Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://elartu.tntu.edu.ua/handle/lib/50226

Tüm üstveri kaydı
Dublin Core AlanıDeğerDil
dc.contributor.authorПобережний, Любомир
dc.contributor.authorPoberezhnyi, Liubomyr
dc.date.accessioned2025-10-31T15:36:37Z-
dc.date.available2025-10-31T15:36:37Z-
dc.date.created2025-05-20
dc.date.issued2025-05-20
dc.date.submitted2025-02-01
dc.identifier.citationPoberezhnyi L. The deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates / Liubomyr Poberezhnyi // Scientific Journal of TNTU. — Tern. : TNTU, 2025. — Vol 118. — No 2. — P. 5–19.
dc.identifier.issn2522-4433
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/50226-
dc.description.abstractДосліджено деформаційну поведінку сталей магістральних трубопроводів 17ГС та 19Г, які перебували в експлуатації понад 40 років, у середовищах, що імітують ґрунтові електроліти. У процесі тривалої експлуатації сталі труб накопичують мікродефекти, що спричиняють деградацію фізико- механічних властивостей. Особливу небезпеку становлять ділянки трубопроводів, розташовані в нестабільних ґрунтах або місцях із пошкодженим антикорозійним покриттям. Для оцінювання стійкості матеріалу до деформацій проведено серію корозійно-механічних випробувань на спеціальних зразках за різних рівнів навантаження (330, 420, 510 МПа). Результати свідчать, що після 41 року експлуатації сталь демонструє зростання деформації до 30% в агресивних середовищах. Абсолютне збільшення деформації становить 3–7%, що є допустимим, однак це свідчить про потенційне зниження несучої здатності. Найнебезпечнішими середовищами виявилися SEI2 (0.05 М NaCl), SEI5 і SEI6 (змішані хлоридно-сульфатні електроліти), які спричинили прискорену деформацію й посилену нестабільність процесу. Сталь 17ГС менш чутлива до деградації, ніж 19Г, що пояснюється відмінностями в хімічному складі та структурі. Зокрема, у сталі 19Г на початковому етапі деформація відбувається на 20–30% швидше. Встановлено, що воднева деградація й накопичення локальних пошкоджень можуть значно знизити термін експлуатації. Водень, проникаючи в мікропорожнини та дефекти, сприяє окрихченню металу, що особливо критично в умовах несподіваних перевантажень – природних катаклізмів, воєнних дій чи аварій. Дослідження вказують на необхідність урахування мультифакторного впливу – механічних навантажень, довготривалої експлуатації, середовища з високою корозійною агресивністю та дії водню. Усі ці фактори в сукупності визначають рівень експлуатаційного ризику. Запропоновано використовувати нахил фінального відрізка кривої деформації як індикатор для прогнозування вичерпання ресурсу трубопроводу
dc.description.abstractPipeline transportation of hydrocarbon energy is one of the cheapest and most environmentally friendly transport methods. In the context of the green energy transition and implementing ambitious plans to reduce carbon emissions. The issue of optimal future use of the released pipeline capacities arises. One promising option is to use existing pipeline networks to transport green hydrogen and methane-hydrogen mixtures. The pipeline steel is subject to defect accumulation during long-term operation, which causes degradation of physical and mechanical properties. The influence of operational degradation on the resistance to deformation of 19G and 17GS pipe steels in soil electrolytes of different chemical compositions was studied. It is shown that the strain growth in corrosive environments can be up to 30%, which will increase operational risks, especially in areas that run in structurally unstable soils. At the same time, the absolute values of the strain increase are in the range of 3...7% and are not very dangerous since they are within the range of tolerable damage. In the future, it will be advisable to study in more detail the behaviour of pipe steels after long-term operation in the environment of hydrogen gas and methane-hydrogen mixtures to assess the prospects for using existing pipelines for their transportation
dc.format.extent5-19
dc.language.isoen
dc.publisherТНТУ
