霂瑞霂��撘����迨��辣: http://elartu.tntu.edu.ua/handle/lib/47577

摰����漯敶�
DC �������霂剛��
dc.contributor.authorLupenko, Serhii-
dc.contributor.authorPetryk, Mykhaylo-
dc.contributor.authorLegrand, André Pierre-
dc.contributor.authorKhimich, Oleksandr-
dc.date.accessioned2025-01-15T10:13:55Z-
dc.date.available2025-01-15T10:13:55Z-
dc.date.issued2024-
dc.identifier.citationSerhii Lupenko, Mykhaylo Petryk, André Pierre Legrand, Oleksandr Khimich. High-performance technologies of modeling and identification of complex multi-component systems and processes. Opole : Opole University of Technology, 2024. 202 p.uk_UA
dc.identifier.isbn978-83-66903-75-3-
dc.identifier.issn1429-6063-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/47577-
dc.language.isoenuk_UA
dc.publisherPublishing House of the Opole University of Technologyuk_UA
dc.titleHigh-performance technologies of modeling and identification of complex multi-component systems and processesuk_UA
dc.typeMonographuk_UA
dc.rights.holder© Copyright by Politechnika Opolska, 2024uk_UA
dc.coverage.placenameOpoleuk_UA
dc.format.pages202-
dc.relation.referencesen1. Lupenko S.A. Theoretical bases of modeling and processing of cyclic signals in information systems./S.A. Lupenko. – Lviv: "Magnolia 2006" Publishing House, 2016. P. 344. (Scientific monograph in Ukrainian).uk_UA
dc.relation.referencesen2. Lupenko S.A. Theoretical bases of modeling and processing of cyclic signals in information systems. Second edition. Stereotyped. Lviv: "Magnolia 2006" Publishing House, 2020. p. 340. ISBN 978-617-574- 108-5. (Scientific monograph in Ukrainian).uk_UA
dc.relation.referencesen3. Serhii Lupenko. Rhythm-adaptive statistical estimation methods of probabilistic characteristics of cyclic random processes. Digital Signal Processing, Volume 151, 2024, 104563, ISSN 1051-2004, https://doi.- org/10.1016/j.dsp.2024.104563.uk_UA
dc.relation.referencesen4. Serhii Lupenko. The rhythm-adaptive Fourier series decompositions of cyclic numerical functions and one-dimensional probabilistic characte ristics of cyclic random processes. Digital Signal Processing, 2023, 104104, ISSN 1051-2004, https://doi.org/10.1016/j.dsp.2023.104104.uk_UA
dc.relation.referencesen5. Lupenko, S. The Mathematical Model of Cyclic Signals in Dynamic Systems as a Cyclically Correlated Random Process. Mathematics 2022, 10, 3406. https://doi.org/10.3390/math10183406.uk_UA
dc.relation.referencesen6. Lupenko, S.; Butsiy, R. Isomorphic Multidimensional Structures of the Cyclic Random Process in Problems of Modeling Cyclic Signals with Regular and Irregular Rhythms. Fractal Fract. 2024, 8, 203. https://- doi.org/10.3390/fractalfract8040203.uk_UA
dc.relation.referencesen7. Gardner, W.A.; Napolitano, A.; Paura, L. Cyclostationarity: Half a cen tury of research. Signal Process. 2006, 86, 639–697.uk_UA
dc.relation.referencesen8. Dragan, Y.P.; Yavorskii, I.N. Statistical analysis of periodic random processes. Otbor i Peredacha Inf. 1985, 71, 20–29. (In Russian)uk_UA
dc.relation.referencesen9. Lupenko, S.; Butsiy, R.; Shakhovska, N. Advanced Modeling and Signal Processing Methods in Brain–Computer Interfaces Based on a Vector of Cyclic Rhythmically Connected Randomuk_UA
dc.relation.referencesen10. Lupenko, S. Statistical Methods for Common Processing of the Joint Rhythmically Connected Cyclic Random Processes. In Measuring and Computing Technics in Production Processes; Khmelnytsky University: Khmelnytsky, Ukraine, 2005; Volume 2, pp. 80–84. (In Ukrainian)uk_UA
