Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/44848
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.advisorДуда, Олексій Михайлович-
dc.contributor.authorДерев’янко, Володимир Сергійович-
dc.contributor.authorDerevianko, Volodymyr Sergiyovych-
dc.date.accessioned2024-06-03T10:49:52Z-
dc.date.available2024-06-03T10:49:52Z-
dc.date.issued2024-05-29-
dc.date.submitted2024-05-15-
dc.identifier.citationДерев’янко В.С. Методи та засоби інформаційно-технологічного супроводу процесів теплопостачання ”розумних міст”: кваліфікаційна робота на здобуття освітнього ступеня магістр за спеціальністю „122 – комп’ютерні науки“ / В.С. Дерев’янко – Тернопіль : ТНТУ, 2024. – 83 с.uk_UA
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/44848-
dc.description.abstractКваліфікаційна робота присв’ячена аналізу інформаційно-технологічного супроводу систем теплопостачання «розумних міст» В першому розділі кваліфікаційної роботи описані стан та перспективи дослідження систем теплопостачання «розумних міст». Висвітлено компоненти систем теплопостачання «розумних соціополісів». Розглянуто характеристики систем теплопостачання «розумних соціополісів». Проаналізовано дослідження в галузі «розумних» систем теплопостачання. В другому розділі кваліфікаційної роботи описано мережевий аналіз «розумних» систем теплопостачання. Досліджено «розумні» енергетичні системи та соціальні центричні «розумні» мережі. Подано інформаційні мережі «розумних громад», «розумних міст» та «розумних соціополісів». В третьому розділі кваліфікаційної роботи описано взаємозв’язок енергетичних моделей в системах теплопостачання. Проаналізовано топологічний опис та показники енергетичних спільнот. Описано взаємодію та функціонування теплових енергетичних спільнот. Об’єкт дослідження: інформаційно-технологічний супровід процесів теплопостачання «розумних міст». Предмет дослідження: методи та засоби інформаційно-технологічного супроводу та оптимізації процесів теплопостачання «розумних міст» з урахуванням принципів енергоефективності та екологічності. Thesis is devoted to the development of an information technology support of heat supply systems of "smart cities" The first section of the qualification work describes the state and prospects of research into heat supply systems of "smart cities". The components of heat supply systems of "smart social cities" are highlighted. The characteristics of heat supply systems of "smart social cities" are considered. Research in the field of "smart" heat supply systems is analyzed. The second section of the qualification work describes the network analysis of "smart" heat supply systems. "Smart" energy systems and social centric "smart" networks have been studied. Information networks of "smart communities", "smart cities" and "smart social cities " are presented. In the third section of the qualification work, the interrelationship of energy models in heat supply systems is described. The topological description and indicators of energy communities were analyzed. Interaction and functioning of thermal energy communities was carried out. The object of the study: information and technological support of the heat supply processes of "smart cities". Research subject: methods and means of information technology support and optimization of heat supply processes of "smart cities" taking into account the principles of energy efficiency and environmental friendliness.uk_UA
dc.description.tableofcontentsВСТУП 8 1 СИСТЕМИ ТЕПЛОПОСТАЧАННЯ «РОЗУМНИХ МІСТ», СТАН ТА ПЕРСПЕКТИВИ ДОСЛІДЖЕННЯ 10 1.1 Дослідження та мета 10 1.2 Промисловий розвиток системи теплопостачання «розумних міст» 12 1.3 Компоненти систем теплопостачання «розумних соціополісів» 14 1.4 Характеристика систем теплопостачання «розумних соціополісів» 15 1.5 Сучасні дослідження в галузі «розумних» систем теплопостачання 23 1.6 Висновок до першого розділу 27 2 МЕРЕЖЕВИЙ АНАЛІЗ КОМПОНЕНТІВ «РОЗУМНИХ» СИСТЕМ ТЕПЛОПОСТАЧАННЯ 28 2.1 «Розумні» енергетичні мережі 28 2.2 Інформаційні мережі «розумних громад», «розумних міст» та «розумних регіонів» 32 2.3 Соціально центричні «розумні» мережі 33 2.4 Формування зв'язків складних теплових мереж різних типів 36 2.5 Теплові та енергетичні мережі «розумних міст» 37 2.6 Самоорганізовані мережі в системах теплопостачання «розумних громад», «розумних міст» та «розумних регіонів» 38 2.7 Висновок до другого розділу 45 3 ВЗАЄМОЗВ’ЯЗОК ЕНЕРГЕТИЧНИХ МОДЕЛЕЙ В СИСТЕМАХ ТЕПЛОПОСТАЧАННЯ 46 3.1 Топологічний опис та показники теплоенергетичних спільнот 46 3.2 Взаємодія та функціонування теплових енергетичних спільнот 54 3.3 Висновок до третього розділу 59 4 ОХОРОНА ПРАЦІ ТА БЕЗПЕКА В НАДЗВИЧАЙНИХ СИТУАЦІЯХ 60 4.1 Синдром професійного вигорання в ІТ 60 4.2 Організація оповіщення і зв’язку у надзвичайних ситуаціях техногенного та природного характеру 62 4.3 Висновок до четвертого розділу 64 ВИСНОВКИ 65 ПЕРЕЛІК ДЖЕРЕЛ 67 ДОДАТКИuk_UA
dc.language.isoukuk_UA