dc.publisherTNTU
dc.relation.ispartofВісник Тернопільського національного технічного університету, 2 (118), 2025
dc.relation.ispartofScientific journal of the ternopil national technical university, 2 (118), 2025
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2018.06.064
dc.relation.urihttps://doi.org/10.1115/IPC2010-31311
dc.relation.urihttps://doi.org/10.1016/j.prostr.2020.11.060
dc.relation.urihttps://doi.org/10.1016/j.triboint.2018.01.036
dc.relation.urihttps://doi.org/10.2478/kom-2018-0017
dc.relation.urihttps://doi.org/10.1007/s11003-015-9790-3
dc.relation.urihttps://doi.org/10.5402/2012/570143
dc.relation.urihttps://doi.org/10.2478/scjme-2019-0008
dc.relation.urihttps://doi.org/10.1016/j.ijpvp.2010.04.003
dc.relation.urihttps://doi.org/10.1016/j.jlp.2021.104718
dc.relation.urihttps://doi.org/10.1108/13552510410553226
dc.relation.urihttps://doi.org/10.1016/j.scs.2018.01.021
dc.relation.urihttps://doi.org/10.2478/scjme-2020-0011
dc.relation.urihttps://doi.org/10.2788/47096
dc.relation.urihttps://doi.org/10.31073/agrovisnyk201901-09
dc.relation.urihttps://doi.org/10.1016/j.engfailanal.2017.07.015
dc.relation.urihttps://doi.org/10.1016/j.tws.2020.107254
dc.relation.urihttps://doi.org/10.1016/j.prostr.2020.06.052
dc.relation.urihttps://doi.org/10.1016/j.corsci.2021.109511
dc.relation.urihttps://doi.org/10.1016/j.jnucmat.2011.04.047
dc.relation.urihttps://doi.org/10.1007/BF01115686
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2022.06.158
dc.relation.urihttps://doi.org/10.3221/IGF-ESIS.59.26
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2022.10.254
dc.relation.urihttps://doi.org/10.3390/en15103582
dc.relation.urihttps://doi.org/10.1007/s11003-008-9010-5
dc.relation.urihttps://doi.org/10.1016/j.jngse.2022.104534
dc.relation.urihttps://doi.org/10.1016/j.jmst.2019.10.023
dc.relation.urihttps://doi.org/10.1016/j.ijpvp.2017.05.002
dc.relation.urihttps://doi.org/10.1016/j.strusafe.2013.11.001
dc.relation.urihttps://doi.org/10.1007/s40194-023-01501-x
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.501-504.2331
dc.relation.urihttps://doi.org/10.20964/2017.08.07
dc.relation.urihttps://doi.org/10.1016/j.matpr.2017.06.049
dc.relation.urihttps://www.jstor.org/stable/resrep11987.18
dc.relation.urihttps://doi.org/10.1016/j.engfracmech.2016.10.006
dc.relation.urihttps://doi.org/10.1016/j.tws.2006.08.006
dc.subjectmain gas pipelines
dc.subjecthydrogen pipeline transport
dc.subjectsoil electrolytes
dc.subjectcorrosion-mechanical degradation
dc.subjectdeformation
dc.subjectbearing capacity
dc.subjectmain gas pipelines
dc.subjecthydrogen pipeline transport
dc.subjectsoil electrolytes
dc.subjectcorrosion-mechanical degradation
dc.subjectdeformation
dc.subjectbearing capacity
dc.titleThe deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates
dc.title.alternativeДеформаційна поведінка довгоексплуатованих трубопроводів в імітованому ґрунтовому електроліті
dc.typeArticle
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2025
dc.coverage.placenameТернопіль
dc.coverage.placenameTernopil
dc.format.pages15
dc.subject.udc681.2.543
dc.relation.referencesen1. E. Ohaeri, U. Eduok and J. Szpunar, “Hydrogen related degradation in pipeline steel: A review” International Journal of Hydrogen Energy, vol. 43, no. 31, pp. 14584–14617, Aug. 2018. https://doi.org/10.1016/j.ijhydene.2018.06.064
dc.relation.referencesen2. D. G. Honegger, J. L. Hart, R. D. Phillips, C. H. Popelar, and R. W. Gailing, “Recent PRCI Guidelines for Pipelines Exposed to Landslide and Ground Subsidence Hazards,” presented at the 8th International Pipeline Conference, September 27–October 1, 2010, Apr. 2011. https://doi.org/10.1115/IPC2010-31311
dc.relation.referencesen3. H. Nykyforchyn, O. Tsyrulnyk, O. Zvirko, and M. Hredil, “Role of hydrogen in operational degradation of pipeline steel,” Procedia Structural Integrity, vol. 28, pp. 896–902, 2020. https://doi.org/10.1016/j.prostr.2020.11.060
dc.relation.referencesen4. R. A. Cottis and L. L. Shreir, Shreir’s corrosion. Amsterdam; London: Elsevier, 2010.