dc.relation.referencesen11. Lupenko, S.; Lytvynenko, I.; Sverstiuk, A.; Horkunenko, A.; Shelesto vskyi, B. Software for statistical processing and modeling of a set of syn chronously registered cardio signals of different physical nature. CEUR Workshop Proceedings, 2021, 2864, pp. 194–205.uk_UA
dc.relation.referencesen77. Kärger Jörg, Ruthven, D.M., & Theodorou, D.N. (2012). Diffusion in nanoporous materials. Hoboken, USA: John Wiley & Sons.uk_UA
dc.relation.referencesen78. Krishna, R. (2019). Thermodynamically consistent methodology for estimation of diffusivities of mixtures of guest molecules in microporous materials. ACS Omega, 4(8), 13520–13529. https://doi.org/10.1021/- acsomega.9b01873uk_UA
dc.relation.referencesen79. Leclerc, S., Petryk, M., Canet, D., & Fraissard, J. (2012). Competitive diffusion of gases in a zeolite using proton NMR and a slice selection procedure. Catalysis Today, 187(1), 104–107. https://doi.org/10.1016/j.- cattod.2011.09.007uk_UA
dc.relation.referencesen80. Sergienko I.V., Petryk M.R., Khimich O.M., Canet D., Mykhalyk D.M., Leclerc S, Fraissard J. The Mathematical Modelling of Mass-transfer in Media of Nano-porous Structure. Kyiv: National Academy of Sciences of Ukraine. Institute V.M. Gluschkov of Cybernetic, 2014, 210 p. ISBN 978-966-02-7098-5. (Scientific monograph in Ukrainian).uk_UA
dc.relation.referencesen81. Petryk, M.R., Khimich, A., Petryk, M.M., & Fraissard, J. (2019). Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel, 239, 1324–1330. https://doi.org/10.1016/j.fuel.2018.10.134uk_UA
dc.relation.referencesen82. Lebovka N., Petyk M., Tatochenko M. & Vygornitskii N. Two-stage random sequential adsorption of discorectangles and disks on a two dimensional surface. Physical Review E. Vol.108, 024109 (2023) doi.org/10.1103/PhysRevE.108.024109uk_UA
dc.relation.referencesen83. Petryk, M, Leclerc, S., D Canet, S.I. V, Deineka, V.S., & Fraissard, J. (2015). The competitive diffusion of gases in a zeolite bed: NMR and slice procedure, modelling and identification of parameters. The Journal of Physical Chemistry C. ACS, 119(47), 26519–26525. https://doi.org/- 10.1021/acs.jpcc.5b07974uk_UA
dc.relation.referencesen84. Petryk M., Leclerc S., Canet D., Fraissard J. Modeling of gas transport in a microporous solid using a sclice selection procedure: Application to the diffusion of benzene in ZSM5. Catalysis Today. Vol. 139, Issue 3, 234– 240 (2008).uk_UA
dc.relation.referencesen85. Petryk, M.R., Khimich, A.N., & Petryk, M.M. (2018). Simulation of adsorption and desorption of hydrocarbons in nanoporous catalysts of neutralization systems of exhaust gases using nonlinear Langmuir isotherm. Journal of Automation and Information Sciences, 50(10), 18– 33. https://doi.org/10.1615/JAutomatInfScien.v50.i10.20uk_UA
dc.relation.referencesen86. Petryk M.R., Boyko I.V., Khimich A.N, Petryk M.M. High-Performance Supercomputer Technologies of Simulation and Identification of Nanoporous Systems with Feedback for n-Component Competitive Adsorption. Cybernetics and System Analysis, Springer New York, Vol. 57(2), 316–328 (2021)uk_UA
dc.relation.referencesen87. Petryk M., Boyko I., Fessard J.,Lebovka N. Modelling of non-isothermal adsorption of gases in nanoporous adsorbent based on Langmuir equilibrium. Adsorption. Vol 29, 141–150 (2023) doi.org/10.1007/- s10450-023-00389-9www.top500.orguk_UA
dc.relation.referencesen88. Khimich A.N., Molchanov I.N., Mova V.I. etc. Numerical software of the MIMD computer by Inpark0m. – Kyiv: Nauk. Dumka, 2007.uk_UA