dc.subjectрозумні містаuk_UA
dc.subjectsmart citiesuk_UA
dc.subjectрозумні соціополісиuk_UA
dc.subjectsmart social citiesuk_UA
dc.subjectthermal energyuk_UA
dc.subjectтеплова енергіяuk_UA
dc.subjectсистеми теплопостачанняuk_UA
dc.subjectheat supply systemsuk_UA
dc.subject«розумні» енергетичні мережіuk_UA
dc.subjectenergy self-organizationuk_UA
dc.subjectсамоорганізовані мережі в системах теплопостачанняuk_UA
dc.subjectself-organized networks in heat supply systemsuk_UA
dc.titleМетоди та засоби інформаційно-технологічного супроводу процесів теплопостачання ”розумних міст”uk_UA
dc.title.alternativeMethods and means of information and technological support of processes of heat supply in "Smart cities"uk_UA
dc.typeMaster Thesisuk_UA
dc.rights.holder© Дерев’янко Володимир Сергійович, 2024uk_UA
dc.contributor.committeeMemberТиш, Євгенія Володимирівна-
dc.coverage.placenameТНТУ ім. І.Пулюя, ФІС, м. Тернопіль, Українаuk_UA
dc.subject.udc004.9uk_UA
dc.relation.references1 Chen, S., Kharrazi, A., Liang, S., Fath, B., Lenzen, M., Yan, J., 2020. Advanced approaches and applications of energy footprints toward the promotion of global sustainability. Appl. Energy 261, 114415.uk_UA
dc.relation.references2 Zhu, Q., Leibowicz, B.D., 2020. Vehicle efficiency improvements, urban form, and energy use impacts. Cities 97, 102486.uk_UA
dc.relation.references3 Liu, S., Huang, S., Chi, Y., Feng, S., Li, Y., Sun, Q., 2020b. Three-level network analysis of the North American natural gas price: A multiscale perspective. Int. Rev. Financ. Anal. 67, 101420.uk_UA
dc.relation.references4 Zhao, P., Diao, J., Li, S., 2017. The influence of urban structure on individual transport energy consumption in China’s growing cities. Habitat Int. 66, 95–105.uk_UA
dc.relation.references5 Gupta, M., Bandyopadhyay, K.R., Singh, S.K., 2019. Measuring effectiveness of carbon tax on Indian road passenger transport: A system dynamics approach. Energy Econ. 81, 341–354.uk_UA
dc.relation.references6 Sun, L., Wang, S., Liu, S., Yao, L., Luo, W., Shukla, A., 2018b. A completive research on the feasibility and adaptation of shared transportation in mega-cities–A case study in Beijing. Appl. Energy 230, 1014–1033.uk_UA
dc.relation.references7 Hong, B., Zhang, W., Zhou, Y., Chen, J., Xiang, Y., Mu, Y., 2018. Energy- internet-oriented microgrid energy management system architecture and its application in China. Appl. Energy 228, 2153–2164.uk_UA
dc.relation.references8 Bačeković, I., Østergaard, P.A., 2018. Local smart energy systems and cross-system integration. Energy 151, 812–825.uk_UA
dc.relation.references9 Lin, W., Jin, X., Mu, Y., Jia, H., Xu, X., Yu, X., Zhao, B., 2018. A two-stage multi- objective scheduling method for integrated community energy system. Appl. Energy 216, 428–441.uk_UA
dc.relation.references10 Wang, S.J., Moriarty, P., 2019. Energy savings from smart cities: A critical analysis. Energy Proc. 158, 3271–3276.uk_UA
dc.relation.references11 Thellufsen, J.Z., Lund, H., Sorknæs, P., Østergaard, P., Chang, M., Drysdale, D., Nielsen, S., Djørup, S., Sperling, K., 2020. Smart energy cities in a 100% renewable energy context. Renew. Sustain. Energy Rev. 129, 109922.uk_UA
dc.relation.references12 Sun, H., Guo, Q., Zhang, B., Wu, W., Wang, B., Shen, X., Wang, J., 2018a. Integrated energy management system: concept, design, and demonstration in China. IEEE Electr. Mag. 6 (2), 42–50.uk_UA
dc.relation.references13 Duda, O., Kunanets, N., Martsenko, S., Matsiuk, O., Pasichnyk, V., Building secure Urban information systems based on IoT technologies. CEUR Workshop Proceedings 2623, pp. 317-328. 2020.uk_UA
dc.relation.references14 Sharma, M., Joshi, S., Kannan, D., Govindan, K., Singh, R., Purohit, H., 2020. Internet of things (IoT) adoption barriers of smart cities’ waste management: An Indian context. J. Clean. Prod. 270, 122047.uk_UA
dc.relation.references15 Використання систем інтернет речей для контролю параметрів кліматичних умов житлових приміщень / Р. Золотий, Д. Батожний, Д. Стухляк, В. Наумов, В. Дерев’янко // ІМСТ, 11-12 грудня 2019 року. – Т. : ТНТУ, 2019. – С. 7. – (Математичне моделювання).uk_UA
dc.relation.references16 Ahad, M.A., Paiva, S., Tripathi, G., Feroz, N., 2020. Enabling technologies and sustainable smart cities. Sustain. Cities Soc. 61, 102301.uk_UA
dc.relation.references17 Hu, Y., Wang, Z., Li, X., 2020b. Impact of policies on electric vehicle diffusion: An evolutionary game of small world network analysis. J. Clean. Prod. 265, 121703.uk_UA
dc.relation.references18 Chang, X., Xu, Y., Gu, W., Sun, H., Chow, M.-Y., Yi, Z., 2020. Accelerated distributed hybrid stochastic/robust energy management of smart grids. IEEE T. Ind. Inform. 17 (8), 5335–5347.uk_UA
dc.relation.references19 Xie, S., Hu, Z., Wang, J., Chen, Y., 2020. The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks. Appl. Energy 269, 115006.uk_UA