dc.relation.referencesen5. Dalmau C. Richard and A. Igual – Muñoz, “Degradation mechanisms in martensitic stainless steels: Wear, corrosion and tribocorrosion appraisal.” Tribology International, vol. 121, pp. 167–179, May 2018. https://doi.org/10.1016/j.triboint.2018.01.036
dc.relation.referencesen6. L. Poberezhny, A. Hrytsanchuk, G. Hrytsuliak, L. Poberezhna, and M. Kosmii, “Influence of Hydrate Formation and Wall Shear Stress on the Corrosion Rate of Industrial Pipeline Materials,” Koroze a Ochrana Materialu, vol. 62, no. 4, pp. 121–128, Dec. 2018. https://doi.org/10.2478/kom-2018-0017
dc.relation.referencesen7. Yu. Ya. Meshkov, A. V. Shyyan, and O. I. Zvirko, “Evaluation of the In-service Degradation of Steels of Gas Pipelines According to the Criterion of Mechanical Stability.” Materials Science, vol. 50, no. 6, pp. 830–835, May 2015. https://doi.org/10.1007/s11003-015-9790-3
dc.relation.referencesen8. Ossai, “Advances in Asset Management Techniques: An Overview of Corrosion Mechanisms and Mitigation Strategies for Oil and Gas Pipelines,” ISRN Corrosion, vol. 2012, pp. 1–10, 2012. https://doi.org/10.5402/2012/570143
dc.relation.referencesen9. L. Poberezhny, A. Hrytsanchuk, I. Okipnyi, L. Poberezhna, A. Stanetsky and N. Fedchyshyn, “Minimizing Losses During Natural Gas Transportation,” Strojnícky casopis – Journal of Mechanical Engineering, vol. 69, no. 1, pp. 97–108, May 2019. https://doi.org/10.2478/scjme-2019-0008
dc.relation.referencesen10. H. A. Kishawy and H. A. Gabbar, “Review of pipeline integrity management practices”. International Journal of Pressure Vessels and Piping, vol. 87, no. 7, pp. 373–380, Jul. 2010. https://doi.org/10.1016/j.ijpvp.2010.04.003
dc.relation.referencesen11. X. Li, J. Wang, R. Abbassi and G. Chen, “A risk assessment framework considering uncertainty for corrosion-induced natural gas pipeline accidents”. Journal of Loss Prevention in the Process Industries, vol. 75, p. 104718, Feb. 2022. https://doi.org/10.1016/j.jlp.2021.104718 12. P. K. Dey, S. O. Ogunlana, and S. Naksuksakul, “Risk‐based maintenance model for offshore oil and gas pipelines: a case study”, Journal of Quality in Maintenance Engineering, vol. 10, no. 3, pp. 169–183, Sep. 2004. https://doi.org/10.1108/13552510410553226
dc.relation.referencesen12. M. Xie and Z. Tian, “Risk-based pipeline re-assessment optimisation considering corrosion defects”, Sustainable Cities and Society, vol. 38, pp. 746–757, Apr. 2018. https://doi.org/10.1016/j.scs.2018.01.021
dc.relation.referencesen13. Okipnyi et al., “Impact of Long-Term Operation on the Reliability and Durability of Transit Gas Pipelines,” Strojnícky časopis, vol. 70, no. 1, pp. 115–126, Apr. 2020. https://doi.org/10.2478/scjme-2020-0011
dc.relation.referencesen14. E. Rusco, G. Tóth, L. Montanarella, and European Commission. Joint Research Centre. Institute For Environment And Sustainability, Threats to soil quality in Europe. Luxembourg: Publications Office, 2008.
dc.relation.referencesen15. Van Beek Christy and T. Gergely, Risk assessment methodologies of soil threats in Europe: status and options for harmonisation for risks by erosion, compaction, salinisation, organic matter decline and landslides. JRC Scientific and Policy Reports EUR, 2012. doi: https://doi.org/10.2788/47096.