dc.relation.referencesen89. Khimich A.N., Molchanov I.N., Popov A.V., Chistyakova T.V., Ya kovlev M.F. Parallel algorithms for solving problems of computa-tional mathematics. – Kyiv: Nauk. dumka, 2008.uk_UA
dc.relation.referencesen90. Nikolaevskaya E., Khimich A., Chistyakova T. Programming with Mul tiple Precision. Studies in Computational Intelligence. Springer-Verlag. Berlin, Heidelberg, 2012.uk_UA
dc.relation.referencesen91. Khimich О.М., Chistyakova T.V, Sidoruk V.A., Ershov P.S. Adaptive computer technologies for solving problems of computational and applied mathematics. Cybernetics and Systems Analysis, 2021, V. 57(6), 990–997.uk_UA
dc.relation.referencesen92. Khimich O.M., Popov O.V., Chistyakov V.A., Kokhanivskyi V.O. Adap tive Algorithms for Solving Eigenvalue Problems in the Variable Com puter Environment of Supercomputers, 2023, V. 59(«3), 480–49uk_UA
dc.relation.referencesen93. Khimich, A.N. Estimates of the total error in the solution of systems of linear algebraic equations for matrices of arbitrary ranks. Computer mathematics. 2002. No. 2, 41–49.uk_UA
dc.relation.referencesen94. Khimich, A.N. Perturbation bounds for the least squares problem. Cybernetics and Systems Analysis. 1996. Vol. 32(3). 434–436. doi: 10.1007/BF02366509uk_UA
dc.relation.referencesen95. Khimich, A.N., Popov, A.V., Polyanko, V.V. Algorithms of parallel computations for linear algebra problems with irregularly structured ma trices. Cybernetics and Systems Analysis. 2011. Vol. 47(6), 973–985. doi: 10.1007/s10559-011-9377-4uk_UA
dc.relation.referencesen96. Khimich, A.N., Yakovlev, M.F. On the solution of systems with matrices of incomplete rank. Computer Mathematics. 2003. No. 1, 1–15.uk_UA
dc.relation.referencesen97. Molchanov, I.N., Popov, A.V. & Khimich, A.N. Algorithm to solve the partial eigenvalue problem for large profile matrices. Cybernetics and Systems Analysis. 1992. Vol. 28(3), 281–286. https://doi.org/10.1007/BF01126215uk_UA
dc.relation.referencesen98. Popov, A.V., Khimich, A.N. Research and solution of the first basic problem of the theory of elasticity. Computer Mathematics. 2003. No. 2, 105–114.uk_UA
dc.relation.referencesen99. Popov, A.V. On an effective method for solving incorrect problems with sparse matrices. Theory of Optimal Solutions.2013, 77-81.uk_UA
dc.relation.referencesen100. Gorodetsky A.S., Evzerov I.D. Computer models of structures. Kyiv: FACT, 2007. 394 p.uk_UA
dc.relation.referencesen101. Popov A.V., Chistyakov O.V. On the effectiveness of algorithms with multilevel parallelism. Physico-mathematical modeling and information technologies. 2021. Issue 33, 133–137. doi: 10.15407/fmmit2021.33.133uk_UA
dc.relation.referencesen102. Popov O.V. On parallel algorithms for factorization of sparse matrices. Computer mathematics. Sat. science labor. 2013. Issue 2, 115–124. http://dspace.nbuv.gov.ua/handle/123456789/84755uk_UA
dc.relation.referencesen103. Khimich O.M., Sydoruk V.A. The use of mixed bit rate in mathematical modeling. Mathematical and computer modeling. Series: Physical and mathematical sciences. 2019. Issue 19, 180–187. http://dspace.- nbuv.gov.ua/handle/123456789/84755uk_UA
dc.relation.referencesen104. Khimich O.M., Sydoruk V.A. A tiling hybrid algorithm for the factorization of structurally symmetric matrices. Theory of optimal solutions. Coll. of science works. 2017, 125–132.uk_UA
dc.relation.referencesen105. Alan George, Joseph W-H Liu Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, 1981..uk_UA