dc.relation.references20 Algieri, A., Morrone, P., Perrone, D., Bova, S., Castiglione, T., 2020. Analy- sis of multi-source energy system for small-scale domestic applications. Integration of biodiesel, solar and wind energy. Energy Rep. 6, 652–659.uk_UA
dc.relation.references21 Shi, J., Li, H., Guan, J., Sun, X., Guan, Q., Liu, X., 2017. Evolutionary features of global embodied energy flow between sectors: A complex network approach. Energy 140, 395–405.uk_UA
dc.relation.references22 Ding, Y., Xu, Q., Yang, B., 2020. Optimal configuration of hybrid energy storage in integrated energy system. Energy Rep. 6, 739–744.uk_UA
dc.relation.references23 Wang, W.C., Zhang, Y., Li, Y., Liu, C.S., Han, S., 2020c. Vulnerability analysis of a natural gas pipeline network based on network flow. Int. J. Pres. Ves. Pip. 188, 104236.uk_UA
dc.relation.references24 Kumar, A., Sharma, S., Verma, A., 2019. Optimal sizing and multi-energy man- agement strategy for PV-biofuel-based off-grid systems. IET Smart Grid 3 (1), 83–97.uk_UA
dc.relation.references25 Sudol, P., 2009. Modelling and Analysis of Hydrogen-Based Wind Energy Trans- mission and Storage Systems: HyLink System At Totara Valley: A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Technology in Energy Management At Massey University. Massey University, Palmerston North, New Zealand, http://hdl.handle.net/10179/786.uk_UA
dc.relation.references26 Wu, J., Yan, J., Jia, H., Hatziargyriou, N., Djilali, N., Sun, H., 2016. Integrated energy systems. Appl. Energy 167, 155–157.uk_UA
dc.relation.references27 Cheng, L., Yu, T., 2018. Exploration and exploitation of new knowledge emergence to improve the collective intelligent decision-making level of web-of-cells with cyber–physical-social systems based on complex network modeling. IEEE Access 6, 74204–74239.uk_UA
dc.relation.references28 Вивчення стійкості до спрацювання епоксикомпозитних матеріалів / Р. З. Золотий, А. Г. Микитишин, Т. О. Маєвський, В. С. Дерев’янко // Матеріали міжнародної наукової конференції „Іван Пулюй: життя в ім’я науки та України“ (до 175-ліття від дня народження), 28-30 вересня 2020 року. – Т. : ФОП Паляниця В. А., 2020. – С. 66–67. – (Важливі аспекти практичного застосування здобутків сучасної науки і новітніх технологій).uk_UA
dc.relation.references29 Meje, K., Bokopane, L., Kusakana, K., Siti, M., 2020. Optimal power dispatch in a multisource system using fuzzy logic control. Energy Rep. 6, 1443–1449.uk_UA
dc.relation.references30 Song, K., Anderson, K., Lee, S.H., 2020. An energy-cyber–physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups. Appl. Energy 260, 114237.uk_UA
dc.relation.references31 Zhang, G., Zhang, F., Meng, K., Zhang, X., Dong, Z.Y., 2020d. A fixed-point based distributed method for energy flow calculation in multi-energy systems. IEEE T. Sustain. Energy 11 (4), 2567–2580.uk_UA
dc.relation.references32 Yang, W., Liu, W., Chung, C.Y., Wen, F., 2019. Coordinated planning strategy for integrated energy systems in a district energy sector. IEEE T. Sustain. Energy 11 (3), 1807–1819.uk_UA
dc.relation.references33 Yu, X., Xue, Y., 2016. Smart grids: A cyber–physical systems perspective. Proc. IEEE 104 (5), 1058–1070.uk_UA
dc.relation.references34 Zhang, D., Chan, C.C., Zhou, G.Y., 2018a. Enabling industrial internet of things (IIoT) towards an emerging smart energy system. Glob. Energy Interconnect. 1 (1), 39–47.uk_UA
dc.relation.references35 Li, M., Wang, Y., Jia, L., Cui, Y., 2020a. Risk propagation analysis of urban rail transit based on network model. Alex. Eng. J. 59 (3), 1319–1331.uk_UA
dc.relation.references36 Tabaa, M., Monteiro, F., Bensag, H., Dandache, A., 2020. Green industrial internet of things from a smart industry perspectives. Energy Rep. 6, 430–446.uk_UA
dc.relation.references37 Farahani, S.S., Bleeker, C., Wijk, A.van., Lukszo, Z., 2020. Hydrogen-based inte- grated energy and mobility system for a real-life office environment. Appl. Energy 264, 114695.uk_UA
dc.relation.references38 Soeiro, S., Dias, M.F., 2020. Community renewable energy: Benefits and drivers.uk_UA
dc.relation.references39 Liu, Z., Zhang, Y., Xu, W., Yang, X., Liu, Y., Jin, G., 2020e. Suitability and feasibility study on the application of groundwater source heat pump (GWSHP) system in residential buildings for different climate zones in China. Energy Rep. 6, 2587–2603.uk_UA
dc.relation.references40 Talebi, B., Haghighat, F., Tuohy, P., Mirzaei, P.A., 2018. Validation of a commu- nity district energy system model using field measured data. Energy 144, 694–706.uk_UA
dc.relation.references41 Feng, J.C., Zeng, X.L., Yu, Z., Bian, Y., Li, W.-C., Wang, Y., 2019. Decoupling and driving forces of industrial carbon emission in a coastal city of Zhuhai. China. Energy Rep. 5, 1589–1602.uk_UA
dc.relation.references42 Guo M., Xia M., Chen Q. A review of regional energy internet in smart city from the perspective of energy community. Energy Reports. 2022. Vol. 8. P. 161–182. URL: https://doi.org/10.1016/j.egyr.2021.11.286.uk_UA
