Моля, използвайте този идентификатор за цитиране или линк към този публикация: http://elartu.tntu.edu.ua/handle/lib/36945

Заглавие: Mathematical modeling of high-frequency magamp switch B-H characteristic
Автори: Yaskiv, Anna
Smedley, Keyue
Abramovitz, Alexander
Yaskiv, Volodymyr
Kasatkina, Natalia
Affiliation: West Ukrainian National University, 11 Lvivska str., Ternopil, Ukraine
University of California, Irvine, Irvine, CA 92697-2625, USA
Holon Institute of Technology, 52 Golomb str., Holon 5810201, Israel
Ternopil Ivan Puluj National Technical University, 56 Ruska str., Ternopil, Ukraine
National University of Food Technology, 68 Volodymyrska str., Kyiv, Ukraine
Bibliographic description (Ukraine): Mathematical modeling of high-frequency magamp switch B-H characteristic / Anna Yaskiv, Keyue Smedley, Alexander Abramovitz, Volodymyr Yaskiv, Natalia Kasatkina // ICAAEIT 2021, 15-17 December 2021. — Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. — P. 179–186. — (Mathematical modeling in power engineering and information technologies).
Bibliographic description (International): Yaskiv A., Smedley K., Abramovitz A., Yaskiv V., Kasatkina N. (2021) Mathematical modeling of high-frequency magamp switch B-H characteristic. ICAAEIT 2021 (Tern., 15-17 December 2021), pp. 179-186.
Is part of: Proceedings of the International Conference „Advanced applied energy and information technologies 2021”, 2021
Дата на Публикуване: 15-Дек-2021
Date of entry: 28-Дек-2021
Издател: TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC
Place of the edition/event: Ternopil
Temporal Coverage: 15-17 December 2021
Ключови Думи: high-frequency MagAmp switch
B-H characteristic
magnetic hysteresis
mathematical model
computer simulation
Number of pages: 8
Page range: 179-186
Start page: 179
End page: 186
Резюме: The current paper features a problem of high-frequency MagAmp switch modeling for computer aided design programmes to enable MagAmp power converters design automation. A new mathematical model of MagAmp switch B-H characteristic is presented. An algorithm of its computer integration is described. Dependence of B-H characteristic on switching frequency is investigated for two configurations of MagAmp switches with cores of amorphous Co-based alloy with rectangular hysteresis loop. The simulation results are obtained, and maximum modeling error is calculated.
URI: http://elartu.tntu.edu.ua/handle/lib/36945
ISBN: 978-617-8079-60-4
Copyright owner: © Ternopil Ivan Puluj National Technical University, Ukraine, 2021
URL for reference material: https://archive.org/details/NASA_NTRS_Archive_19940009938/page/n145/mode/2up
https://pdf.directindustry.com/pdf/toshiba-americaelectronics-components/saturable-cores-mag-amps/33679-562725.html#search-en-saturable-cores-mag-amps
https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/balance-of-power-multiphysics-aa-v8-i2.pdf
References (International): 1. Lee, J.; Chen, D. Y.; Jamerson, C. Magamp postregulators – practical design considerations to allow operation under extreme loading conditions. Proceedings of IEEE APEC. 1988. P. 368-376.
2. Austrin, L.; Figueroa-Karlstrom, E.; Engdahl, G. Evaluation of switching losses in magnetic amplifiers as an alternative to IGBT switching technologies. 4th IET International Conference on Power Electronics, Machines and Drives (PEMD 2008). 2008. P. 250–254.
3. Austrin L. 2007. On Magnetic Amplifiers in Aircraft Applications. Royal Institute of Technology. Sweden. 98 p.
4. NASA Technical Reports Server (NTRS) 19940009938: Large space structures and systems in the space station era: A bibliography with indexes (supplement 05). 139 p. Available at: https://archive.org/details/NASA_NTRS_Archive_19940009938/page/n145/mode/2up.
5. Toshiba. Saturable cores for mag-amps. Available at: https://pdf.directindustry.com/pdf/toshiba-americaelectronics-components/saturable-cores-mag-amps/33679-562725.html#search-en-saturable-cores-mag-amps
6. Chen, W.; Hui, S. Y. A Dimmable Light-Emitting Diode (LED) Driver with Mag-Amp Postregulators for Multistring Applications. IEEE Transactions on Power Electronics. 2011. Vol. 26, No 6. P. 1714–1722.
