霂瑞霂��撘����迨��辣:
http://elartu.tntu.edu.ua/handle/lib/40358
Title: | Розрахунок навантажувальної здатності підземних кабельних ліній електропередач |
Other Titles: | Calculation of the carrying capacity of underground cable power line |
Authors: | Удогу, Чуквудалу Паул Udogu, Chukwudalu Paul |
Bibliographic description (Ukraine): | Удогу Ч. П.Розрахунок навантажувальної здатності підземних кабельних ліній електропередач: кваліфікаційна робота бакалавра за спеціальністю "141 – електроенергетика, електротехніка та електромеханіка"/ Ч. П. Удогу. – Тернопіль: ТНТУ, 2023. – 71 с. |
Issue Date: | 一月-2023 |
Date of entry: | 24-一月-2023 |
Publisher: | Тернопільський національний технічний університет імені Івана Пулюя |
Country (code): | UA |
Place of the edition/event: | Тернопільський національний технічний університет імені Івана Пулюя |
Supervisor: | Наконечний, Мирослав Степанович Nakonechnyi, Myroslav |
UDC: | 621.315 |
Keywords: | силовий кабель температура втрати заземлення power cable temperature losses grounding |
Number of pages: | 71 |
Abstract: | У даній кваліфікаційній роботі розглядається класифікація кабельних ліній, їх конструкція та електричні характеристики. Наведено способи заземлення кабельних ліній; визначено джерела втрат енергії. Поставлено математичну задачу для розрахунку навантажувальної здатності кабельних ліній сформована модель електромагнітних і теплових процесів.
Розраховано параметри кабелю, обрано математичну модель, яка дозволяє розрахувати електричні параметри кабельних систем заземлення, розглянуто вимоги до варіантів заземлення екрану. Розроблено математичну модель та були розраховані магнітні, електричні та теплові характеристики кабелю мережі. Розраховано вплив способів прокладки кабельної мережі на температуру кабелю. In this qualification work, the classification of cable lines, their construction and electrical characteristics are considered. Methods of grounding cable lines are given; sources of energy loss are determined. A mathematical problem for calculating the load capacity of cable lines was established, and a mathematical model of electromagnetic and thermal processes was formed. The cable parameters were calculated, a mathematical model was chosen that allows you to calculate the electrical parameters of cable grounding systems, and the requirements for screen grounding options were considered. A mathematical model was developed and the magnetic, electrical and thermal characteristics of the cable |
Description: | On the basis of the research carried out in this paper, a mathematical model was developed, which makes it possible to calculate the magnetic, electrical and temperature characteristics of power cable lines during their design. The following results were obtained: the main technical and operational features of power cable lines are considered. The physical processes that take place in them and the methods of their modeling are analyzed; it is shown that for two-way grounding of screens, it is necessary to calculate the currents and power losses in the screens, which depend on the amount of current in the conductor, the area of the screen section, the diameter of the cable and the distance between the cables; the calculation of the thermal field of the cable network for laying the cable in a triangle and in the plane was carried out. It is shown that the temperature of the cable conductors, with a constant current strength in the case of laying with a triangle, is higher by 10 ° C. |
Content: | INTRODUCTION 7 1 ANALYTICAL SECTION 8 1.1 Purpose, classification and characteristics of cable lines 8 1.2 Designs of power cables with a voltage of 10 kV. 9 1.2.1 Current-carrying wires. 11 1.2.2 Isolation. 13 1.2.3 Protective shells and coverings. 15 1.3. Electrical characteristics of cables. 16 1.4. Cable marking. 19 1.5 Grounding of cable line screens. 21 1.6 Sources of energy loss in cable lines 22 1.7 The urgency of the problem of determining the components of losses. 23 2 CALCULATION AND RESEARCH SECTION 25 2.1 Formulation of a mathematical problem for calculating the load capacity of cable lines 25 2.2 Mathematical model of electromagnetic processes 26 2.3 Mathematical model of thermal processes in underground cable lines 29 2.4 Finite element method 31 2.5 Calculation of cable parameters 33 2.6 Double-sided grounding of screens 38 2.7 One-way grounding of screens 41 2.8 Transposition of screens 45 3 PROJECT DESIGNING SECTION 50 3.1 Choosing a cable to build a model 50 3.2 Calculation of electromagnetic characteristics 53 3.3 Temperature calculation 57 4 LABOUR OCCUPATIONAL SAFETY AND SECURITY IN EMERGENCY SITUATIONS 62 4.1 Electrical safety measures when working with electrical equipment 62 4.2 The stability of the work of economic objects and factors affecting sustainability 66 GENERAL CONCLUSIONS 68 REFERENCES 69 |
URI: | http://elartu.tntu.edu.ua/handle/lib/40358 |