dc.relation.references43 Zhou, Y., Shan, Y., Liu, G., Guan, D., 2018. Emissions and low-carbon develop- ment in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings. Appl. Energy 228, 1683–1692.uk_UA
dc.relation.references44 Дерев'янко В. Побудова чисельного розв’язку першої крайової задачі для ріняння теплопровідності / Дерев'янко В. // Ⅵ Міжнародна студентська науково-технічна конференція „Природничі та гуманітарні науки. Актуальні питання“, 27-28 квітня 2023. – Т. : ТНТУ, 2023. – С. 200–201. – (Математика та статистика).uk_UA
dc.relation.references45 Mohammed, N.A., Al-Bazi, A., 2021. Management of renewable energy production and distribution planning using agent-based modelling. Renew. Energy 164, 509–520.uk_UA
dc.relation.references46 Moradi-Sepahvand, M., Amraee, T., 2021. Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation. Appl. Energy 298, 117137.uk_UA
dc.relation.references47 Meng, Y., Zhou, R., Dinçer, H., Yüksel, S., Wang, C., 2021. Analysis of inventive problem-solving capacities for renewable energy storage investments. Energy Rep. 7, 4779–4791.uk_UA
dc.relation.references48 Hannan, M., Al-Shetwi, A., Begum, R., Ker, P., Mansor, M., Rahman, S., Dong, Z., Tiong, S., Mahlia, T., Muttaqi, K., 2021. Impact of renewable energy utilization and artificial intelligence in achieving sustainable development goals. Energy Rep. 7, 5359–5373.uk_UA
dc.relation.references49 Wu, Y., Zhang, X., Sun, H., 2021b. A multi-time-scale autonomous energy trading framework within distribution networks based on blockchain. Appl. Energy 287, 116560.uk_UA
dc.relation.references50 Wu, Y., Wu, Y., Guerrero, J.M., Vasquez, J.C., 2021a. A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system. Renew. Sustain. Energy Rev. 150, 111409.uk_UA
dc.relation.references51 Ren, H., Huang, H., Li, Q., Wu, Q., Yang, Y., 2020. Operation optimization of multi-participants in a regional energy system based on evolutionary game theory. Energy Rep. 6, 1041–1045.uk_UA
dc.relation.references52 Duda, O., et al, Selection of Effective Methods of Big Data Analytical Processing in Information Systems of Smart Cities. CEUR Workshop Proceedings 2631, pp. 68-78. 2020.uk_UA
dc.relation.references53 Yang, T., Guo, Q., Xu, L., Sun, H., 2021. Dynamic pricing for integrated energy- traffic systems from a cyber–physical-human perspective. Renew. Sustain. Energy Rev. 136, 110419.uk_UA
dc.relation.references54 Hermann, A., Jensen, T.V., Østergaard, J., Kazempour, J., 2021. A complementar- ity model for electric power transmission-distribution coordination under uncertainty. European J. Oper. Res. http://dx.doi.org/10.1016/j.ejor.2021.08. 018.uk_UA
dc.relation.references55 Zhuang, W., Zhou, S., Gu, W., Chen, X., 2021. Optimized dispatching of city-scale integrated energy system considering the flexibilities of city gas gate station and line packing. Appl. Energy 290, 116689.uk_UA
dc.relation.references56 Jurasz, J., Canales, F., Kies, A., Guezgouz, M., Beluco, A., 2020. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Solar Energy 195, 703–724.uk_UA
dc.relation.references57 Si, F., Wang, J., Han, Y., Zhao, Q., Han, P., Li, Y., 2018. Cost-efficient multi-energy management with flexible complementarity strategy for energy internet. Appl. Energy 231, 803–815.uk_UA
dc.relation.references58 Дерев’янко В. С. Спостереження та моделювання процесів теплопостачання в розумних будівлях / Дерев’янко В. С., Скалецький П. О., Кунанець Н. Е. // ІМСТТ, 13-14 грудня 2023 року. – Т. : ТНТУ, 2023. – С. 39–40. – (Інформаційні системи та технології, кібербезпека).uk_UA
dc.relation.references59 Huang, P., Lovati, M., Zhang, X., Bales, C., 2020a. A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered. Appl. Energy 268, 114983.uk_UA
dc.relation.references60 Mehrjerdi, Y.Z., Shafiee, M., 2021. A resilient and sustainable closed-loop supply chain using multiple sourcing and information sharing strategies. J. Clean. Prod. 289, 125141.uk_UA
dc.relation.references61 Ableitner, L., Tiefenbeck, V., Meeuw, A., Wörner, A., Fleisch, E., Wortmann, F., 2020. User behavior in a real-world peer-to-peer electricity market. Appl. Energyy 270, 115061.uk_UA
dc.relation.references62 Paiho, S., Kiljander, J., Sarala, R., Siikavirta, H., Kilkki, O., Bajpai, A., Duchon, M., Pahl, M.-O., Wüstrich, L., Lübben, C., 2021. Towards cross-commodity energy- sharing communities–A review of the market, regulatory, and technical situation. Renew. Sustain. Energy Rev. 151, 111568.uk_UA
dc.relation.references63 Дерев’янко В.С., Дуда О.М., Скалецький П.О. Енергетичні системи «розумних міст» для зменшення викидів парникових газів. Ужгород, Україна: 2 Міжнародна наукова конференція «теорія модернізації в контекстісучасної світової науки». 143-144.uk_UA
dc.relation.references64 Chen, L., Liu, N., Li, C., Zhang, S., Yan, X., 2021. Peer-to-peer energy sharing with dynamic network structures. Appl. Energy 291, 116831.uk_UA
