Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız:
http://elartu.tntu.edu.ua/handle/lib/49462
Başlık: | Інформаційно-технологічний інструменти розумних систем водопостачання |
Diğer Başlıklar: | Information Technology Tools for Smart Water Supply Systems |
Yazarlar: | Воськало, Яна Романівна Voskalo, Yana |
Affiliation: | ТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра комп’ютерних наук, м. Тернопіль, Україна |
Bibliographic description (Ukraine): | Воськало Я. Р. Інформаційно-технологічні інструменти розумних систем водопостачання : робота на здобуття кваліфікаційного ступеня бакалавра : спец. 122 - комп’ютерні науки / наук. кер. Г. Р. Мацюк. Тернопіль : Тернопільський національний технічний університет імені Івана Пулюя, 2025. 76 с. |
Yayın Tarihi: | 24-Haz-2025 |
Submitted date: | 10-Haz-2025 |
Date of entry: | 3-Tem-2025 |
Yayıncı: | ТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Україна |
Country (code): | UA |
Place of the edition/event: | Тернопіль |
Supervisor: | Мацюк, Галина Ростиславівна Matsiuk, Halyna |
UDC: | 004.9 |
Anahtar kelimeler: | 122 інформаційні технології водопостачання розумний водомір розумний застосунок розумна система розумне місто information technology water supply smart water meter smart application smart system smart city |
Page range: | 76 |
Özet: | Метою даної кваліфікаційної роботи освітнього рівня «Бакалавр» є комплексне дослідження та аналіз інформаційно-технологічних інструментів, що застосовуються для проектування, прототипування та супроводу процесів «розумних» систем водопостачання. В першому розділі кваліфікаційної роботи описано предметну область водопостачання. Висвітлено роль ІКТ та IoT у збереженні водних ресурсів. Проаналізовано методи проектування «розумних» застосунків водопостачання.
В другому розділі кваліфікаційної роботи досліджено інформаційні технології та інструменти супроводу процесів «розумного» водопостачання. Зокрема розглянуто Інтернет речей (IoT). Проаналізовано мікроконтролери в «розумних» системах водопостачання. Досліджено давачі та сенсори в «розумних» системах водопостачання. Розглягуто бездротові комунікаційні технології в «розумних» системах водопостачання.
В третьому розділі кваліфікаційної роботи виконано прототипування системи «розумного» водопостачання. Сформована архітектура системи «розумного» водопостачання. Описана модель «розумної» системи водопостачання. Сформовано рекомендації щодо використаних інструментів для систем «розумного» водопостачання. Розглянуто аналіз даних водопостачання у режимі реального часу The purpose of this qualification work at the Bachelor's level is a comprehensive study and analysis of information technology tools used for the design, prototyping and support of processes of "smart" water supply systems. The first section of the qualification work describes the subject area of water supply. The role of ICT and IoT in the conservation of water resources is highlighted. Methods for designing "smart" water supply applications are analyzed. The second section of the qualification work examines information technologies and tools for supporting the processes of "smart" water supply. In particular, the Internet of Things (IoT) is considered. Microcontrollers in "smart" water supply systems are analyzed. Transducers and sensors in "smart" water supply systems are studied. Wireless communication technologies in "smart" water supply systems are considered. In the third section of the qualification work, prototyping of the "smart" water supply system is performed. The architecture of the "smart" water supply system is formed. The model of the "smart" water supply system is described. Recommendations have been made regarding the tools used for smart water supply systems. Real-time water supply data analysis has been considered |
