霂瑞霂��撘����迨��辣:
http://elartu.tntu.edu.ua/handle/lib/46050
Title: | Виявлення шкідливих програм IoT |
Other Titles: | IoT Malware Detection |
Authors: | Гнатківський, Любомир Васильович Hnatkivskyi, Liubomyr |
Affiliation: | ТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра кібербезпеки, м. Тернопіль, Україна |
Bibliographic description (Ukraine): | Гнатківський Л. В. Виявлення шкідливих програм IoT : робота на здобуття кваліфікаційного ступеня бакалавра : спец. 125 - кібербезпека / наук. кер. М. А. Стадник. Тернопіль : Тернопільський національний технічний університет імені Івана Пулюя, 2024. 64 с. |
Issue Date: | 25-六月-2024 |
Date of entry: | 10-七月-2024 |
Country (code): | UA |
Place of the edition/event: | ТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Україна |
Supervisor: | Стадник, Марія Андріївна Stadnyk, Mariia |
Committee members: | Жаровський, Руслан Олегович Zharovskyi, Ruslan |
Keywords: | IoT XGBoost SVM AI шкідлива програма malware атака attack мережевий трафік network traffic |
Abstract: | Кваліфікаційна робота присвячена дослідженню методів виявлення шкідливих програм в IoT системі. Шкідливі програми і відповідні атаки на всю систему IoT можуть завдати колосальних збитків навіть для систем персонального користування. У роботі розглянуто сучасний стан розвиту IoT, узагальнена трьох рівнева архітектура IoT, можливі атаки на кожному з рівнів та ймовірні вразливості. У роботі представлено роль штучного інтелекту для виявлення загроз щодо системи IoT. Для виявлення шкідливих програм, що були інстальовані на пристрої системи IoT, і спричиняли аномалії у мережевому трафіку системи було використано алгоритми машинного навчання: XGBClassifier, SVC, GaussianNB. На основі порівняльного аналізу результатів класифікації найкращу якість класифікації (виявлення шкідливої програм чи атак) продемонстрував класифікатор XGBoost. Розроблений алгоритм машинного навчання може бути використаний в системах моніторингу мережевого трафіку критичних IoT систем. Результати кваліфікаційної роботи можуть бути використані для лабораторних робіт в процесі навчання студентів, що проходять курс “Методи та системи штучного інтелекту”. The qualification work is devoted to the research of methods of detecting malware in the IoT system. Malware and corresponding attacks on the entire IoT system can cause colossal damage even to personal use systems. The current state of IoT development, a generalized three-level IoT architecture, possible attacks at each of the levels, and probable vulnerabilities are considered in the thesis. The thesis presents the role of artificial intelligence in detecting threats to the IoT system. Machine learning algorithms were used to detect malware that were installed on IoT system devices and caused anomalies in the network traffic of the system: XGBClassifier, SVC, GaussianNB. Based on the comparative