dc.relation.referencesen106. Khimich O.M., Popov A.V. Solving Ill-Posed Problems of the Theory of Elasticity Using High-Performance Computing Systems. Cybernetics and Systems Analysis, Vol. 59(5), 2023, 743–752. doi: 10.1007/s10559- 023-00610-1uk_UA
dc.relation.referencesen12. Lupenko S.A. Mathematical modeling and methods of processing synchronously registered heart signals using cyclic rhythmically related random processes/S.A. Lupenko, А.S. Sverstyuk // Lviv: "Magnolia 2006" Publishing House - 2006, 2020. p. 148. ISBN 978-617-574-184-9. (Scientific monograph in Ukrainian).uk_UA
dc.relation.referencesen13. Lupenko S. Model Of Signals With Double Stochasticity In The Form Of A Conditional Cyclic Random Process / Lytvynenko I., Stadnyk N., Zozulia A.//The 2nd International Workshop Information – Commu nication Technologies & Embedded Systems, Vol-2762. 12 November, 2020 Mykolaiv, Ukraine. pp. 201–208. ISSN 1613-0073.uk_UA
dc.relation.referencesen14. Niroshana, S.M.I.; Kuroda, S.; Tanaka, K.; Chen, W. Beat-wise segmentation of electrocardiogram using adaptive windowing and deep neural network. Sci. Rep. 2023, 13, 11039. https://doi.org/10.1038/- s41598-023-37773-yuk_UA
dc.relation.referencesen15. Chen, Z.; Wang, M.; Zhang, M.; Huang, W.; Gu, H.; Xu, J. Post processing refined ECG delineation based on 1D-UNet. Biomed. Signal Process. Control 2023, 79 (Part 1), 104106. https://doi.org/10.1016/- j.bspc.2022.104106uk_UA
dc.relation.referencesen16. Belkadi, M.A.; Daamouche, A.; Melgani, F.A deep neural network approach to QRS detection using autoencoders. Expert Syst. Appl. 2021, 184, 115528. https://doi.org/10.1016/j.eswa.2021.115528uk_UA
dc.relation.referencesen17. Wang, Z.; Wang, J.; Chen, M.; Yang, W.; Fu, R. Deep Regression Network With Sequential Constraint for Wearable ECG Characteristic Point Location. IEEE Access 2023, 11, 63487–63495. https://doi.- org/10.1109/ACCESS.2023.3288700uk_UA
dc.relation.referencesen18. Karri, M.; Annavarapu, C.S.R. A real-time embedded system to detect QRS-complex and arrhythmia classification using LSTM through hybridized features. Expert Syst. Appl. 2023, 214, 119221. https://doi.- org/10.1016/j.eswa.2022.119221uk_UA
dc.relation.referencesen19. Lupenko, S. The problem of interpolation of the rhythm function of a cyclic function with a known zone structure. In Electronics and Managements Systems; National Aviation University: Kyiv, Ukraine, 2007; pp. 27–35. (In Ukrainian).uk_UA
dc.relation.referencesen20. Lytvynenko, I.; Lupenko, S.; Onyskiv, P. Method of Evaluation of Dis crete Rhythm Structure of Cyclic Signals with the Help of Adaptive In terpolation. In Proceedings of the 2020 IEEE 15th International Scientific and Technical Conference on Computer Sciences and Information Tech nologies, CSIT 2020, Zbarazh, Ukraine, 23–26 September 2020; pp. 155–158.uk_UA
dc.relation.referencesen21. Lupenko, S. Peculiarities of Discretization of Cyclic Functions. In Mea suring and Computing Technics in Production Processes; Khmelnytsky University: Khmelnytsky, Ukraine, 2006; Volume 1, pp. 59–65. (In Ukrainian).uk_UA
dc.relation.referencesen21. Lytvynenko I. Modeling and Methods of Statistical Processing of a Vector Rhytmocardiosignal / Lytvynenko, I., Lupenko, S., Onyskiv, P., Zozulia, A.//Open Bioinformatics Journal, 2021, 14(1), pp. 73–86.uk_UA
dc.relation.referencesen23. Lupenko, S. Scale transformation operator in the tasks of modeling and analysis of cyclic signals. Sci. J. Ternopil State Tech. Univ. 2007, 12, 141–152. (In Ukrainian).uk_UA