Açıklama: | Роботу виконано на кафедрі комп'ютерних наук Тернопільського національного технічного університету імені Івана Пулюя. Захист відбудеться 24.06.2025р. на засіданні екзаменаційної комісії №30 у Тернопільському національному технічному університеті імені Івана Пулюя |
Content: | ВСТУП 8 РОЗДІЛ 1. ОПИС ТА АНАЛІЗ ПРЕДМЕТНОЇ ОБЛАСТІ «РОЗУМНОГО» ВОДОПОСТАЧАННЯ 10 1.1 Опис предметної області водопостачання 10 1.2 Роль ІКТ та IoT у збереженні водних ресурсів 12 1.3 Аналіз методів проектування «розумних» застосунків водопостачання 14 1.4 Висновок до першого розділу 23 РОЗДІЛ 2. ІНФОРМАЦІЙНО-ТЕХНОЛОГІЧНІ ІНСТРУМЕНТИ СУПРОВОДУ ПРОЦЕСІВ «РОЗУМНОГО» ВОДОПОСТАЧАННЯ 24 2.1 Інтернет речей (IoT) 24 2.2 Мікроконтролери в «розумних» системах водопостачання 32 2.3 Давачі та сенсори в «розумних» системах водопостачання 35 2.4 Бездротові комунікаційні технології в «розумних» системах водопостачання 36 2.4.1 Технології бездротового зв’язку короткого радіусу дії 38 2.4.2 Технології бездротового зв’язку великого радіусу дії 39 2.5 Висновок до другого розділу 44 РОЗДІЛ 3. ПРОТОТИПУВАННЯ СИСТЕМИ «РОЗУМНОГО» ВОДОПОСТАЧАННЯ 45 3.1 Архітектура системи «розумного» водопостачання 45 3.2 Модель «розумної» системи водопостачання 46 3.3 Рекомендації щодо використаних інструментів для систем «розумного» водопостачання 52 3.4 Аналіз даних водопостачання у режимі реального часу 55 3.5 Висновок до третього розділу 56 РОЗДІЛ 4. БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ, ОСНОВИ ОХОРОНИ ПРАЦІ 57 4.1 Забезпечення безпеки життєдіяльності при роботі з ПК 57 4.2 Домедична допомога при ураженні електричним струмом 61 4.3 Висновок до четвертого розділу 64 ВИСНОВКИ 65 ПЕРЕЛІК ДЖЕРЕЛ 67 |
URI: | http://elartu.tntu.edu.ua/handle/lib/49462 |
Copyright owner: | © Воськало Яна Романівна, 2025 |
References (Ukraine): | 1. Okoli, Nwakego Joy, and Boniface Kabaso. "Building a smart water city: iot smart water technologies, applications, and future directions." Water 16.4 (2024): 557. 2. Raimi, M.O.; Adedoyin, O.O.; Ayibatonbira, A.A.; Anu, B.; Odipe, O.E.; Deinkuro, N.S. “Digging deeper” evidence on water crisis and its solution in Nigeria for Bayelsa state: A study of current scenario. Int. J. Hydrol. 2019, 3, 244–257. 3. Olmstead, S.M. Climate change adaptation and water resource management: A review of the literature. Energy Econ. 2014, 46, 500–509. 4. Ahile, S.I.; Udoumoh, E.F.; Adzande, P. Residents coping strategies with water scarcity in Makurdi town, Nigeria. Mediterr. J. Soc. Sci. 2015, 6, 100–108. 5. Harris, J.; Balfour, F.; Zwinkels, M.; Gobel, T.; Heyningen, P.; Frame, J. Western Cape Sustainable Water Management Plan 2017–2022: Towards a New Norm for Water Resilience; Western Cape Government, Environmental Affairs and Development Planning: Cape Town, South Africa, 2018. 6. Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. 7. Peng, G.C.A.; Nunes, M.B.; Zheng, L. Impacts of low citizen awareness and usage in smart city services: The case of London’s smart parking system. Inf. Syst. E-Bus Manag. 2017, 15, 845–876. 8. Hall, R.E.; Bowerman, B.; Braverman, J.; Taylor, J.; Todosow, H.; Von Wimmersperg, U. The vision of a smart city. In Proceedings of the 2nd International Life Extension Technology Workshop, Paris, France, 28 September 2000; pp. 1–6. 9. Schaffers, H.; Ratti, C.; Komninos, N. Special issue on smart applications for smart cities–New approaches to innovation: Guest editors’ introduction. J. Theor. Appl. Electron. Commer. Res. 2012, 7, 2–6. 10. Abraham, S.; Beard, J.; Manijacob, R. Remote environmental monitoring using Internet of Things (IoT). In Proceedings of the 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 19–22 October 2017; pp. 1–6. 