Journal of Hydrogen Energy, vol. 43, no. 31, pp. 14584–14617, Aug. 2018. https://doi.org/10.1016/j.ijhydene.2018.06.064 2. D. G. Honegger, J. L. Hart, R. D. Phillips, C. H. Popelar, and R. W. Gailing, “Recent PRCI Guidelines for Pipelines Exposed to Landslide and Ground Subsidence Hazards,” presented at the 8th International Pipeline Conference, September 27–October 1, 2010, Apr. 2011. https://doi.org/10.1115/IPC2010-31311 3. H. Nykyforchyn, O. Tsyrulnyk, O. Zvirko, and M. Hredil, “Role of hydrogen in operational degradation of pipeline steel,” Procedia Structural Integrity, vol. 28, pp. 896–902, 2020. https://doi.org/10.1016/j.prostr.2020.11.060 4. R. A. Cottis and L. L. Shreir, Shreir’s corrosion. Amsterdam; London: Elsevier, 2010. 5. Dalmau C. Richard and A. Igual – Muñoz, “Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal.” Tribology International, vol. 121, pp. 167–179, May 2018. https://doi.org/10.1016/j.triboint.2018.01.036 6. L. Poberezhny, A. Hrytsanchuk, G. Hrytsuliak, L. Poberezhna, and M. Kosmii, “Influence of Hydrate Formation and Wall Shear Stress on the Corrosion Rate of Industrial Pipeline Materials,” Koroze a Ochrana Materialu, vol. 62, no. 4, pp. 121–128, Dec. 2018. https://doi.org/10.2478/kom-2018-0017 7. Yu. Ya. Meshkov, A. V. Shyyan, and O. I. Zvirko, “Evaluation of the In-service Degradation of Steels of Gas Pipelines According to the Criterion of Mechanical Stability.” Materials Science, vol. 50, no. 6, pp. 830–835, May 2015. https://doi.org/10.1007/s11003-015-9790-3 8. Ossai, “Advances in Asset Management Techniques: An Overview of Corrosion Mechanisms and Mitigation Strategies for Oil and Gas Pipelines,” ISRN Corrosion, vol. 2012, pp. 1–10, 2012. https://doi.org/10.5402/2012/570143 9. L. Poberezhny, A. Hrytsanchuk, I. Okipnyi, L. Poberezhna, A. Stanetsky and N. Fedchyshyn, “Minimizing Losses During Natural Gas Transportation,” Strojnícky casopis – Journal of Mechanical Engineering, vol. 69, no. 1, pp. 97–108, May 2019. https://doi.org/10.2478/scjme-2019-0008 10. H. A. Kishawy and H. A. Gabbar, “Review of pipeline integrity management practices”. International Journal of Pressure Vessels and Piping, vol. 87, no. 7, pp. 373–380, Jul. 2010. https://doi.org/10.1016/j.ijpvp.2010.04.003 11. X. Li, J. Wang, R. Abbassi and G. Chen, “A risk assessment framework considering uncertainty for corrosion-induced natural gas pipeline accidents”. Journal of Loss Prevention in the Process Industries, vol. 75, p. 104718, Feb. 2022. https://doi.org/10.1016/j.jlp.2021.104718 12. P. K. Dey, S. O. Ogunlana, and S. Naksuksakul, “Risk‐based maintenance model for offshore oil and gas pipelines: a case study”, Journal of Quality in Maintenance Engineering, vol. 10, no. 3, pp. 169–183, Sep. 2004. https://doi.org/10.1108/13552510410553226 12. M. Xie and Z. Tian, “Risk-based pipeline re-assessment optimisation considering corrosion defects”, Sustainable Cities and Society, vol. 38, pp. 746–757, Apr. 2018. https://doi.org/10.1016/j.scs.2018.01.021 13. Okipnyi et al., “Impact of Long-Term Operation on the Reliability and Durability of Transit Gas Pipelines,” Strojnícky časopis, vol. 70, no. 1, pp. 115–126, Apr. 2020. https://doi.org/10.2478/scjme-2020-0011 14. E. Rusco, G. Tóth, L. Montanarella, and European Commission. Joint Research Centre. Institute For Environment And Sustainability, Threats to soil quality in Europe. Luxembourg: Publications Office, 2008. 