dc.relation.referencesen24. Lupenko, S.; Butsiy, R. Express Method of Biometric Person Authentication Based on One Cycle of the ECG Signal. Sci. J. TNTU (Tern.), 2024, 113, 100–110. doi:https://doi.org/10.33108/visnyk_tntu 2024.01.100uk_UA
dc.relation.referencesen25.Vakulenko, D., Vakulenko, L., Zaspa, H., Lupenko, S., Stetsyuk, P., Stovba, V. Components of Oranta-AO software expert system for innovative application of blood pressure monitors. Journal of Reliable Intelligent Environments, 2022. https://doi.org/10.1007/s40860-022- 00191-4.uk_UA
dc.relation.referencesen26. García-González, M.A.; Argelagós-Palau, A. Data from: Combined measurement of ECG, breathing, and Seismocardiograms. PhysioNet 2013, 101, e215–e220. https://doi.org/10.13026/C2KW23uk_UA
dc.relation.referencesen27. Lupenko, S.; Shcherbak, L. Constructive mathematical model of cardiac signals based on linear periodic random processes and fields. Sci. J. Ternopil State Tech. Univ. 2000, 5, 101–110. (In Ukrainian).uk_UA
dc.relation.referencesen28. Haritopoulos, M.; Roussel, J.; Capdessus, C.; Nandi, A.K. Cyclosta tionarity-Based Estimation of the Foetus Subspace Dimension from ECG Recordings. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2014; pp. 726–729.uk_UA
dc.relation.referencesen29. Mihandoost, S.; Chehel Amirani, M. Cyclic spectral analysis of electrocardiogram signals based on GARCH model. Biomed. Signal Process. Control 2017, 31, 79–88.uk_UA
dc.relation.referencesen30. Zhang, M.; Haritopoulos, M.; Nandi, A.K. Fetal ECG subspace estimation based on cyclostationarity. In Proceedings of the 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 28 August–2 September 2016; pp. 2060–2064.uk_UA
dc.relation.referencesen31. Chang, Y.-C. Deep-Learning Estimators for the Hurst Exponent of Two Dimensional Fractional Brownian Motion. Fractal Fract. 2024, 8, 50. https://doi.org/10.3390/fractalfract8010050uk_UA
dc.relation.referencesen32. Ran, J.; Ostoja-Starzewski, M.; Povstenko, Y. Mach Fronts in Random Media with Fractal and Hurst Effects. Fractal Fract. 2021, 5, 229. https://doi.org/10.3390/fractalfract5040229uk_UA
dc.relation.referencesen33. Park, G. Analysis of authentication technology using bio-signals and con struction of bio-signal database. Korea Internet and Security Agency, Technical Report, Jan. 2016.uk_UA
dc.relation.referencesen34. Kim, J.; Park, G. Personal authentication technology using biosignals and DB construction. TTA J. 2016, 165, 41–46.uk_UA
dc.relation.referencesen35. Vural, E.; Simske, S.; Schuckers, S. Verification of individuals from ac celerometer measures of cardiac chest movements. In Proceedings of the 2013 International Conference of the BIOSIG, Darmstadt, Germany, 5–6 September 2013; pp. 1–8, INSPEC Accession Number: 13826572.uk_UA
dc.relation.referencesen36. Guo, H.; Cao, X.; Wu, J.; Tang, J. Ballistocardiogram-based person iden tification using correlation analysis. In Proceedings of the World Con gress on Medical Physics and Biomedical Engineering, Beijing, China, 26–31 May 2012; Volume 39, pp. 570–573. doi:https://doi.org/- 10.1007/-978-3-642-29305-4_149uk_UA
dc.relation.referencesen37. Plataniotis, K.; Hatzinaks, D.; Lee, J. ECG biometric recognition without fiducial detection. In Proceedings of the Biometrics Symposium (BSYM '06), Baltimore, MD, USA, 19–21 September 2006; pp. 6–11. doi: https://doi.org/10.1109/BCC.2006.4341628uk_UA
dc.relation.referencesen38. Wubbeler, G.; Stavridis, M.; Kreiseler, D.; Bousseljot, R.; Elster, C. Ver ification of humans using the electrocardiogram. Pattern Recognit. Lett.uk_UA