7. Yaskiv, V.; Abramovitz, A.; Smedley, K.; Yaskiv, A. 2015. MagAmp Regulated Isolated AC-DC Converter with High Power Factor. Special issue of journal COMMUNICATIONS - Scientific Letters of the University of Zilina, ISSN 1335-4205. No. 1A/2015. P. 28-34.
8. Tatevosian, A. S.; Zaharova, N. V.; Shelkovnikov, S. V. 2016. Eksperementalnoe issledovanie i raschet magnitnogo polia elektromagnita postoyannogo toka s rasshcheplennymi poliusami i poliusnymi nakonechnikami vkomplekse program ELCUT. Izvestiya Tomskogo politehnicheskogo universiteta. Inzhiniring georesursov, Vol.327, No 2, pp. 133-140. [In Russian]
9.ANSYS Inc. Balance of power. ANSYS Advantage, Vol. 8, No 2, 2014, pp. 33-35. Available at:https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/article/balance-of-power-multiphysics-aa-v8-i2.pdf .
10.Klatt, R.; Krawczyk, F.; Novender, W.-R.; Palm, C.; Weiland T. MAFIA – A three-dimensional electromagneticCAD system for magnets, RF structures, and transient wake-field calculations. Proceedings of the 1986 InternationalLinac Conference, Stanford, California, USA. P. 276-278.
11.Jiles, D. C.; Atherton, D. L. Theory of Ferromagnetic Hysteresis. J. Magn. And Magn. Mater. 1986. No 61. P. 48–60.
12.Chan, J. H.; Vladimirescu, A.; Gao, A., X.; Liebmann, P.; Valainis, J. Nonlinear Transformer Model for CircuitSimulation. IEEE Transactions on Computer-Aided Design, 1991, Vol. 10, No 4, pp. 476 – 482.
13.Yaskiv, A. Matematychne modeliuvannia protsesiv peremagnichennia magnitomyakyh materialiv z vysokoyukrutyznoyu petli gisterezysu. Mizhnarodnyi naukovo-tehnichnyi zhurnal Vymiriuvalna ta Obchysliuvalna Tehnika vTehnologichnyh Protsesah, 2015, No 4 (53), pp. 112-118. [In Ukrainian]
14.Preisach, F. Uber die magnetische Nachwirkung. Zeitschrift fur Physik. 1935. No 94. P. 861–890.
15.Adly, A. A.; Abd-El-Hafiz, S. K. Efficient modeling of vector hysteresis using a novel Hopfield neural networkimplementation of Stoner–Wohlfarth-like operators. Journal of Advanced Research. 2013. No 4. P. 403–409.
16.Konieczny, J., Dobrzañski, L. A., Tomiczek, B., Trzaska, J. Application of the artificial neural networks forprediction of magnetic saturation of metallic amorphous alloys. Archives of Materials Science and Engineering.2008. Vol. 30, No 2. P. 105–108.
17.Nicolaide, A. An Approach to the Mathematical Modeling of the Hysteresis Curves of Magnetic Materials: theMinor Curves. 2007. P. 301-310.
18.Motoasca, S.; Scutaru, G. Hysteresis modeling of soft magnetic materials using LabView Programs. Advances inElectrical and Computer Engineering. 2010. Vol 10, No 2. P.94-97.
19.Edry, D., Ben-Yaakov, S. A SPICE Compatible Model of Magamp Post. Regulators. IEEE Applied PowerElectronics Conf., APEC’92. 1992. P. 793 – 800.
20.Yaskiv, A., Yavorskyy, B. Integration of Magnetic Amplifier Switch Model into Computer Aided Design forPower Converters. Scientific journal of TNTU. 2019. No 2 (94). P. 123-133.
Content type: Conference Abstract
Показва се в Колекции:International conference „Advanced Applied Energy and Information Technologies 2021“, (ICAAEIT 2021)



Публикацияте в DSpace са защитени с авторско право, с всички права запазени, освен ако не е указно друго.