15. Van Beek Christy and T. Gergely, Risk assessment methodologies of soil threats in Europe: status and options for harmonisation for risks by erosion, compaction, salinisation, organic matter decline and landslides. JRC Scientific and Policy Reports EUR, 2012. doi: https://doi.org/10.2788/47096. 16. S. Baliuk and O. Drozd, “Assessment of production eco-system services of the salted and solonetzic soils of South of Ukraine.” Vìsnyk agrarnoi nauky, vol. 97, no. 1, pp. 60–67, Jan. 2019. https://doi.org/10.31073/agrovisnyk201901-09 17. H. Nykyforchyn, O. Zvirko, O. Tsyrulnyk, and N. Kret “Analysis and mechanical properties characterisation of operated gas main elbow with hydrogen assisted large-scale delamination,” Engineering Failure Analysis, vol. 82, pp. 364–377, Dec. 2017. https://doi.org/10.1016/j.engfailanal.2017.07.015 18. P. Han, P. Cheng, S. Yuan, and Y. Bai “Characterisation of ductile fracture criterion for API X80 pipeline steel based on a phenomenological approach,” Thin-Walled Structures, vol. 164, pp. 107254–107254, Jul. 2021. https://doi.org/10.1016/j.tws.2020.107254 19. M. Hredil, H. Krechkovska, O. Tsyrulnyk, and O. Student “Fatigue crack growth in operated gas pipeline steels.” Procedia Structural Integrity, vol. 26, pp. 409–416, 2020. https://doi.org/10.1016/j.prostr.2020.06.052 20. S. Wang, L. Lamborn and W. Chen “Near-neutral pH corrosion and stress corrosion crack initiation of a mill-scaled pipeline steel under the combined effect of oxygen and paint primer.” Corrosion Science, vol. 187, p. 109511, Jul. 2021. https://doi.org/10.1016/j.corsci.2021.109511 21. Gorse et al. “Influence of liquid lead and lead–bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems.” Journal of Nuclear Materials, vol. 415, no. 3, pp. 284–292, Aug. 2011. https://doi.org/10.1016/j.jnucmat.2011.04.047 22. S. Srivatsan and T. S. Sudarshan “Mechanisms of fatigue crack initiation in metals: role of aqueous environments.” Journal of Materials Science, vol. 23, no. 5, pp. 1521–1533, May 1988. https://doi.org/10.1007/BF01115686 23. H. Wang et al. “Research and demonstration on hydrogen compatibility of pipelines: a review of current status and challenges.” International Journal of Hydrogen Energy, vol. 47, no. 66, pp. 28585–28604, Aug. 2022. https://doi.org/10.1016/j.ijhydene.2022.06.158 24. H. Nykyforchyn et al., “Methodology of hydrogen embrittlement study of long-term operated natural gas distribution pipeline steels caused by hydrogen transport.” Frattura ed Integrità Strutturale, vol. 16, no. 59, pp. 396–404, Dec. 2021. https://doi.org/10.3221/IGF-ESIS.59.26 25. B. C. Erdener et al. “A review of technical and regulatory limits for hydrogen blending in natural gas pipelines.” International Journal of Hydrogen Energy, vol. 48, pp. 5595–5617, Dec. 2022. https://doi.org/10.1016/j.ijhydene.2022.10.254 26. Mahajan K. Tan, T. Venkatesh, P. Kileti and C. R. Clayton “Hydrogen Blending in Gas Pipeline Networks – A Review.” Energies, vol. 15, no. 10, p. 3582, May 2022. https://doi.org/10.3390/en15103582 27. O. Tsyrul’nyk, H. Nykyforchyn, D. Petryna, M. Hredil and I. Dz’oba “Hydrogen degradation of steels in gas mains after long periods of operation.” Materials Science, vol. 43, no. 5, pp. 708–717, Sep. 2007. https://doi.org/10.1007/s11003-008-9010-5 28. Laureys R. Depraetere M. Cauwels T. Depover S. Hertelé and K. Verbeken “Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: A review of factors affecting hydrogen induced degradation.” Journal of Natural Gas Science and Engineering, vol. 101, p. 104534, May 2022. https://doi.org/10.1016/j.jngse.2022.104534 29. Kolawole S. Kolawole J. Agunsoye J. Adebisi S. Bello, and S. Hassan, “Mitigation of Corrosion Problems in API 5L Steel Pipeline – A Review.” J. Mater. Environ. Sci, vol. 9, no. 8, pp. 2397–2410, 2018. 