dc.relation.referencesen39. Pereira, T.M.C.; Conceição, R.C.; Sebastião, R. Initial Study Using Elec trocardiogram for Authentication and Identification. Sensors 2022, 22, 2202. doi:https://doi.org/10.3390/s22062202uk_UA
dc.relation.referencesen40. Pawuś, D.; Paszkiel, S. The Application of Integration of EEG Signals for Authorial Classification Algorithms in Implementation for a Mobile Robot Control Using Movement Imagery–Pilot Study. Appl. Sci. 2022, 12, 2161. https://doi.org/10.3390/app12042161.uk_UA
dc.relation.referencesen41. Xu, B.; Li, W.; Liu, D.; Zhang, K.; Miao, M.; Xu, G.; Song, A. Continu ous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroen cephalogram, Computer Vision, and Eye Tracking. Mathematics 2022, 10, 618. https://doi.org/10.3390/math10040618.uk_UA
dc.relation.referencesen42. Murphy, D.P.; Bai, O.; Gorgey, A.S.; Fox, J.; Lovegreen, W.T.; Burkhardt, B. W.; Atri, R.; Marquez, J. S.; Li, Q.; Fei, D. -Y. Electroen cephalogram-Based Brain–Computer Interface and Lower-Limb Pros thesis Control: A Case Study. Frontiers in Neurology. 2017, 8. https://doi.org/10.3389/fneur.2017.00696.uk_UA
dc.relation.referencesen43. Alisson, C.; Víctor, A.; Francis, R. L.; Enrique, P.; Diego P. -O. BCI System using a Novel processing Technique Based on Electrodes Selec tion for Hand Prosthesis Control. Escuela Superior Politécnica del Lito ral, IFAC-PapersOnLine. 2021, 54, 364–369. https://doi.org/-10.1016/- j.ifacol.2021.10.283.uk_UA
dc.relation.referencesen44. Rosca, S. D.; Leba, M. Design of a brain-controlled video game based on a BCI system. In MATEC Web of Conferences; EDP Sciences: Les Ulis. 2019, 290, 01019. https://doi.org/10.1051/matecconf/201929001019.uk_UA
dc.relation.referencesen45. Ahn, M.; Lee, M.; Choi, J.; Jun, S.C. A Review of Brain-Computer In terface Games and an Opinion Survey from Researchers, Developers and Users. Sensors. 2014, 14, 14601–14633. https://doi.org/10.3390/- s140814601.uk_UA
dc.relation.referencesen46. Pawuś, D.; Paszkiel, S. BCI Wheelchair Control Using Expert System Classifying EEG Signals Based on Power Spectrum Estimation and Nervous Tics Detection. Appl. Sci. 2022, 12, 10385. https://doi.org/- 10.3390/app122010385.uk_UA
dc.relation.referencesen47. Paszkiel, S.; Rojek, R.; Lei, N.; Castro, M.A. A Pilot Study of Game De sign in the Unity Environment as an Example of the Use of Neurogaming on the Basis of Brain–Computer Interface Technology to Improve Con centration. NeuroSci 2021, 2, 109–119. https://doi.org/-10.3390/neuro sci2020007uk_UA
dc.relation.referencesen48. Zając, M.; Paszkiel, S. Using Brain-Computer Interface Technology for Modeling 3D Objects in Blender Software. Journal of Automation, Mo bile Robotics and Intelligent Systems 2021, 14, 18–24. https://doi.- org/10.14313/JAMRIS/4-2020/40uk_UA
dc.relation.referencesen49. Paszkiel, S. Using Neural Networks for Classification of the Changes in the EEG Signal Based on Facial Expressions. In: Analysis and Classifi cation of EEG Signals for Brain–Computer Interfaces. Studies in Com putational Intelligence. Springer 2020, 852, 41–69. https://doi.- org/10.1007/978-3-030-30581-9_7uk_UA
dc.relation.referencesen50. Paszkiel, S.; Dobrakowski, P. The Use of Multilayer ConvNets for the Purposes of Motor Imagery Classification. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques. Advances in Intel ligent Systems and Computing. Springer 2021, 1390, 10–19. https://doi.org/10.1007/978-3-030-74893-7_2uk_UA
dc.relation.referencesen51. Sarmiento, L.C.; Villamizar, S.; López, O.; Collazos, A.C.; Sarmiento, J.; Rodríguez, J.B. Recognition of EEG Signals from Imagined Vowels Using Deep Learning Methods. Sensors 2021, 21, 6503. https://- doi.org/10.3390/s21196503uk_UA