11. Li, J.; Bao, S.; Burian, S. Real-time data assimilation potential to connect micro-smart water test bed and hydraulic model. H2Open J. 2019, 2, 71–82. 12. Mutchek, M.; Williams, E. Moving towards sustainable and resilient smart water grids. Challenges 2014, 5, 123–137. 13. Ye, Y.; Liang, L.; Zhao, H.; Jiang, Y. The system architecture of smart water grid for water security. Procedia Eng. 2016, 154, 361–368. 14. McKenna, K.; Keane, A. Residential load modeling of price-based demand response for network impact studies. IEEE Trans. Smart Grid. 2016, 7, 2285–2294. 15. Kartakis, S.; Abraham, E.; McCann, J.A. Waterbox: A testbed for monitoring and controlling smart water networks. In Proceedings of the 1st ACM International Workshop on Cyber-Physical Systems for Smart Water Networks, Seattle, WA, USA, 14–16 April 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1–6. 16. Yu, C.; Hazen, J. Testing the Water: Smart Metering for Water Utilities. 2010. Report, Oracle. Available online: http://www.oracle. com/us/dm/h2fy11/oracle-utilitstngwterprtfinl-11v2-336423.pdf. 17. Günther, M.; Camhy, D.; Steffelbauer, D.; Neumayer, M.; Fuchs-Hanusch, D. Showcasing a smart water network based on an experimental water distribution system. Procedia Eng. 2015, 119, 450–457. 18. Allen, M.; Preis, A.; Iqbal, M.; Whittle, A.J. Case study: A smart water grid in Singapore. Water Pract. Technol. 2012, 7, 4. 19. Stewart, R.A.; Willis, R.; Giurco, D.; Panuwatwanich, K.; Capati, G. Web-based knowledge management system: Linking smart metering to the future of urban water planning. Aust. Plan. 2010, 47, 66–74. 20. Britton, T.C.; Stewart, R.A.; O’Halloran, K.R. Smart metering: Enabler for rapid and effective post meter leakage identification and water loss management. J. Clean. Prod. 2013, 54, 166–176. 21. Morote, Á.F.; Hernández-Hernández, M. Unauthorised domestic water consumption in the city of Alicante (Spain): A consideration of its causes and urban distribution (2005–2017). Water 2018, 10, 851. 22. Monks, I.; Stewart, R.A.; Sahin, O.; Keller, R. Revealing unreported benefits of digital water metering: Literature review and expert opinions. Water 2019, 11, 838. 23. Wong, Y.J.; Nakayama, R.; Shimizu, Y.; Kamiya, A.; Shen, S.; Rashid, I.Z.M.; Sulaiman, N.M.N. Toward industrial revolution 4.0: Development, validation, and application of 3D-printed IoT-based water quality monitoring system. J. Clean. Prod. 2021, 324, 129230. 24. Ntuli, N.; Abu-Mahfouz, A. A simple security architecture for smart water management system. Procedia Comput. Sci. 2016, 83, 1164–1169. 25. Nikhil, R.; Rajender, R.; Dushyantha, G.R.; Khadri, M.N.S.; Jagadevi, N.K. Water quality monitoring system using IoT Environment. Int. J. Innov. Eng. Technol. 2018, 10, 74–78. 26. Yang, L.; Yang, S.H.; Magiera, E.; Froelich, W.; Jach, T.; Laspidou, C. Domestic water consumption monitoring and behaviour intervention by employing the internet of things technologies. Procedia Comput. Sci. 2017, 111, 367–375. 27. Gosavi, G.; Gawde, G.; Gosavi, G. Smart water flow monitoring and forecasting system. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bengaluru, India, 19–20 May 2017; pp. 1218–1222. 28. Suresh, M.; Muthukumar, U.; Chandapillai, J. A novel smart water-meter based on IoT and smartphone app for city distribution management. In Proceedings of the 2017 IEEE Region 10 Symposium (TENSYMP), Cochin, India, 14–16 July 2017; pp. 1–5. 29. Srivastava, S. Domestic water conservation by IOT (Smart Home). Int. Res. J. Eng. Technol. 2018, 5, 328–330. 30. Anandhavalli, D.; Sangeetha, K.; Dharshini, V.P.; Fathima, B.L. Smart meter for water utilization using IoT. Int. Res. J. Eng. Technol. 2018, 5, 1002–1005. 