analysis of the classification results, the best classification quality (malware or attack detection) was demonstrated by the XGBoost classifier. The developed machine learning algorithm can be used in network traffic monitoring systems of critical IoT systems. The results of the qualification work can be used for laboratory work during the training of students taking the course “Methods and systems of artificial intelligence”. |
Description: | Виявлення шкідливих програм IoT // Кваліфікаційна робота ОР «Бакалавр» // Гнатківський Любомир Васильович // Тернопільський національний технічний університет імені Івана Пулюя, факультет комп’ютерно-інформаційних систем і програмної інженерії, кафедра кібербезпеки, група СБ-41 // Тернопіль, 2024 // С. 64, рис. – 12, табл. – 8 , кресл. – 23. |
Content: | ВСТУП 8 1 СУЧАСНИЙ СТАН ІНТЕРНЕТУ РЕЧЕЙ 10 1.1 ПОНЯТТЯ ІНТЕРНЕТУ РЕЧЕЙ (IOT) 10 1.2 АРХІТЕКТУРА IOT 13 1.3 КОМПОНЕНТИ IOT СИСТЕМИ. 14 2 ТИПИ АТАК НА IOT СИСТЕМУ ТА ВІДПОВІДНІ МЕТОДИ ЗАХИСТУ 21 2.1 ЦІЛІ БЕЗПЕКИ IOT 21 2.3 МЕТОДИ ЗАХИСТУ IOT ВІД МОЖЛИВИХ АТАК 27 2.4 РОЛЬ МАШИННОГО НАВЧАННЯ (AI) В СИСТЕМАХ IOT 31 3 ВИЯВЛЕННЯ ШКІДЛИВИХ ПРОГРАМ В МЕРЕЖІ IOT З ВИКОРИСТАННЯМ ШТУЧНОГО ІНТЕЛЕКТУ 39 3.1 ОГЛЯД НАБОРУ ДАНИХ IOT-23 39 3.2 АЛГОРИТМ ВИЯВЛЕННЯ ШКІДЛИВИХ ПРОГРАМ В МЕРЕЖІ IOT З ВИКОРИСТАННЯМ МЕТОДІВ AI 43 3.3 ПОПЕРЕДНЯ ОБРОБКА ТА ЗМЕНШЕННЯ РОЗМІРНОСТІ ДАНИХ 45 3.4 ЗАСТОСУВАННЯ МОДЕЛЕЙ SVM, NB, XGBOOST 49 4 БЕЗПЕКА ЖИТТЄДІЯЛЬНОСТІ, ОСНОВИ ОХОРОНИ ПРАЦІ 54 4.1 ДОЛІКАРСЬКА ДОПОМОГА ПРИ ХАРЧОВИХ ОТРУЄННЯХ 54 4.2 ПРОВЕДЕННЯ ІНСТРУКТАЖІВ З ОХОРОНИ ПРАЦІ 56 ВИСНОВКИ 61 СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ 63 |
URI: | http://elartu.tntu.edu.ua/handle/lib/46050 |
Copyright owner: | © Гнатківський Любомир Васильович, 2024 |
References (Ukraine): | 1. B. Mazon-Olivo, “Internet of Things: State-of-the-art, Computing Paradigms and Reference Architectures”, IEEE Latin America Transactions 20(1):49-63 2. P. Fremantle and P. Scott, “A security survey of middleware for the Internet of Things PrePrints,” 2015. 3. IoT connections worldwide 2022-2033 | Statista. Statista. URL: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (дата звернення: 17.06.2024). 4. Бекер, І., Тимощук, В., Маслянка, Т., & Тимощук, Д. (2023). МЕТОДИКА ЗАХИСТУ ВІД ПОВІЛЬНИХ ТА ШВИДКИХ BRUTE-FORCE АТАК НА IMAP СЕРВЕР. Матеріали конференцій МНЛ, (17 листопада 2023 р., м. Львів), 275-276. 5. Abdul-Ghani, H. A., & Konstantas, “A Comprehensive Study of Security and Privacy Guidelines, Threats, and Countermeasures: An IoT Perspective”. Journal of Sensor and Actuator Networks, 8(2), p.22. 6. Ванца, В., Тимощук, В., Стебельський, М., & Тимощук, Д. (2023). МЕТОДИ МІНІМІЗАЦІЇ ВПЛИВУ SLOWLORIS АТАК НА ВЕБСЕРВЕР. Матеріали конференцій МЦНД, (03.11. 2023; Суми, Україна), 119-120. 