dc.relation.referencesen52. Lupenko, S.; Butsiy, R.; Volyanyk, O.; Stadnyk, N. Advanced Signal Processing and Classification of EEG Patterns in Neurointerface Systems. In Proceedings of the 3rd International Workshop on Information Technologies: Theoretical and Applied Problems (ITTAP 2023), Ternopil, Ukraine, Opole, Poland, 22–24 November 2023, 3628, 156–164.uk_UA
dc.relation.referencesen53. Butsiy, R.; Lupenko, S. Comparison of Modern Methods of Classi fication of EEG Patterns for Neurointerface Systems. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds) Proceedings of Seventh International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems; Springer, Singapore, 2022, 465, 345– 354. doi:https: //doi.org/10.1007/978-981-19-2397-5_32uk_UA
dc.relation.referencesen54. Haubenberger, Dietrich, and Mark Hallett. "Essential tremor." New England Journal of Medicine 378.19 (2018): 1802-1810.uk_UA
dc.relation.referencesen55. Legrand A.P., Rivals I., Richard A., Apartis E., Roze E., Vidailhet M., Meunier S., Hainque E. New insight in spiral drawing analysis methods – Application to action tremor quantification. J Clinical Neuro physiology, 128 (10) (2017): 1823–1834.uk_UA
dc.relation.referencesen56. Szumilas, Mateusz, et al. "A multimodal approach to the quantification of kinetic tremor in Parkinson’s disease." Sensors 20.1 (2019): 184uk_UA
dc.relation.referencesen57. J.F. Cavanagh, P. Kumar, A.A. Mueller, S.P. Richardson, and A. Mueen, “Diminished EEG habituation to novel events effectively classifies Parkinson’s patients,” Clinical Neurophysiology, vol. 129(2), (2018), 409–418. doi: 10.1016/j.clinph.2017.11.023.uk_UA
dc.relation.referencesen58. Roth, Navit, Orit Braun-Benyamin, and Sara Rosenblum. "Drawing Direction Effect on a Task’s Performance Characteristics among People with Essential Tremor." Sensors 21.17 (2021): 5814.uk_UA
dc.relation.referencesen59. Kim, Christine Y., et al. "Repeated spiral drawings in essential tremor: a possible limb-based measure of motor learning." The Cerebellum 18 (2019): 178–187.uk_UA
dc.relation.referencesen60. Gil-Martín, Manuel, Juan Manuel Montero, and Rubén San-Segundo. "Parkinson’s disease detection from drawing movements using convolu tional neural networks." Electronics 8.8 (2019): 907uk_UA
dc.relation.referencesen61. Khimich O.M.,Petryk M.R., Mykhalyk D.M., Boyko I.V., Popov O.V., Sydoruk V.A. Methods of mathematical modeling and identification of complex processes and systems on the basis of high-performance calculations. Kyiv: National Academy of Sciences of Ukraine. Institute V.M. Gluschkov of Cybernetic, 2019, 176 p. (Scientific monograph in Ukrainian)uk_UA
dc.relation.referencesen62. Mudryk I., Petryk M. High-performance modeling, identification and analysis of heterogeneous abnormal neurological movement’s para meters based on cognitive neuro feedback-influences. Innovative Solutions in Modern Science. 2021. New York: TK Meganom LLC. V1(45). 2021, 235–249. Doi: 10.26886/2414-634X.1(45)2021.16.uk_UA
dc.relation.referencesen63. M. Petryk, M. Bachynskyi, V.Brevus, I.Mudryk, D. Mykhalyk. Analysis technology of neurological movements considering cognitive feedback influences of cerebral cortex signals. Proceedings of the 2nd International Workshop on Information Technologies: Theoretical and Applied Problems (ITTAP 2022). Ternopil, Ukraine, 22–24 November 2022, CEUR Workshop Proceedings, 2022, 45–54.uk_UA