dc.relation.references65 Guo, J., Zhang, P., Wu, D., Liu, Z., Ge, H., Zhang, S., Yang, X., 2021. A new col- laborative optimization method for a distributed energy system combining hybrid energy storage. Sustain. Cities Soc. 75, 103330.uk_UA
dc.relation.references66 Patel, A.K., Selvaganesh, L., Pandey, S.K., 2021. Energy and inertia of the eccentricity matrix of coalescence of graphs. Discrete Math. 344 (12), 112591.uk_UA
dc.relation.references67 Imtiaz, Z.B., Manzoor, A., Islam, S.ul., Judge, M.A., Choo, K.-K.R., Rodrigues, J.J., 2021. Discovering communities from disjoint complex networks using multi-layer ant colony optimization. Future Gener. Comput. Syst. 115, 659–670.uk_UA
dc.relation.references68 Dobson, S., Hutchison, D., Mauthe, A., Schaeffer-Filho, A., Smith, P., Ster- benz, J.P., 2019. Self-organization and resilience for networked systems: Design principles and open research issues. Proc. IEEE 107 (4), 819–834.uk_UA
dc.relation.references69 Liang, X., Ma, L., Chong, C., Li, Z., Ni, W., 2020. Development of smart energy towns in China: Concept and practices. Renew. Sustain. Energ Rev. 119, 109507.uk_UA
dc.relation.references70 Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U., 2006. Complex networks: Structure and dynamics. Phys. Rep. 424 (4–5), 175–308.uk_UA
dc.relation.references71 Qin, C., Wang, L., Han, Z., Zhao, J., Liu, Q., 2021. Weighted directed graph based matrix modeling of integrated energy systems. Energy 214, 118886.uk_UA
dc.relation.references72 Godquin, T., Barbier, M., Gaber, C., Grimault, J.L., Le Bars, J.M., 2020. Applied graph theory to security: A qualitative placement of security solutions within IoT networks. J. Inf. Secur. Appl. 55, 102640.uk_UA
dc.relation.references73 Ma, T., Wu, J., Hao, L., Li, D., 2019. Energy flow matrix modeling and optimal operation analysis of multi energy systems based on graph theory. Appl. Therm. Eng. 146, 648–663.uk_UA
dc.relation.references74 Liu, W., Li, L., Cai, W., Li, C., Li, L., Chen, X., Sutherland, J.W., 2020c. Dynamic characteristics and energy consumption modelling of machine tools based on bond graph theory. Energy 212, 118767.uk_UA
dc.relation.references75 Дерев’янко В.С., Дуда О.М., Скалецький П.О., Моделювання теплових навантажень для потреб. International scientific-practical conference “Science, education and technology: current issues of theory and practice”: conference proceedings (Tampere, Finland, February 23, 2024). Tampere, Finland: Scholarly Publisher ICSSH, 2024. 70–71 pages.uk_UA
dc.relation.references76 Han, W., Feng, Y., Qian, X., Yang, Q., Huang, C., 2020. Clusters and the entropy in opinion dynamics on complex networks. Phys. A 559, 125033.uk_UA
dc.relation.references77 Hu, C., He, H., Jiang, H., 2020a. Synchronization of complex-valued dynamic networks with intermittently adaptive coupling: A direct error method. Automatica 112, 108675.uk_UA
dc.relation.references78 Mandal, S., Mandal, K.K., 2020. Optimal energy management of microgrids under environmental constraints using chaos enhanced differential evolution. Renew. Energy Focus 34, 129–141.uk_UA
dc.relation.references79 Dutta, A., Bouri, E., Saeed, T., Vo, X.V., 2020. Impact of energy sector volatility on clean energy assets. Energy 212, 118657.uk_UA
dc.relation.references80 Zhang, X., Shan, C., Jin, Z., Zhu, H., 2019. Complex dynamics of epidemic models on adaptive networks. J. Differential Equations 266 (1), 803–832.uk_UA
dc.relation.references81 Zhang, T., Tan, Q., Yu, X., Zhang, S., 2020a. Synergy assessment and optimization for water-energy-food nexus: Modeling and application. Renew. Sustain. Energ Rev. 134, 110059.uk_UA
dc.relation.references82 Liu, S., Fang, W., Gao, X., Wang, Z., An, F., Wen, S., 2020a. Self-similar behaviors in the crude oil market. Energy 211, 118682.uk_UA
dc.relation.references83 Cui, S., Xiao, J.W., 2020. Game-based peer-to-peer energy sharing management for a community of energy buildings. Int. J. Electr. Power Energy Syst. 123, 106204.uk_UA
dc.relation.references84 Derevianko V.S., Duda O.M., Skaletskyi P.O. Development of heat supply systems, information and communication technologies. International conference 2021 - II International Scientific and Practical Conference «Ricerche scientifiche e metodi della loro realizzazione: esperienza mondiale e realtà domestiche» 131-132.uk_UA
dc.relation.references85 Liu, Q., Guo, P., Lei, Y., Feng, Y., 2017. Research on foreign capital R & D ecosystem in China based on dissipative structure theory. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM, Singapore.uk_UA
dc.relation.references86 Lazarević, M.P., 2015. Elements of mathematical phenomenology of self- organization nonlinear dynamical systems: Synergetics and fractional calculus approach. Int. J. Non-Linear Mech. 73, 31–42.uk_UA
