Defnyddiwch y dynodwr hwn i ddyfynnu neu i gysylltu â'r eitem hon: http://elartu.tntu.edu.ua/handle/lib/40289

Teitl: Порівняння претренованих моделей для детекції об’єктів
Teitlau Eraill: Comparation of the pretrained models for object detection
Awduron: Сороківський, О.
Литвиненко, Ярослав Володимирович
Sorokivskyi, O.
Lytvynenko, I.
Affiliation: Тернопільський національний технічний університет імені Івана Пулюя, Україна
Bibliographic description (Ukraine): Сороківський О. Порівняння претренованих моделей для детекції об’єктів / О. Сороківський, Ярослав Володимирович Литвиненко // Матеріали Ⅹ науково-технічної конференції „Інформаційні моделі, системи та технології“, 7–8 грудня 2022 року. — Т. : ТНТУ, 2022. — С. 51–52. — (Інформаційні системи та технології, кібербезпека).
Bibliographic description (International): Sorokivskyi O., Lytvynenko I. (2022) Porivniannia pretrenovanykh modelei dlia detektsii obiektiv [Comparation of the pretrained models for object detection]. Materials of the Ⅹ scientific and technical conference "Information models, systems and technologies" (Tern., 7–8 December 2022), pp. 51-52 [in Ukrainian].
Is part of: Матеріали Ⅹ науково-технічної конференції „Інформаційні моделі, системи та технології“ Тернопільського національного технічного університету імені Івана Пулюя, 2022
Materials of the Ⅹ Scientific and Technical Conference "Information Models, Systems and Technologies" of Ivan Puluj Ternopil National Technical University, 2022
Conference/Event: Ⅹ науково-технічна конференція „Інформаційні моделі, системи та технології“ Тернопільського національного технічного університету імені Івана Пулюя
Journal/Collection: Матеріали Ⅹ науково-технічної конференції „Інформаційні моделі, системи та технології“ Тернопільського національного технічного університету імені Івана Пулюя
Dyddiad Cyhoeddi: 7-Dec-2022
Date of entry: 19-Jan-2023
Cyhoeddwr: ТНТУ
TNTU
Place of the edition/event: Тернопіль
Ternopil
Temporal Coverage: 7–8 грудня 2022 року
7–8 December 2022
UDC: 004.6
Number of pages: 2
Page range: 51-52
Start page: 51
End page: 52
URI: http://elartu.tntu.edu.ua/handle/lib/40289
Copyright owner: © Тернопільський національний технічний університет імені Івана Пулюя, 2022
URL for reference material: https://arxiv.org/abs/2204.00484
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1608.05442
https://arxiv.org/abs/2211.05778
https://arxiv.org/abs/2211.07636v1
https://arxiv.org/abs/2211.12860v1
https://arxiv.org/abs/2205.14141v3
https://arxiv.org/abs/2105.04206v1
References (Ukraine): 1. Cristina Vasconcelos, Vighnesh Birodkar, Vincent Dumoulin. Proper Reuse of Image Classifica-tion Features Improves Object Detection, 2022. URL: https://arxiv.org/abs/2204.00484.
2. Microsoft COCO: Common Objects in Context, Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollár, 2015. URL: https://arxiv.org/abs/1405.0312.
3. Semantic Understanding of Scenes through the ADE20K Dataset, Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, Antonio Torralba, 2018. URL: https://arxiv.org/abs/1608.05442.
4. InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions, Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu, Hongsheng Li, Xiaogang Wang, Yu Qiao, 2022. URL: https://arxiv.org/abs/2211.05778.
5. EVA: Exploring the Limits of Masked Visual Representation Learning at Scale, Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang, Yue Cao, 2022. URL: https://arxiv.org/abs/2211.07636v1.
6. DETRs with Collaborative Hybrid Assignments Training, Zhuofan Zong, Guanglu Song, Yu Liu, 2022. URL: https://arxiv.org/abs/2211.12860v1.
7. Contrastive Learning Rivals Masked Image Modeling in Fine-tuning via Feature Distillation, Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao, Jianmin Bao, Dong Chen, Baining Guo, 2022. URL: https://arxiv.org/abs/2205.14141v3.
8. You Only Learn One Representation: Unified Network for Multiple Tasks, Chien-Yao Wang, I-Hau Yeh, Hong-Yuan Mark Liao, 2021. URL: https://arxiv.org/abs/2105.04206v1.
References (International): 1. Cristina Vasconcelos, Vighnesh Birodkar, Vincent Dumoulin. Proper Reuse of Image Classifica-tion Features Improves Object Detection, 2022. URL: https://arxiv.org/abs/2204.00484.
2. Microsoft COCO: Common Objects in Context, Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollár, 2015. URL: https://arxiv.org/abs/1405.0312.
3. Semantic Understanding of Scenes through the ADE20K Dataset, Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, Antonio Torralba, 2018. URL: https://arxiv.org/abs/1608.05442.
4. InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions, Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu, Hongsheng Li, Xiaogang Wang, Yu Qiao, 2022. URL: https://arxiv.org/abs/2211.05778.
5. EVA: Exploring the Limits of Masked Visual Representation Learning at Scale, Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang, Yue Cao, 2022. URL: https://arxiv.org/abs/2211.07636v1.
6. DETRs with Collaborative Hybrid Assignments Training, Zhuofan Zong, Guanglu Song, Yu Liu, 2022. URL: https://arxiv.org/abs/2211.12860v1.
7. Contrastive Learning Rivals Masked Image Modeling in Fine-tuning via Feature Distillation, Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao, Jianmin Bao, Dong Chen, Baining Guo, 2022. URL: https://arxiv.org/abs/2205.14141v3.
8. You Only Learn One Representation: Unified Network for Multiple Tasks, Chien-Yao Wang, I-Hau Yeh, Hong-Yuan Mark Liao, 2021. URL: https://arxiv.org/abs/2105.04206v1.
Content type: Conference Abstract
Ymddengys yng Nghasgliadau:X науково-технічна конференція „Інформаційні моделі, системи та технології“ (2022)



Diogelir eitemau yn DSpace gan hawlfraint, a chedwir pob hawl, onibai y nodir fel arall.