dc.relation.referencesen64.] Lenyuk M., Petryk M. Integral Fourier, Bessel transformations with spectral parameters in problems of mathematical modeling in heterogeneous media. Кyiv: Naukova Dumka, 2000, 3726 p. ISBN 966- 00-0649-7. (Scientific monograph in Ukrainian).uk_UA
dc.relation.referencesen65. Bachynskyi, M., Petryk, M., Brevus, V., Mudryk, I., Glova, B. 3D-hybrid mathematical model for analysis of abnormal neurological movements for the purposes of diagnosis and treatment of limb tremor. 3rd Interna tional Workshop on Information Technologies: Theoretical and Applied Problems, ITTAP 2023. Ternopil. 22–23 November 2023. CEUR Workshop Proceedings, 2023, 183–196.uk_UA
dc.relation.referencesen66. Ross S. L. Differential Equations, 3rd Ed. Wiley. 2008, 816 p.uk_UA
dc.relation.referencesen67. G. Doetsch Handbuch der Laplace-Transformation: Band I: Theorie der Laplace-Transformation. Springer-Verlang, Basel, 2013.uk_UA
dc.relation.referencesen68. Staines, J. The Heaviside Operational Calculus: The Laplace Transform for Electrical Engineers. Amazon, CreateSpace Independent Publishing Platform, Scotts Valley, California, 2013.uk_UA
dc.relation.referencesen69. Gray, A. and Mathews, G. B. A Treatise on Bessel Functions and Their Applications to Physics, 2nd ed. Ann Abor, Michigan: Scolary Pub. University of Michigan, 2008uk_UA
dc.relation.referencesen70. Euro 5 and Euro 6 standards: reduction of pollutant emissions from light vehicles. Available at: europa.eu/legislation_summaries/environment/ air_pollution/l28186_es.htm (May 5, 2010)uk_UA
dc.relation.referencesen71. Puertolas B., Navarro M.V., Lopez J.M., Murillo R., Mastral A.M., Garcia T. Modelling the heat and mass transfers of propane onto a ZSM 5 zeolite. Separation and Purification Technology. 2012, 86,127-36.uk_UA
dc.relation.referencesen72. Feng, C., Jiaqiang, E., Han, W., Deng, Y., Zhang, B., Zhao, X., & Han, D. (2021). Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review. Renewable and Sustainable Energy Reviews, 144, 110954. https://doi.org/10.1016/- j.rser.2021.110954uk_UA
dc.relation.referencesen73. Qian, Z., Wei, L., Mingyue, W., & Guansheng, Q. (2021). Application of amine-modified porous materials for CO2 adsorption in mine confined spaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 127483. https://doi.org/10.1016/j.colsurfa.2021.127483uk_UA
dc.relation.referencesen74. Wang, Y., Wang, C., Wang, L., Wang, L., & Xiao, F.-S. (2021). Zeolite fixed metal nanoparticles: new perspective in catalysis. Accounts of Chemical Research, 54(11), 2579–2590. https://doi.org/10.1021/acs.- accounts.1c00074uk_UA
dc.relation.referencesen75. Sanchez-Varretti, F. O., Bulnes, F. M., & Ramirez-Pastor, A. J. (2019). Adsorption of interacting binary mixtures on heterogeneous surfaces: theory, Monte Carlo simulations and experimental results. Adsorption, 25(7), 1317–1328. https://doi.org/10.1007/s10450-019-00093-7uk_UA
dc.relation.referencesen76. Van Assche, T.R.C., Baron, G.V, & Denayer, J.F. M. (2018). An explicit multicomponent adsorption isotherm model: Accounting for the size effect for components with Langmuir adsorption behavior. Adsorption, 24(6), 517–530.https://doi.org/10.1007/s10450-018-9962-1uk_UA
dc.contributor.affiliationPolitechnika Opolskauk_UA
dc.coverage.countryPLuk_UA
�蝷箔����:Наукові публікації працівників кафедри програмної інженерії

��辣銝剔�﹝獢�:
獢�獢� ��膩 憭批���撘� 
COVER.jpg380,17 kBJPEG璉�閫�/撘��
Monograph_Opole_Politech_Petryk_2024.pdf383,98 kBAdobe PDF璉�閫�/撘��


�DSpace銝剜�������★��������雿��.

蝞∠�極