31. Gupta, K.; Kulkarni, M.; Magdum, M.; Baldawa, Y.; Patil, S. Smart Water Management in Housing Societies using IoT. In Proceedings of the Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 27 September 2018; pp. 1609–1613. 32. Soh, Z.H.C.; Shafie, M.S.; Shafie, M.A.; Sulaiman, S.N.; Ibrahim, M.N.; Abdullah, S.A.C. IoT water consumption monitoring alert system. In Proceedings of the 2018 International Conference on Electrical Engineering and Informatics (ICELTICs), Banda Aceh, Indonesia, 19–20 September 2018; pp. 168–172. 33. De Paula, H.T.L.; Gomes, J.B.A.; Affonso, L.F.T.; Rabelo, R.A.L.; Rodrigues, J.J.P.C. An IoT-based water monitoring system for smart buildings. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–5. 34. Hasibuan, A.A.; Fahrianto, F. Consumer’s activity prediction in household water consumption based-IoT (Internet of Things). In Proceedings of the 2019 7th International Conference on Cyber and IT Service Management (CITSM), Jakarta, Indonesia, 6–8 November 2019; pp. 1–7. 35. Patel, C.S.; Gaikwad, J.A. Design and development of IOT based smart water distribution network for residential areas. In Proceedings of the 2019 International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 17–19 July 2019; pp. 2019–2023. 36. Rapelli, N.; Myakal, A.; Kota, V.; Rajarapollu, P.R. IoT based smart water management, monitoring and distribution system for an apartment. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 440–443. 37. Jisha, R.C.; Vignesh, G.; Deekshit, D. IOT based water level monitoring and implementation on both agriculture and domestic areas. In Proceedings of the 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), Kannur, India, 5–6 July 2019; pp. 1119–1123. 38. Herath, I.S. Smart water buddy: IoT based intelligent domestic water management system. In Proceedings of the 2019 International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 5–6 December 2019; pp. 380–385. 39. Vithanage, J.; De Silva, R.; Karunaratne, K.; Silva, M.D.; Bogoda, P.; Kankanamge, R.; Kehelella, P.; Jayakody, K.D.; Wijekoon, J.L. SmartOne: IoT-based smart platform to manage personal water usage. In Proceedings of the 2019 International Conference on Advancements in Computing (ICAC), Malabe, Sri Lanka, 5–6 December 2019; pp. 398–403. 40. Harika, G.L.; Chowdary, H.; Kiranmai, T.S. Cloud-based internet of things for smart water consumption monitoring system. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 967–972. 41. Ray, A.; Goswami, S. IoT and cloud computing based smart water metering system. In Proceedings of the 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and Its Control (PARC), Mathura, India, 28–29 February 2020; pp. 308–313. 42. Ray, A.; Ray, H. SSIWM: Smart secured IoT framework for integrated water resource management system. In Proceedings of the 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), Vijiyapur, India, 8–10 October 2020; pp. 9–14. 43. Sarangi, A.K. Smart water leakage and theft detection using IoT. In Proceedings of the 2020 International Conference on Industry 4.0 Technology (I4Tech), Pune, India, 13–15 February 2020; pp. 46–50. 44. Ranjan, V.; Reddy, M.V.; Irshad, M.; Joshi, N. The internet of things (IoT) based smart rain water harvesting system. In Proceedings of the 2020 6th International Conference on Signal Processing and Communication (ICSC), Noida, India, 5–7 March 2020; pp. 302–305. 45. Alves Coelho, J.; Glória, A.; Sebastião, P. Precise water leak detection using machine learning and real-time sensor data. IoT 2020, 1, 474–493. 46. Fuentes, H.; Mauricio, D. Smart water consumption measurement system for houses using IoT and cloud computing. Environ. Monit. Assess 2020, 192, 1–16. 47. Migabo, E.; Djouani, K.; Kurien, A. Design of an energy efficient LoRaWAN-based smart IoT water meter for African municipalities. In Proceedings of the International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 9–10 December 2021; pp. 9–10. 