7. B. Aziz, “A formal model and analysis of an IoT protocol,” Ad Hoc Networks, pp. 1–9, 2015 8. Іваночко, Н., Тимощук, В., Букатка, С., & Тимощук, Д. (2023). РОЗРОБКА ТА ВПРОВАДЖЕННЯ ЗАХОДІВ ЗАХИСТУ ВІД UDP FLOOD АТАК НА DNS СЕРВЕР. Матеріали конференцій МНЛ, (3 листопада 2023 р., м. Вінниця), 177-178. 9. S. A. Alvi, B. Afzal, G. A. Shah, L. Atzori, and W. Mahmood, “Ad Hoc Networks Internet of multimedia things¬: Vision and challenges,” Ad Hoc Networks, vol. 33, pp. 87–111, 2015 10. P. Persson and O. Angelsmark, “Calvin – Merging Cloud and IoT,” Procedia - Procedia Comput. Sci., vol. 52, pp. 210–217, 2015. 11. Тимощук, В., Долінський, А., & Тимощук, Д. (2024). СИСТЕМА ЗМЕНШЕННЯ ВПЛИВУ DOS-АТАК НА ОСНОВІ MIKROTIK. Матеріали конференцій МЦНД, (17.05. 2024; Ужгород, Україна), 198-200. https://doi.org/10.62731/mcnd-17.05.2024.008 12. SonicWall Cyber Threat report | SonicWall. SonicWall. URL: https://www.sonicwall.com/medialibrary/en/white-paper/2024-cyber-threat-report.pdf (дата звернення: 17.06.2024). 13. Тимощук , В., Долінський , А., & Тимощук , Д. (2024). ВИКОРИСТАННЯ ТЕХНІКИ ДИНАМІЧНОГО ВІДКРИВАННЯ МЕРЕЖЕВИХ ПОРТІВ ДЛЯ ПІДВИЩЕННЯ БЕЗПЕКИ СЕРВЕРІВ. Collection of Scientific Papers «ΛΌГOΣ», (May 24, 2024; Zurich, Switzerland), 233–234. https://doi.org/10.36074/logos-24.05.2024.051 14. The Role of Artificial Intelligence in IoT and OT Security. CSO Online. URL: https://www.csoonline.com/article/566503/the-role-of-artificial-intelligence-in-iot-and-ot-security.html (дата звернення: 17.06.2024). 15. M. Kuzlu, C. Fair, O. Guler, “Role of artificial Intelligence in the internet of things”, Discover internet of things, 1:7, 2021, pp. 3-12. 16. N. Zagorodna, M. Stadnyk, B. Lypa, M.Gavrylov, R. Kozak, “Network Attack Detection Using Machine Learning Methods”, Proceeding of 3rd International Conference CNDGS’2022, 2022. PP. 55-61. 17. S. Zeadally, E. Adi, Z. Baig, I. Khan, “Harnessing artifcial intelligence capabilities to improve cybersecurity”, IEEE Access. 2020;8:23817–37. 18. Sebastian Garcia, Agustin Parmisano, & Maria Jose Erquiaga.. IoT-23: A labeled dataset with malicious and benign IoT network traffic (Version 1.0.0) [Data set]. Zenodo. 19 Skorenkyy, Y., Kozak, R., Zagorodna, N., Kramar, O., & Baran, I. (2021, March). Use of augmented reality-enabled prototyping of cyber-physical systems for improving cyber-security education. In Journal of Physics: Conference Series (Vol. 1840, No. 1, p. 012026). IOP Publishing. 20 Zagorodna N., Skorenkyy Y., Kunanets N., Baran I., Stadnyk M (2022), Augmented Reality Enhanced Learning Tools Development for Cybersecurity Major, CEUR Workshop Proceedings, 3309 , pp. 25-32. |
Content type: | Bachelor Thesis |
�蝷箔����: | 125 — Кібербезпека (бакалаври) |
��辣銝剔�﹝獢�:
獢�獢� | ��膩 | 憭批�� | �撘� | |
---|---|---|---|---|
Avtorsyka_dovidka_Гнатківський.doc | 35,5 kB | Microsoft Word | 璉�閫�/撘�� | |
КР_бакалавр_СБ_41_Гнатківський ЛВ.pdf | 1,48 MB | Adobe PDF | 璉�閫�/撘�� |
�DSpace銝剜�������★��������雿��.
蝞∠�極