dc.relation.references87 Kenari, M.T., Sepasian, M.S., Nazar, M.S.J.I.G., Distribution, Transmission, 2019. Probabilistic assessment of static voltage stability in distribution systems considering wind generation using catastrophe theory. IET Gener. Transm. Dis. 13 (13), 2856–2865.uk_UA
dc.relation.references88 Bratus, A.S., Drozhzhin, S., Yakushkina, T., 2018. On the evolution of hypercycles. Math. Biosci. 306, 119–125.uk_UA
dc.relation.references89 Lv, K., Wang, F., Che, J., Wang, W., Zhen, Z., 2019. A novel solar irradiance forecast model using complex network analysis and classification modeling. In: 2019 IEEE Innovative Smart Grid Technologies-Asia, ISGT Asia, Chengdu, China.uk_UA
dc.relation.references90 Wang, W., Li, Z., Cheng, X., 2019. Evolution of the global coal trade network: A complex network analysis. Resourc. Pol. 62, 496–506.uk_UA
dc.relation.references91 Zhang, M., Wang, J., Li, S., Feng, D., Cao, E., 2020b. Dynamic changes in landscape pattern in a large-scale opencast coal mine area from 1986 to 2015: A complex network approach. CATENA 194, 104738.uk_UA
dc.relation.references92 Ji, X., Wang, B., Liu, D., Dong, Z., Chen, G., Zhu, Z., Zhu, X., Wang, X., 2016. Will electrical cyber–physical interdependent networks undergo first-order transition under random attacks? Phys. A 460, 235–245.uk_UA
dc.relation.references93 Dong, G., Qing, T., Du, R., Wang, C., Li, R., Wang, M., Tian, L., Chen, L., Vilela, A.L., Stanley, H.E., 2020. Complex network approach for the structural optimization of global crude oil trade system. J. Clean. Prod. 251, 119366.uk_UA
dc.relation.references94 Liu, L., Senjyu, T., Kato, T., Howlader, A.M., Mandal, P., Lotfy, M.E., 2020d. Load frequency control for renewable energy sources for isolated power system by introducing large scale PV and storage battery. Energy Rep. 6, 1597–1603.uk_UA
dc.relation.references95 Su, M., Zhang, M., Chen, B., Hao, Y., Zhang, Y., Liu, G., 2017. Assessment and regulation of urban crude oil supply security: A network perspective. J. Clean. Prod. 165, 93–102.uk_UA
dc.relation.references96 Vaccariello, E., Leone, P., Canavero, F.G., Stievano, I.S., 2021. Topological mod- elling of gas networks for co-simulation applications in multi-energy systems. Math. Comput. Simulate 183, 244–253.uk_UA
dc.relation.references97 Geng, J.B., Ji, Q., Fan, Y., 2014. A dynamic analysis on global natural gas trade network. Appl. Energy 132, 23–33.uk_UA
dc.relation.references98 Liu, J., Shi, B., 2012. Towards understanding the robustness of energy distribution networks based on macroscopic and microscopic evaluations. Energy Pol. 49, 318–327.uk_UA
dc.relation.references99 Zhang, J., Wang, Z., Liu, P., Zhang, Z., 2020c. Energy consumption analysis and prediction of electric vehicles based on real-world driving data. Appl. Energy 275, 115408.uk_UA
dc.relation.references100 Huang, H.J., Xia, T., Tian, Q., Liu, T.L., Wang, C.L., Li, D., 2020b. Transportation issues in developing China’s urban agglomerations. Transp. Pol. 85, A1–A22.uk_UA
dc.relation.references101 Charakopoulos, A., Karakasidis, T., 2019. Pattern identification for wind power forecasting via complex network and recurrence plot time series analysis. Energy Pol. 133, 110934.uk_UA
dc.relation.references102 Du, F., Zhang, J., Li, H., Yan, J., Galloway, S., Lo, K.L., 2016. Modelling the impact of social network on energy savings. Appl. Energy 178, 56–65.uk_UA
dc.relation.references103 Sun, Y., Tang, X., 2014. Cascading failure analysis of power flow on wind power based on complex network theory. J. Mod. Power Syst. Clean Energy 2 (4), 411–421.uk_UA
dc.relation.references104 Ma, J., Zeng, M., Wu, Y., Zhao, C., Meng, Q., 2018. Multiscale complex network for analyzing the wind field from different heights and seasons. In: 2018 13th World Congress on Intelligent Control and Automation, WCICA, Changsha, China.uk_UA
dc.relation.references105 Cheng, L., Yu, T., Zhang, X., Yang, B., 2018. Parallel cyber–physical-social systems based smart energy robotic dispatcher and knowledge automation: Concepts, architectures, and challenges. IEEE Intel. Syst. 34 (2), 54–64.uk_UA
dc.relation.references106 Tsolas, S.D., Karim, M.N., Hasan, M.F., 2018. Optimization of water-energy nexus: a network representation-based graphical approach. Appl. Energy 224, 230–250.uk_UA
dc.relation.references107 Fang, D., Chen, B., 2017. Linkage analysis for the water–energy nexus of city. Appl. Energy 189, 770–779.uk_UA
dc.relation.references108 Geng, J.B., Du, Y.J., Ji, Q., Zhang, D., 2021. Modeling return and volatility spillover networks of global new energy companies. Renew. Sustain. Energ Rev. 135, 110214.uk_UA
dc.relation.references109 Dassisti, M., Carnimeo, L., 2013. A small-world methodology of analysis of interchange energy-networks: The European behaviour in the economical crisis. Energy Pol. 63, 887–899.uk_UA
dc.relation.references110 De Durana, J.M.G., Barambones, O., Kremers, E., Varga, L., 2014. Agent based modeling of energy networks. Energy Convers. Manag. 82, 308–319.uk_UA