48. Alejandrino, R.S.; Diomampo, M.C.G.; Balbin, J.R. Smart water meter with cloud database and water bill consumption monitoring via sms and mobile application. In Proceedings of the 2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 25 June 2022; pp. 90–95. 49. Ali, A.S.; Abdelmoez, M.N.; Heshmat, M.; Ibrahim, K. A solution for water management and leakage detection problems using IoTs based approach. Internet Things 2022, 18, 1–16. 50. Andric´, I.; Vrsalovic´, A.; Perkovic´, T.; Cuvic´, M.A.; Šolic´, P. IoT approach towards smart water usage.ˇ J. Clean. Prod. 2022, 367, 1–12. 51. Pasichnyk, V. et al. Building Secure Urban Information Systems Based on IoT Technologies. 2020. 52. Ashton, K. That “internet of things” thing. RFiD J. 2009, 22, 97–114. 53. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 2013, 29, 1645–1660. 54. Dunko, G.; Misra, J.; Robertson, J.; Snyder, T. A Reference Guide to the Internet of Things; Bridgera LLC: Raleigh, NC, USA, 2017; pp. 1–82. 55. Duda O. et al. Formation of hypercubes based on data obtained from systems of IoT devices of urban resource networks. International Journal of Sensors Wireless Communications and Control, 2021, 11.5: 498-504. 56. Palka, O., Dmytrotsa, L., Duda, O., Kunanets, N., Pasichnyk, V. Information and technological tools for analysis and visualization of open data in smart cities. Ceur Workshop Proceedings, 2024, 3742, pp. 1–12. 57. Chuang, W.Y.; Tsai, Y.L.; Wang, L.H. Leak detection in water distribution pipes based on CNN with mel frequency cepstral coefficients. In Proceedings of the 2019 3rdInternational Conference onInnovation in Artificial Intelligence, Suzhou, China, 15 March 2019. 58. Porwal, S.; Akbar, S.A.; Jain, S.C. Leakage detection and prediction of location in a smart water grid using SVM classification. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017. 59. Khosravani, M.R.; Reinicke, T. 3D-printed sensors: Current progress and future challenges. Sens. Actuators A Phys. 2020, 305, 111916. 60. Decker, A. Solar energy harvesting for autonomous field devices. IET Wirel. Sens. Syst. 2014, 4, 1–8. 106. Ford, N. Seeking water solutions for Africa. African Bus. 2008, 338, 1–2. 61. Teja, R. What Is a Sensor? Different Types of Sensors and Their Applications. Electron. Hub. 2021. Available online: https: //www.electronicshub.org/different-types-sensors/. 62. Rao, Y.R. Automatic smart parking system using Internet of Things (IoT). Int. J. Eng. Technol. Sci. Res. 2017, 4, 225–228. 63. TechTarget. Sensor. Available online: https://whatis.techtarget.com/definition/sensor. 64. Bernard, C. Smart water management: 5 innovative solutions to water scarcity offered by the IoT. 2022. Available online: https:// saft.com/energizing-iot/smart-water-management-5-innovative-solutions-water-scarcity-offered-iot. 65. Lalle, Y.; Fourati, M.; Fourati, L.C.; Barraca, J.P. Communication technologies for smart water grid applications: Overview, opportunities, and research directions. Comput. Netw. 2021, 190, 1–23. 66. Ford, R.; Pritoni, M.; Sanguinetti, A.; Karlin, B. Categories and functionality of smart home technology for energy management. Build Environ. 2017, 123, 543–554. 67. Ding, J.; Nemati, M.; Ranaweera, C.; Choi, J. IoT connectivity technologies and applications: A survey. IEEE Access 2020, 8, 67646–67673. 68. Gautam, J.; Chakrabarti, A.; Agarwal, S.; Singh, A.; Gupta, S.; Singh, J. Monitoring and forecasting water consumption and detecting leakage using an IoT system. Water Supply 2020, 20, 1103–1113. 69. Duda, O., Karnaukhov, O., Martsenko, S., & Yatsyshyn, V. Cyber-physical systems at “Digital University”. In: CEUR. 2023. p. 605-609. 