Copyright owner: | © Удогу Ч.П., 2023 |
References (Ukraine): | 1. Anders, G.J. Rating of Electric Power Cables in Unfavorable Thermal Environment / G.J. Anders. – New Jersey: John Wiley & Sons, Inc., IEEE Press, 2005. 2. Anders, G.J. Real Time Monitoring of Power Cables by Fibre Optic Technologies. Tests, Applications and Outlook / G.J. Anders, J.-M. Braun, A. Downes John, N. Fujimoto, M-H. Luton, S. Rizzetto // 6th International Conference on Insulated Power Cables (JiCable'03). – Paris, 2003. 3. Baazzim, M.S. Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments / M.S. Baazzim, M.S. Al-Saud, M.A. El-Kady // International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering. – 2014. – Vol. 8. – № 3. – P. 484–489. 4. Buller, F.H. Thermal Transient on Buried Cables / F.H. Buller // AIEE Transactions. – 1951. – Vol. 70. – P. 45–55. 5. Cable Systems Electrical Characteristics. Technical Brochure № 531 – Final Draft / CIGRE Working Group B1.30. –2013. – 142 p. 6. Desmet, J. Thermal Analysis of Parallel Underground Energy Cables / J. Desmet, 7. D. Putman, G. Vanalme, R. Belmans, D. Vandommelen // 18th International Conference on Electricity Distribution. – Turin. – 2005. 8. Desmet, J. Thermal Transient Analysis of Underground Cables / J. Desmet, D. Putman, G. Vanalme, R. Belmans, E. Cloet // 7th International Conference on Insulated Power Cables (JiCable'07). – Paris. – 2007. 9. Dubitsky, S. Comparison of Finite Element Analysis to IEC-60287 for Predicting Underground Cable Ampacity / S. Dubitsky, G. Greshnyakov, N. Korovkin // Energycon 2016: Proceedings of IEEE International Energy Conference. – Leuven. – Belgium. – 2016. 10. Dubitsky, S. Refinement of Underground Power Cable Ampacity by Multiphysics FEA Simulation / S. Dubitsky, G. Greshnyakov, N. Korovkin // International Journal of Energy. – 2015. – № 9. – P. 12–19. 11. Echavarren, F.M. Dynamic Thermal Modeling of Isolated Cables / F.M. Echavarren, L. Rouco, A. Gonzalez // 17th Power Systems Computation Conference. – Stockholm. – Sweden. – 2011. – Vol. 1. P. 611–617. 12. Goehlich, L Monitoring of HV Cables Offers Improved Reliability and Economy by Means of «Power Sensors» / L. Goehlich, F. Donazzi, R. Gaspari // Power Engineering Journal. – 2002. – Vol. 16. – № 3. – P. 103 – 110. 13. IEC Standard 60287–1–1. Electric Cables – Calculation of the Current Rating. Part 1: Сurrent Rating Equations (100% Load Factor) and Calculation of Losses – Section 1: General. – 2006. 14. Leуn, F. Effects of Backfilling on Cable Ampacity Analyzed With the Finite Element Method / F. Leуn, G. J. Anders // IEEE Transactions on Power Delivery. – 2008. – Vol. 23. – №. 2. – P. 537–543. 15. Olsen, R.S. Dynamic Temperature Estimation and Real Time Emergency Rating of Transmission Cables / R.S. Olsen, J. Holboll, U.S. Gudmundsdottir // IEEE Power and Energy Society General Meeting. – San Diego. – USA. – 2012.– P. 1– 8. 16. Prime, J.B. Systems to Monitor the Cconductor Temperature of Underground 17. Cable / J.B. Prime, J.G. Valdes // IEEE Transactions on Power Apparatus and Systems. – 1981. – Vol. PAS–100. – № 1. – P. 211–219. 18. Sellers, S.M. Refinements to the Neher-McGrath Model for Calculating the Ampacity of Underground Cables / S.M. Sellers, W.Z. Black // IEEE Transactions on Power Delivery. – 1996. – Vol. 11, № 1. – P. 12–30. 19. Singh, K. Cable Monitoring Solution - Predict with Certainty / K. Singh, D. Watley // Second Seminar on Undergrounding of Electric Distribution Networks (Cabos’11). – Maceiу. – Alagoas. – 2011. 20. Tang A., Zhao Y., Jiang D. The Study of Dynamic Thermal Mathmetical Model for EHV XLPE Cable / A. Tang, Y. Zhao, D. Jiang // International Journal of Electronics. Mechanical and Mechatronics Engineering. – 2010. – Vol. 1. – № 1. – P. 7–10. 21. Terracciano, M. Thermal Analysis of Cables in Unfilled Troughs: Investigation of the IEC Standard and a Methodical Approach for Cable Rating / M. Terracciano, S. Purushothaman // IEEE Transactions on Power Delivery. –2012. –Vol. 27. – № 3. – P. 1423 – 1431. 22. Titkov, V.V. The Capacity Limitations of Power Transmission Cable Lines in the Structure of Civil and Industry Engineering Networks / V.V. Titkov, S.M. Dudkin, R.D. Tukeev, A.V. Kosorukov // Magazine of Civil Engineering. – 2014. – № 6. – P. 75–83. 23. Ukil, A. Distributed temperature sensing: review of technology and applications / A. Ukil, H. Braendle, P. Krippner // Sensors Journal, IEEE. – 2012. – Vol. 12. – No. 5. – P. 885–892 |
Content type: | Bachelor Thesis |
�蝷箔����: | 141 — Електроенергетика, електротехніка та електромеханіка (бакалаври) |
��辣銝剔�﹝獢�:
獢�獢� | ��膩 | 憭批�� | �撘� | |
---|---|---|---|---|
Avtorska_Удогу Паул.doc | Авторська довідка_Удогу Чуквудалу Паул | 72,5 kB | Microsoft Word | 璉�閫�/撘�� |
Удогу Паул_робота.pdf | Кваліфікаційна робота бакалавра_Удогу Чуквудалу Паул | 1,55 MB | Adobe PDF | 璉�閫�/撘�� |
�DSpace銝剜�������★��������雿��.
蝞∠�極