dc.relation.references111 Hong, J., Tang, M., Wu, Z., Miao, Z., Shen, G.Q., 2019. The evolution of patterns within embodied energy flows in the Chinese economy: A multi-regional-based complex network approach. Sustain. Cities Soc. 47, 101500.uk_UA
dc.relation.references112 Fichera, A., Frasca, M., Palermo, V., Volpe, R., 2016. Application of the complex network theory in urban environments. a case study in Catania. Energy Proc. 101, 345–351.uk_UA
dc.relation.references113 Jogwar, S.S., Rangarajan, S., Daoutidis, P., 2011. Multi-time scale dynamics in energy-integrated networks: A graph theoretic analysis. IFAC Proc.uk_UA
dc.relation.references114 Hao, X., An, H., Hai, Qi., 2014. Evolution of fossil energy international trade pattern based on complex network. Energy Proc. 61, 476–479.uk_UA
dc.relation.references115 Beyza, J., Ruiz-Paredes, H.F., Garcia-Paricio, E., Yusta, J.M., 2020. Assessing the criticality of interdependent power and gas systems using complex networks and load flow techniques. Phys. A 540, 123169.uk_UA
dc.relation.references116 Bodnarchuk I., Duda O., Kharchenko A., Kunanets N., Matsiuk O., Pasichnyk V. Choice method of analytical information-technology platform for projects associated to the smart city class. ICTERI 2020 ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume I: Main Conference р.317-330.uk_UA
dc.relation.references117 Wang, Y., Lin, Z., Liang, X., Xu, W., Yang, Q., Yan, G., 2016. On modeling of electrical cyber–physical systems considering cyber security. Front. Inf. Technol. Elec. Eng. 17 (5), 465–478. http://dx.doi.org/10.1631/FITEE.1500446.uk_UA
dc.relation.references118 Xin, S., Guo, Q., Sun, H., Chen, C., Wang, J., Zhang, B., 2017. Information-energy flow computation and cyber–physical sensitivity analysis for power systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 7 (2), 329–341.uk_UA
dc.relation.references119 Ji, Q., Zhang, H.Y., Fan, Y., 2014. Identification of global oil trade patterns: An empirical research based on complex network theory. Energy Convers. Manag. 85, 856–865.uk_UA
dc.relation.references120 Srivastava, A.K., Ernster, T.A., Liu, R., Krishnan, V.G., 2018. Graph-theoretic algorithms for cyber–physical vulnerability analysis of power grid with incomplete information. J. Mod. Power Syst. Clean Energy 6 (5), 887–899.uk_UA
dc.relation.references121 Wei, X., Gao, S., Huang, T., Wang, T., Zang, T., 2019. Electrical network operational vulnerability evaluation based on small-world and scale-free properties. IEEE Access 7, 181072-181082.uk_UA
dc.relation.references122 Parandehgheibi, M., Modiano, E., Hay, D., 2014. Mitigating cascading failures in interdependent power grids and communication networks. In: 2014 IEEEuk_UA
dc.relation.references123 Huang, Z., Wang, C., Ruj, S., Stojmenovic, M., Nayak, A., 2013. Modeling cascading failures in smart power grid using interdependent complex networks and percolation theory. In: 2013 IEEE 8th Conference on Industrial Electronics and Applications, ICIEA, Melbourne, VIC, Australia.uk_UA
dc.relation.references124 Wei, X., Gao, S., Zang, T., Huang, T., Wang, T., Li, D., 2018. Social energy internet: concept, architecture and outlook. Proc. CSEE 38 (17), 4969–4986, 5295.uk_UA
dc.relation.references125 Xue, Y., Yu, X., 2017. Beyond smart grid—Cyber–physical–social system in energy future [point of view]. Proc. IEEE 105 (12), 2290–2292.uk_UA
dc.relation.references126 Wong, C.M.L., 2016. Assembling interdisciplinary energy research through an actor network theory (ANT) frame. Energy Res. Soc. Sci. 12, 106–110.uk_UA
dc.relation.references127 Jain, S., Sinha, A., 2019. Social network sustainability for transport planning with complex interconnections. Sustain. Comput. Inform. Syst. 24, 100351.uk_UA
dc.relation.references128 Li, H., An, H., Fang, W., Wang, Y., Zhong, W., Yan, L., 2017. Global energy investment structure from the energy stock market perspective based on a Heterogeneous Complex Network Model. Appl. Energy 194, 648–657.uk_UA
dc.relation.references129 Hao, X., An, H., Qi, H., Gao, X., 2016. Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network. Appl. Energy 162, 1515–1522.uk_UA
dc.relation.references130 Tang, M., Hong, J., Liu, G., Shen, G.Q., 2019. Exploring energy flows embodied in China’s economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach. Energy 170, 1191–1201.uk_UA
dc.relation.references131 Fang, Y., Wei, W., Mei, S., Chen, L., Zhang, X., Huang, S., 2020. Promoting electric vehicle charging infrastructure considering policy incentives and user preferences: An evolutionary game model in a small-world network. J. Clean. Prod. 258, 120753.uk_UA
dc.relation.references132 Chu, C.C., Iu, H.H.C., 2017. Complex networks theory for modern smart grid applications: A survey. IEEE J. Emerg. Sel. Top. Circuits Syst. 7 (2), 177–191.uk_UA