30. Zh. Tan et al. “Development mechanism of internal local corrosion of X80 pipeline steel.” Journal of Materials Science & Technology, vol. 49, pp. 186–201, Jul. 2020. https://doi.org/10.1016/j.jmst.2019.10.023 31. L. Xu and Y. F. Cheng “A finite element based model for prediction of corrosion defect growth on pipelines.” International Journal of Pressure Vessels and Piping, vol. 153, pp. 70–79, Jun. 2017. https://doi.org/10.1016/j.ijpvp.2017.05.002 32. W. J. S. Gomes and A. T. Beck “Optimal inspection and design of onshore pipelines under external corrosion process.” Structural Safety, vol. 47, pp. 48–58, Mar. 2014. https://doi.org/10.1016/j.strusafe.2013.11.001 33. A. Y. Dakhel, M. Gáspár, Zs. Koncsik and J. Lukács, “Fatigue and burst tests of fullscale girth welded pipeline sections for safe operations.” Welding in the World, vol. 67, no. 5, pp. 1193–1208, Feb. 2023. https://doi.org/10.1007/s40194-023-01501-x 34. X. N. Wu et al., “Analysis of Suspended Pipeline Stress Sensitivity,” Applied Mechanics and Materials, vol. 501–504, pp. 2331–2334, Jan. 2014. https://doi.org/10.4028/www.scientific.net/AMM.501-504.2331 35. M. A. Espinosa-Medina, G. Carbajal-De La Torre, A. Sánchez Castillo, C. ÁngelesChávez, T. Zeferino- Rodríguez, and J. G. González-Rodríguez “Effect of Chloride and Sulfate Ions on the SCC of API-X70 Pipeline Welds in Diluted Carbonated Solutions.” International Journal of Electrochemical Science, vol. 12, no. 8, pp. 6952–6965, Aug. 2017. https://doi.org/10.20964/2017.08.07 36. Ľ. Gajdos, M. Sperl and P. Parizek “The effect of overloading on toughness characteristics.” Materials Today: Proceedings, vol. 4, no. 5, pp. 5803–5808, 2017. https://doi.org/10.1016/j.matpr.2017.06.049 37. C. Bronk, “Hacks on Gas: Energy, Cyber Security, and U.s. Defense.” JSTOR, 2015. Available at: https://www.jstor.org/stable/resrep11987.18 (accessed Feb. 12, 2024). 38. M. Paredes, T. Wierzbicki and P. Zelenak “Prediction of crack initiation and propagation in X70 pipeline steels.” Engineering Fracture Mechanics, vol. 168, pp. 92–111, Dec. 2016. https://doi.org/10.1016/j.engfracmech.2016.10.006 39. R. M. Bergman, S. P. Levitsky, J. Haddad and E. M. Gutman “Stability loss of thinwalled cylindrical tubes, subjected to longitudinal compressive forces and external corrosion.” Thin-Walled Structures, vol. 44, no. 7, pp. 726–729, Jul. 2006. https://doi.org/10.1016/j.tws.2006.08.006 |
| Тип вмісту: | Article |
| Розташовується у зібраннях: | Вісник ТНТУ, 2025, № 2 (118) |
Файли цього матеріалу:
| Файл | Опис | Розмір | Формат | |
|---|---|---|---|---|
| TNTUSJ_2025v118n2_Poberezhnyi_L-The_deformation_behaviour_5-19.pdf | 4,76 MB | Adobe PDF | Переглянути/відкрити | |
| TNTUSJ_2025v118n2_Poberezhnyi_L-The_deformation_behaviour_5-19__COVER.png | 1,25 MB | image/png | Переглянути/відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.