70. Abbas, O.; Abou Rjeily, Y.; Sadek, M.; Shahrour, I. A large-scale experimentation of the smart sewage system. Water Environ, J. 2017, 31, 515–521. 71. Guibene, W.; Nolan, K.E.; Kelly, M.Y. Survey on clean slate cellular-IoT standard proposals. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015. 72. Ayoub, W.; Samhat, A.E.; Nouvel, F.; Mroue, M.; Prévotet, J.C. Internet of mobile things: Overview of LoRaWAN, DASH7, and NB-IoT in LPWANs standards and supported mobility. IEEE Commun. Surv. Tutorials 2019, 21, 1561–1581. 73. Duda O., et al. Information technology sets formation and "TNTU Smart Campus" services network support. In: ITTAP. 2023. p. 93-105. 74. Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. 75. Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7. 76. Ikpehai, A.; Adebisi, B.; Rabie, K.M.; Anoh, K.; Ande, R.E.; Hammoudeh, M.; Gacanin, H.; Mbanaso, U.M. Low-power wide area network technologies for internet-of-things: A comparative review. IEEE Internet Things J. 2019, 6, 2225–2240. 77. Osman, N.I.; Abbas, E.B. Simulation and modelling of LoRa and Sigfox low power wide area network technologies. In Proceedings of the 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 12–14 August 2018. 78. Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. Overview of cellular LPWAN technologies for IoT deployment: Sigfox, LoRaWAN, and NB-IoT. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens, Greece, 19–23 March 2018. 79. Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 2016, 23, 60–67. 80. Ratasuk, R.; Mangalvedhe, N.; Bhatoolaul, D.; Ghosh, A. LTE-M evolution towards 5G massive MTC. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017. 81. Dawaliby, S.; Bradai, A.; Pousset, Y. In depth performance evaluation of LTE-M for M2M communications. In Proceedings of the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, USA, 17–19 October 2016. 82. Boisguene, R.; Tseng, S.C.; Huang, C.W.; Lin, P. A survey on NB-IoT downlink scheduling: Issues and potential solutions. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017. 83. Adhikary, A.; Lin, X.; Wang, Y.P.E. Performance evaluation of NB-IoT coverage. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016. 84. Fikejz, J.; Rolecek, J. Proposal of a smart water meter for detecting sudden water leakage. In Proceedings of the 2018 ELEKTRO, Mikulov, Czech Republic, 21–23 May 2018. 85. Sun, Y.; Peng, M.; Zhou, Y.; Huang, Y.; Mao, S. Application of machine learning in wireless networks: Key techniques and open issues. IEEE Commun. Surv. Tutorials 2019, 21, 3072–3108. 86. Folgado, F.J.; González, I.; Calderón, A.J. Data acquisition and monitoring system framed in Industrial Internet of Things for PEM hydrogen generators. Internet Things 2023, 22, 1–16. 87. Безпека життєдіяльності при роботі з комп’ютером. https://ua5.org/svit/2394-bezpeka-zhyttyediyalnosti-pry-roboti-z-kompyuterom.html. 88. Правила безпечної роботи на комп'ютері. https://kadrovik.isu.net.ua/news/559144-pravyla-bezpechnoyi-roboty-na-kompyuteri. 89. Перша допомога при ураженні електричним струмом. https://oppb.com.ua/news/persha-dopomoga-pry-urazhenni-elektrychnym-strumom. 90. Правила надання першої допомоги при ураженні електричним струмом. https://lviv.dsp.gov.ua/pravyla-nadannia-pershoi-dopomohy-pry-u/10723/. 91. Перша допомога при ураженні електричним струмом. https://bozhedarivska-selrada.gov.ua/news/1576497483/ |
Content type: | Bachelor Thesis |
Koleksiyonlarda Görünür: | 122 — Компʼютерні науки (бакалаври) |
Bu öğenin dosyaları:
Dosya | Açıklama | Boyut | Biçim | |
---|---|---|---|---|
2025_KRB_SN-41_Voskalo_IR.pdf | Дипломна робота | 816,14 kB | Adobe PDF | Göster/Aç |
DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.
Yönetim Araçları