dc.relation.references133 Suciu, R., Girardin, L., Maréchal, F., 2018. Energy integration of CO2 networks and power to gas for emerging energy autonomous cities in Europe. Energy 157, 830–842.uk_UA
dc.relation.references134 Beck, J., Kempener, R., Cohen, B., Petrie, J., 2008. A complex systems approach to planning, optimization and decision making for energy networks. Energy Pol. 36 (8), 2795–2805.uk_UA
dc.relation.references135 Wu, T., Liu, S., Ni, M., Zhao, Y., Shen, P., Rafique, S.F., 2018. Model design and structure research for integration system of energy, information and transportation networks based on ANP-fuzzy comprehensive evaluation. Glob. Energy Interconnect. 1 (2), 137–144.uk_UA
dc.relation.references136 Zhao, Y., Liu, S., Lin, Z., Yang, L., Gao, Q., Chen, Y., 2020. Identification of critical lines for enhancing disaster resilience of power systems with renew- ables based on complex network theory. IET Gener. Transm. Dis. 14 (20), 4459–4467.uk_UA
dc.relation.references137 Fichera, A., Frasca, M., Volpe, R., 2017. Complex networks for the integration of distributed energy systems in urban areas. Appl. Energy 193, 336–345.uk_UA
dc.relation.references138 Zeng, M., Zhao, M., Meng, Q., Wang, J., 2016. Community structure detection in complex networks for characterizing atmospheric boundary-layer wind speed time series. In: 2016 12th World Congress on Intelligent Control and Automation, WCICA, Guilin, China.uk_UA
dc.relation.references139 Volpe, R., 2015. Urban energy mapping through the implementation on complex networks. Energy Proc. 82, 863–869.uk_UA
dc.relation.references140 Palomo-Navarro, A., Navío-Marco, J., 2018. Smart city networks’ governance: The spanish smart city network case study. Telecommun. Pol. 42 (10), 872–880.uk_UA
dc.relation.references141 Marull, J., Font, C., Boix, R., 2015. Modelling urban networks at mega-regional scale: Are increasingly complex urban systems sustainable? Land Use Pol. 43, 15–27.uk_UA
dc.relation.references142 Hetti, R.K., Karunathilake, H., Chhipi-Shrestha, G., Sadiq, R., Hewage, K., 2020. Prospects of integrating carbon capturing into community scale energy systems. Renew. Sustain. Energ Rev. 133, 110193.uk_UA
dc.relation.references143 Zhou, B., Meng, Y., Huang, W., Wang, H., Deng, L., Huang, S., Wei, J., 2021a. Multi-energy net load forecasting for integrated local energy systems with heterogeneous prosumers. Int. J. Electr. Power Energy Syst. 126, 106542.uk_UA
dc.relation.references144 Su, W., Huang, A.Q., 2014. A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers. Appl. Energy 119, 341–350.uk_UA
dc.relation.references145 Zhang, N., Sun, Q., Yang, L., 2021. A two-stage multi-objective optimal scheduling in the integrated energy system with We-Energy modeling. Energy 215, 119121.uk_UA
dc.relation.references146 Derevianko V.S., Duda O.M., Skaletskyi P.O., Information technology projects of "smart" systems of centralized heat supply. Світ наукових досліджень. Випуск 29: матеріали Міжнародної мультидисциплінарної наукової інтернет-конференції (м. Тернопіль, Україна, м. Ополе, Польща, 23-24 квітня 2024 р.) / за ред. : О. Патряк та ін. ГО “Наукова спільнота”, WSZIA w Opolu. Тернопіль: ФО- ПШпак В.Б. 2024. 170-171 с.uk_UA
dc.relation.references147 Saurabh, S., Madria, S., Mondal, A., Sairam, A.S., Mishra, S., 2020. An analytical model for information gathering and propagation in social networks using random graphs. Data Knowl. Eng. 129, 101852.uk_UA
dc.relation.references148 Waldorp, L., Kossakowski, J., 2020. Mean field dynamics of stochastic cellular automata for random and small-world graphs. J. Math. Psychol. 97, 102380.uk_UA
dc.relation.references149 Li, L., Zheng, Y., Zheng, S., Ke, H., 2020b. The new smart city programme: Evaluating the effect of the internet of energy on air quality in China. Sci. Total Environ. 714, 136380.uk_UA
dc.relation.references150 Zhu, W., Milanović, .J.V., 2021. Assessment of the robustness of cyber–physical systems using small-worldness of weighted complex networks. Int. J. Electr. Power Energy Syst. 125, 106486.uk_UA
dc.relation.references151 Li, G., Chen, X., Tang, P., Xiao, G., Wen, C., Shi, L., 2019a. Target control of directed networks based on network flow problems. IEEE T. Contr. Netw. Syst. 7 (2), 673–685.uk_UA
dc.relation.references152 Голінько, В. І., М. Ю. Іконніков, and Я. Я. Лебедєв. "Охорона праці в галузі інформаційних технологій." (2015).uk_UA
dc.relation.references153 Bulakh V. P. СИНДРОМ ПРОФЕСІЙНОГО ВИГОРАННЯ ЯК СКЛАДНИЙ ПСИХОФІЗІОЛОГІЧНИЙ ФЕНОМЕН. Медсестринство. 2016. № 4.uk_UA
dc.contributor.affiliationТНТУ ім. І. Пулюя, Факультет комп’ютерно-інформаційних систем і програмної інженерії, Кафедра комп’ютерних наук, м. Тернопіль, Українаuk_UA
dc.coverage.countryUAuk_UA
Розташовується у зібраннях:122 — комп’ютерні науки

Файли цього матеріалу:
Файл Опис РозмірФормат 
Mag_2024_SNnm_61_Derevianko_V_S.pdf2,78 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора