Bu öğeden alıntı yapmak, öğeye bağlanmak için bu tanımlayıcıyı kullanınız: http://elartu.tntu.edu.ua/handle/lib/42684

Başlık: Безпекова складова в колаборативних роботизованих технологіях
Diğer Başlıklar: Safe warehouse in collaborative robot technologies
Yazarlar: Пилипенко, О.
Pylepenko, O.
Affiliation: Державний університет «Житомирська політехніка», Житомир, Україна
Zhytomyr Polytechnic State University, Zhytomyr, Ukraine
Bibliographic description (Ukraine): Пилипенко О. Безпекова складова в колаборативних роботизованих технологіях / О. Пилипенко // Вісник ТНТУ. — Т. : ТНТУ, 2023. — Том 111. — № 3. — С. 106–114.
Bibliographic description (International): Pylepenko O. (2023) Bezpekova skladova v kolaboratyvnykh robotyzovanykh tekhnolohiiakh [Safe warehouse in collaborative robot technologies]. Scientific Journal of TNTU (Tern.), vol. 111, no 3, pp. 106-114 [in Ukrainian].
Is part of: Вісник Тернопільського національного технічного університету, 3 (111), 2023
Scientific Journal of the Ternopil National Technical University, 3 (111), 2023
Journal/Collection: Вісник Тернопільського національного технічного університету
Issue: 3
Volume: 111
Yayın Tarihi: 5-Eyl-2023
Submitted date: 19-Tem-2023
Date of entry: 26-Eki-2023
Yayıncı: ТНТУ
TNTU
Place of the edition/event: Тернопіль
Ternopil
DOI: https://doi.org/10.33108/visnyk_tntu2023.03.106
UDC: 681.5
Anahtar kelimeler: промисловий робот
колаборативна робототехніка
безпека
ISO стандарти
industrial robot
collaborative robotics
safety
ISO standarts
Number of pages: 9
Page range: 106-114
Start page: 106
End page: 114
Özet: Промислові роботи набули значного обсягу застосування та популярності на сучасних виробництвах по всьому світу завдяки своїй продуктивності, надійності, ефективності та можливості виконувати небезпечні операції, які несуть або потенційно можуть нести ризик для людей. З постійним стрімким розвитком технологій з’явився новий вид промислових роботів, а саме колаборативні промислові роботи. Застосування колаборативних промислових роботів на сучасних виробництвах разом з людиною ставить ряд проблемних питань, що пов’язані з безпекою людини у виробничих процесах. Стислий аналіз доступних інформаційних джерел вказує на актуальність вищевказаного питання та різноманітність підходів щодо його розв’язування та дослідження. Однак наразі відсутні комплексні рішення та присутня фрагментарність щодо забезпечення безпеки людини в колаборативних роботизованих технологіях. Розглянуто проблеми безпеки людини, пов'язані з використанням колаборативних технологій. Висвітлені існуючі прогалини в безпекових стандартах ISO, які не повністю враховують відомі компоненти безпеки спільної роботи людини та колаборативних промислових роботів. Висвітлено сутність визначення безпекової складової в клаборативних роботизованих технологіях як комплексного поняття, яке передбачає застосування апаратної, програмної, ергономічної та інших складових для підтримки та забезпечення безпеки людини в умовах технологічної колаборації. Акцентується увага на необхідності покращення процесу навчання персоналу та оновлення технологічного обладнання для ефективності безпеки в колаборативних роботизованих технологіях. Запропоновані рекомендації, які б доповнювали існуючі ISO стандарти щодо безпекової складової колаборативних технологій. Вищевказане визначено як перспективний напрямок досліджень у галузі колаборативної робототехніки.
Industrial robots have gained significant application and popularity in modern industries worldwide due to their productivity, reliability, efficiency, and ability to perform hazardous operations that pose or potentially pose a risk to people. However, there are cases when classic industrial work cannot be used, and human work becomes the only alternative in production. With the continuous rapid development of technology, a new type of industrial robot has emerged, namely collaborative industrial robots. The peculiarity of the latter lies in the functional and hardware capabilities of interacting with a person and mutually complementing him, performing joint technological operations. These capabilities are achieved with the help of advanced technologies such as technical vision, artificial intelligence, signal processing technologies from various sensors, etc. The use of collaborative industrial robots in modern production, together with humans, poses many problematic issues related to human safety in production processes. A brief analysis of the available information sources indicates the relevance of the above question and the variety of approaches to its solution and research. However, there are currently no comprehensive solutions, and there is fragmentation regarding human safety in collaborative robotic technologies. Existing gaps in ISO safety standards are highlighted, which do not fully address the known safety components of human collaboration and collaborative industrial robots. The essence of the definition of the safety component in collaborative robotic technologies is highlighted as a complex concept that involves the use of hardware, software, ergonomics, and other components to support and ensure human safety in the conditions of technological collaboration. Attention is focused on improving the process of training personnel and updating technological equipment for safety efficiency in collaborative robotic technologies. Recommendations that would complement the existing ISO standards are proposed. The above is defined as a promising direction of research in the field of collaborative robotics
URI: http://elartu.tntu.edu.ua/handle/lib/42684
ISSN: 2522-4433
Copyright owner: © Тернопільський національний технічний університет імені Івана Пулюя, 2023
URL for reference material: https://ifr.org/freedownloads/
https://doi.org/10.1155/2020/8564140
https://doi.org/10.1016/j.ssci.2020.104832
https://www.iso.org/standard/62996.html
https://cutt.ly/ONEhphz
https://cutt.ly/pNEgbar
https://doi.org/10.1007/978-3-030-19648-6_49
https://www.sciencedirect.com/science/article/pii/S2351978920302055
https://doi.org/10.1016/j.promfg.2020.01.204
https://ieeexplore.ieee.org/document/8107677.https://doi.org/10.1109/ACCESS.2017.2773127
https://doi.org/10.1007/978-3-030-14730-3_68
https://www.researchgate.net/publication/342181499_Emerging_research_fields_in_safety_and_ergonomics_in_industrial_collaborative_robotics_A_systematic_literature_review
https://doi.org/10.1016/j.rcim.2020.101998
http://ten.ztu.edu.ua/article/view/268008
https://proceedings.tu-sofia.bg/
https://doi.org/10.47978/TUS.2022.72.03.003
https://www.engineering.com/story/vision-based-system-allows-humans-to-work-safely-with-massive-robots
https://www.iso.org/standard/51330.html
https://www.iso.org/standard/41571.html
https://www.iso.org/standard/53820.html
https://www.engineering.com/story/vision-based-system-allows-humans-to-work-safely-with-massiverobots
References (Ukraine): 1. The International Federation of Robotics. 2022. URL: https://ifr.org/freedownloads/.
2. Aydin Azizi, “Applications of Artificial Intelligence Techniques to Enhance Sustainability of Industry 4.0: Design of an Artificial Neural Network Model as Dynamic Behavior Optimizer of Robotic Arms”, Complexity. Vol. 2020. Article ID 8564140. 10 p. 2020. https://doi.org/10.1155/2020/8564140
3. Peter Chemweno, Liliane Pintelon, Wilm Decre, Orienting safety assurance with outcomes of hazard analysis and risk assessment: A review of the ISO 15066 standard for collaborative robot systems, Safety Science. Volume 129. 2020. ISSN 0925-7535. https://doi.org/10.1016/j.ssci.2020.104832
4. Robots and robotic devices – Collaborative robots: ISO/TS 15066:2016 / International Organization of Standardization. URL: https://www.iso.org/standard/62996.html.
5. ISO 31000. 2022. URL: tps://www.iso.org/ru/iso-31000-risk-management.html.
6. L. Scalera, A. Giusti, V. di Cosmo, M. Riedl, Application of dynamically scaled safety zones based on the ISO/TS 15066:2016 for collaborative robotics, International Journal of Mechanics and Control. 2020.No. 21 (1), June. Р. 41–50. URL: https://cutt.ly/ONEhphz.
7. Vincenzo Di Cosmo, Collaborative Robotics Safety Control Application Using Dynamic Safety Zones Based on the ISO/TS 15066:2016, Advances in Intelligent Systems and Computing. 2019. Vol. 980. URL: https://cutt.ly/pNEgbar. https://doi.org/10.1007/978-3-030-19648-6_49
8. Aaltonena I., T.Salmi, Experiences and expectations of collaborative robots in industry and academia: barriers and development needs, Procedia Manufacturing. 2019. Vol. 38. URL: https://www.sciencedirect.com/science/article/pii/S2351978920302055. https://doi.org/10.1016/j.promfg.2020.01.204
9. S. Robla-Gómez, V. M. Becerra, J. R. Llata, E. González-Sarabia, C. Torre-Ferrero and J. Pérez-Oria, “Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments,” in IEEE Access. Vol. 5. P. 26754–26773. 2017. URL: https://ieeexplore.ieee.org/document/8107677.https://doi.org/10.1109/ACCESS.2017.2773127
10. Bragança S., Costa E., Castellucci I., Arezes P. M. (2019). A Brief Overview of the Use of Collaborative Robots in Industry 4.0: Human Role and Safety. In:, et al. Occupational and Environmental Safety and Health. Studies in Systems, Decision and Control. Vol. 202. Springer, Cham. https://doi.org/10.1007/978-3-030-14730-3_68
11. Luca Gualtieri, Erwin Rauch, Renato Vidoni, Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review, Robotics and Computer-Integrated Manufacturing, Volume 67. 2021. ISSN 0736-5845. URL: https://www.researchgate.net/publication/342181499_Emerging_research_fields_in_safety_and_ergonomics_in_industrial_collaborative_robotics_A_systematic_literature_review. https://doi.org/10.1016/j.rcim.2020.101998
12.Кирилович В. А., Мельничук П. П., Кравчук А. Р., Яновський В. А. Термінологічний та змістовний аспекти колаборативної робототехніки: аналіз та рекомендації. Державний університет «Житомирська політехніка». Технічна інженерія. 2022. № 2 (90). С. 13–22. URL: http://ten.ztu.edu.ua/article/view/268008.
13. Kyrylovych V.A., Kravchuk A.R., Dimitrov L.V., Melnychuk P.P., Mohelnytska L.F. System and Structural Approach to Interaction of Components in Collaborative Flexible Production Systems. Proceedings of the Technical University of Sofia. Vol. 72. No. 3. 2022. P. 10–14. URL: https://proceedings.tu-sofia.bg/. https://doi.org/10.47978/TUS.2022.72.03.003
14. Vision-Based System Allows Humans to Work Safely with Massive Robots, Engineering.com, URL: https://www.engineering.com/story/vision-based-system-allows-humans-to-work-safely-with-massive-robots.
15.Robots and robotic devices. Safety requirements for industrial robots. Part 1: Robots (ISO 10218-1:2011), International Organization of Standardization, 2011. URL: https://www.iso.org/standard/51330.html.
16.Robots and robotic devices. Safety requirements for industrial robots. Part 2: Robot systems and integration (ISO 10218-2:2011), International Organization of Standardization. URL: https://www.iso.org/standard/41571.html.
17.Robots and Robotics Devices – Safety Requirements for Personal Care Robots: ISO 13482:2014. URL: https://www.iso.org/standard/53820.html.
References (International): 1. The International Federation of Robotics. 2022. URL: https://ifr.org/freedownloads/.
2. Aydin Azizi, “Applications of Artificial Intelligence Techniques to Enhance Sustainability of Industry 4.0: Design of an Artificial Neural Network Model as Dynamic Behavior Optimizer of Robotic Arms”Complexity. Vol. 2020. Article ID 8564140. 10 p. 2020. https://doi.org/10.1155/2020/8564140
3. Peter Chemweno, Liliane Pintelon, Wilm Decre, Orienting safety assurance with outcomes of hazard analysis and risk assessment: A review of the ISO 15066 standard for collaborative robot systems, Safety Science. Volume 129. 2020. ISSN 0925-7535. https://doi.org/10.1016/j.ssci.2020.104832
4. Robots and robotic devices – Collaborative robots: ISO/TS 15066:2016 / International Organization of Standardization. URL: https://www.iso.org/standard/62996.html.
5. ISO 31000. 2022. URL: tps://www.iso.org/ru/iso-31000-risk-management.html.
6. L. Scalera, A. Giusti, V. di Cosmo, M. Riedl, Application of dynamically scaled safety zones based on the ISO/TS 15066:2016 for collaborative robotics, International Journal of Mechanics and Control. 2020.No. 21 (1). June. Р. 41–50. URL: https://cutt.ly/ONEhphz.
7. Vincenzo Di Cosmo, Collaborative Robotics Safety Control Application Using Dynamic Safety Zones Based on the ISO/TS 15066:2016, Advances in Intelligent Systems and Computing. 2019. Vol. 980. URL: https://cutt.ly/pNEgbar. https://doi.org/10.1007/978-3-030-19648-6_49
8. Aaltonena I., T. Salmi, Experiences and expectations of collaborative robots in industry and academia: barriers and development needs, Procedia Manufacturing. 2019. Vol. 38. URL: https://www.sciencedirect.com/science/article/pii/S2351978920302055. https://doi.org/10.1016/j.promfg.2020.01.204
9. S. Robla-Gómez, V. M. Becerra, J. R. Llata, E. González-Sarabia, C. Torre-Ferrero and J. Pérez-Oria, “Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments,” inIEEE Access. Vol. 5. P. 26754–26773. 2017. URL: https://ieeexplore.ieee.org/document/8107677.https://doi.org/10.1109/ACCESS.2017.2773127
10. Bragança S., Costa E., Castellucci I., Arezes P. M. (2019). A Brief Overview of the Use of Collaborative Robots in Industry 4.0: Human Role and Safety. In:, et al. Occupational and Environmental Safety and Health. Studies in Systems, Decision and Control. Vol. 202. Springer, Cham. https://doi.org/10.1007/978-3-030-14730-3_68
11. Luca Gualtieri, Erwin Rauch, Renato Vidoni, Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review, Robotics and Computer-Integrated Manufacturing, Volume 67. 2021. ISSN 0736-5845. URL: https://www.researchgate.net/publication/342181499_Emerging_research_fields_in_safety_and_ergonomics_in_industrial_collaborative_robotics_A_systematic_literature_review. https://doi.org/10.1016/j.rcim.2020.101998
12. Kirilovich V. A., Melnichuk P. P., Kravchuk A. R., Yanovskiy V. A. TermInologIchniy ta zmistovniyaspekti kolaborativnoyi robototehniki: analiz ta rekomendatsiyi. Zhytomyr Polytechnic State University Tehnichna Inzheneriya. 2022. Issue 2 (90). P. 13–22. URL: http://ten.ztu.edu.ua/article/view/268008
13. Kyrylovych V. A., Kravchuk A. R., Dimitrov L. V., Melnychuk P.P., Mohelnytska L.F. System and Structural Approach to Interaction of Components in Collaborative Flexible Production Systems. Proceedings of the Technical University of Sofia. Vol. 72. No. 3. 2022. P. 10–14. URL: https:// proceedings.tu-sofia.bg/. https://doi.org/10.47978/TUS.2022.72.03.003
14. Vision-Based System Allows Humans to Work Safely with Massive Robots, Engineering.com, URL: https://www.engineering.com/story/vision-based-system-allows-humans-to-work-safely-with-massiverobots.
15.Robots and robotic devices. Safety requirements for industrial robots. Part 1: Robots (ISO 10218-1:2011), International Organization of Standardization, 2011. URL: https://www.iso.org/standard/51330.html.
16.Robots and robotic devices. Safety requirements for industrial robots. Part 2: Robot systems and integration (ISO 10218-2:2011), International Organization of Standardization. URL: https://www.iso.org/standard/41571.html.
17.Robots and Robotics Devices – Safety Requirements for Personal Care Robots: ISO 13482:2014. URL: https://www.iso.org/standard/53820.html.
Content type: Article
Koleksiyonlarda Görünür:Вісник ТНТУ, 2023, № 3 (111)



DSpace'deki bütün öğeler, aksi belirtilmedikçe, tüm hakları saklı tutulmak şartıyla telif hakkı ile korunmaktadır.