dc.relation.referencesen16. S. Baliuk and O. Drozd, “Assessment of production eco-system services of the salted and solonetzic soils of South of Ukraine.” Vìsnyk agrarnoi nauky, vol. 97, no. 1, pp. 60–67, Jan. 2019. https://doi.org/10.31073/agrovisnyk201901-09
dc.relation.referencesen17. H. Nykyforchyn, O. Zvirko, O. Tsyrulnyk, and N. Kret “Analysis and mechanical properties characterisation of operated gas main elbow with hydrogen assisted large-scale delamination,” Engineering Failure Analysis, vol. 82, pp. 364–377, Dec. 2017. https://doi.org/10.1016/j.engfailanal.2017.07.015
dc.relation.referencesen18. P. Han, P. Cheng, S. Yuan, and Y. Bai “Characterisation of ductile fracture criterion for API X80 pipeline steel based on a phenomenological approach,” Thin-Walled Structures, vol. 164, pp. 107254–107254, Jul. 2021. https://doi.org/10.1016/j.tws.2020.107254
dc.relation.referencesen19. M. Hredil, H. Krechkovska, O. Tsyrulnyk, and O. Student “Fatigue crack growth in operated gas pipeline steels.” Procedia Structural Integrity, vol. 26, pp. 409–416, 2020. https://doi.org/10.1016/j.prostr.2020.06.052
dc.relation.referencesen20. S. Wang, L. Lamborn and W. Chen “Near-neutral pH corrosion and stress corrosion crack initiation of a mill-scaled pipeline steel under the combined effect of oxygen and paint primer.” Corrosion Science, vol. 187, p. 109511, Jul. 2021. https://doi.org/10.1016/j.corsci.2021.109511
dc.relation.referencesen21. Gorse et al. “Influence of liquid lead and lead–bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems.” Journal of Nuclear Materials, vol. 415, no. 3, pp. 284–292, Aug. 2011. https://doi.org/10.1016/j.jnucmat.2011.04.047
dc.relation.referencesen22. S. Srivatsan and T. S. Sudarshan “Mechanisms of fatigue crack initiation in metals: role of aqueous environments.” Journal of Materials Science, vol. 23, no. 5, pp. 1521–1533, May 1988. https://doi.org/10.1007/BF01115686
dc.relation.referencesen23. H. Wang et al. “Research and demonstration on hydrogen compatibility of pipelines: a review of current status and challenges.” International Journal of Hydrogen Energy, vol. 47, no. 66, pp. 28585–28604, Aug. 2022. https://doi.org/10.1016/j.ijhydene.2022.06.158
dc.relation.referencesen24. H. Nykyforchyn et al., “Methodology of hydrogen embrittlement study of long-term operated natural gas distribution pipeline steels caused by hydrogen transport.” Frattura ed Integrità Strutturale, vol. 16, no. 59, pp. 396–404, Dec. 2021. https://doi.org/10.3221/IGF-ESIS.59.26
dc.relation.referencesen25. B. C. Erdener et al. “A review of technical and regulatory limits for hydrogen blending in natural gas pipelines.” International Journal of Hydrogen Energy, vol. 48, pp. 5595–5617, Dec. 2022. https://doi.org/10.1016/j.ijhydene.2022.10.254
dc.relation.referencesen26. Mahajan K. Tan, T. Venkatesh, P. Kileti and C. R. Clayton “Hydrogen Blending in Gas Pipeline Networks – A Review.” Energies, vol. 15, no. 10, p. 3582, May 2022. https://doi.org/10.3390/en15103582
dc.relation.referencesen27. O. Tsyrul’nyk, H. Nykyforchyn, D. Petryna, M. Hredil and I. Dz’oba “Hydrogen degradation of steels in gas mains after long periods of operation.” Materials Science, vol. 43, no. 5, pp. 708–717, Sep. 2007. https://doi.org/10.1007/s11003-008-9010-5
dc.relation.referencesen28. Laureys R. Depraetere M. Cauwels T. Depover S. Hertelé and K. Verbeken “Use of existing steel pipeline infrastructure for gaseous hydrogen storage and transport: A review of factors affecting hydrogen induced degradation.” Journal of Natural Gas Science and Engineering, vol. 101, p. 104534, May 2022. https://doi.org/10.1016/j.jngse.2022.104534
dc.relation.referencesen29. Kolawole S. Kolawole J. Agunsoye J. Adebisi S. Bello, and S. Hassan, “Mitigation of Corrosion Problems in API 5L Steel Pipeline – A Review.” J. Mater. Environ. Sci, vol. 9, no. 8, pp. 2397–2410, 2018.
dc.relation.referencesen30. Zh. Tan et al. “Development mechanism of internal local corrosion of X80 pipeline steel.” Journal of Materials Science & Technology, vol. 49, pp. 186–201, Jul. 2020. https://doi.org/10.1016/j.jmst.2019.10.023
dc.relation.referencesen31. L. Xu and Y. F. Cheng “A finite element based model for prediction of corrosion defect growth on pipelines.” International Journal of Pressure Vessels and Piping, vol. 153, pp. 70–79, Jun. 2017. https://doi.org/10.1016/j.ijpvp.2017.05.002
dc.relation.referencesen32. W. J. S. Gomes and A. T. Beck “Optimal inspection and design of onshore pipelines under external corrosion process.” Structural Safety, vol. 47, pp. 48–58, Mar. 2014. https://doi.org/10.1016/j.strusafe.2013.11.001
dc.relation.referencesen33. A. Y. Dakhel, M. Gáspár, Zs. Koncsik and J. Lukács, “Fatigue and burst tests of fullscale girth welded pipeline sections for safe operations.” Welding in the World, vol. 67, no. 5, pp. 1193–1208, Feb. 2023. https://doi.org/10.1007/s40194-023-01501-x
dc.relation.referencesen34. X. N. Wu et al., “Analysis of Suspended Pipeline Stress Sensitivity,” Applied Mechanics and Materials, vol. 501–504, pp. 2331–2334, Jan. 2014. https://doi.org/10.4028/www.scientific.net/AMM.501-504.2331
dc.relation.referencesen35. M. A. Espinosa-Medina, G. Carbajal-De La Torre, A. Sánchez Castillo, C. ÁngelesChávez, T. Zeferino- Rodríguez, and J. G. González-Rodríguez “Effect of Chloride and Sulfate Ions on the SCC of API-X70 Pipeline Welds in Diluted Carbonated Solutions.” International Journal of Electrochemical Science, vol. 12, no. 8, pp. 6952–6965, Aug. 2017. https://doi.org/10.20964/2017.08.07
dc.relation.referencesen36. Ľ. Gajdos, M. Sperl and P. Parizek “The effect of overloading on toughness characteristics.” Materials Today: Proceedings, vol. 4, no. 5, pp. 5803–5808, 2017. https://doi.org/10.1016/j.matpr.2017.06.049
dc.relation.referencesen37. C. Bronk, “Hacks on Gas: Energy, Cyber Security, and U.s. Defense.” JSTOR, 2015. Available at: https://www.jstor.org/stable/resrep11987.18 (accessed Feb. 12, 2024).
dc.relation.referencesen38. M. Paredes, T. Wierzbicki and P. Zelenak “Prediction of crack initiation and propagation in X70 pipeline steels.” Engineering Fracture Mechanics, vol. 168, pp. 92–111, Dec. 2016. https://doi.org/10.1016/j.engfracmech.2016.10.006
dc.relation.referencesen39. R. M. Bergman, S. P. Levitsky, J. Haddad and E. M. Gutman “Stability loss of thinwalled cylindrical tubes, subjected to longitudinal compressive forces and external corrosion.” Thin-Walled Structures, vol. 44, no. 7, pp. 726–729, Jul. 2006. https://doi.org/10.1016/j.tws.2006.08.006
dc.identifier.doihttps://doi.org/10.33108/visnyk_tntu2025.02.005
dc.contributor.affiliationУніверситет Гельмута Шмідта/Університет федеральних збройних сил, Гамбург, Німеччина
dc.contributor.affiliationHelmut Schmidt University/University of the Federal Armed Forces Hamburg, Germany
dc.citation.journalTitleВісник Тернопільського національного технічного університету
dc.citation.volume118
dc.citation.issue2
dc.citation.spage5
dc.citation.epage19
dc.identifier.citation2015Poberezhnyi L. The deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates // Scientific Journal of TNTU, Ternopil. 2025. Vol 118. No 2. P. 5–19.
dc.identifier.citationenAPAPoberezhnyi, L. (2025). The deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates. Scientific journal of the ternopil national technical university, 118(2), 5-19. TNTU..
dc.identifier.citationenCHICAGOPoberezhnyi L. (2025) The deformation behaviour of the long-term exploited pipelines in simulated soil electrolytes imitates. Scientific journal of the ternopil national technical university (Tern.), vol. 118, no 2, pp. 5-19.
Koleksiyonlarda Görünür:Вісник ТНТУ, 2025, № 2 (118)



DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.