กรุณาใช้ตัวระบุนี้เพื่ออ้างอิงหรือเชื่อมต่อรายการนี้: http://elartu.tntu.edu.ua/handle/lib/36944

ชื่อเรื่อง: Theoretical and experimental aspects of optimal designing of dynamic vibration absorbers – rotating machines system
ผู้แต่ง: Cherchyk, Hennadiy
Diveyev, Bohdan
Yuzefovych, Roman
Affiliation: Karpenko Physico-mechanical Institute NAS Ukraine, Lviv, 5, Naukova Str., 79060, Lviv, Ukraine
Lviv Polytechnic National University, 12 Bandera Str., 79000, Lviv, Ukraine
Bibliographic description (Ukraine): Cherchyk H. Theoretical and experimental aspects of optimal designing of dynamic vibration absorbers – rotating machines system / Hennadiy Cherchyk, Bohdan Diveyev, Roman Yuzefovych // ICAAEIT 2021, 15-17 December 2021. — Tern. : TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC, 2021. — P. 170–178. — (Mathematical modeling in power engineering and information technologies).
Bibliographic description (International): Cherchyk H., Diveyev B., Yuzefovych R. (2021) Theoretical and experimental aspects of optimal designing of dynamic vibration absorbers – rotating machines system. ICAAEIT 2021 (Tern., 15-17 December 2021), pp. 170-178.
Is part of: Proceedings of the International Conference „Advanced applied energy and information technologies 2021”, 2021
วันที่เผยแพร่: 15-ธัน-2021
Date of entry: 28-ธัน-2021
สำนักพิมพ์: TNTU, Zhytomyr «Publishing house „Book-Druk“» LLC
Place of the edition/event: Ternopil
Temporal Coverage: 15-17 December 2021
คำสำคัญ: dynamic vibration absorbers
rotating machines
frequency range
Number of pages: 9
Page range: 170-178
Start page: 170
End page: 178
บทคัดย่อ: Significant issue in the development of modern machines is the reduction of vibration. Dynamic vibration absorbers are widely used to reduce vibration and noise levels in vehicle cabs, to reduce vibration of rotating machines, to reduce vibration amplitudes of various towers and structures and the like. Along with dynamic vibration absorbers tuned to the resonant frequency of the main design, DVAs used to reduce vibration in a given narrow frequency range are widely applied. These are, for example, turbo-generators, gas compressor units, pumps and other rotating machines with a standard speed over a period of exploitation time. Vibration in such machines is narrow-frequency and is caused by imbalances of rotating elements
URI: http://elartu.tntu.edu.ua/handle/lib/36944
ISBN: 978-617-8079-60-4
Copyright owner: © Ternopil Ivan Puluj National Technical University, Ukraine, 2021
References (International): 1. Frahm, H. (1911). Device for damping vibration of bodies,U.S. Patent. No. 989958
2. Watts, P. (1883). On a method of reducing the rolling of ships at sea. Transactions of Institution of Naval Architects, 24, 165.
3. Ormondroyd, J., den Hartog, J.P. (1928). The theory of the dynamic vibration absorber. Transactions of the American Society of Mechanical Engineers, 50, A9-A22.
4. Den Hartog, J.P. (1985). Mechanical Vibrations. New York: Dover Publications.
5. Timoshenko, S.P. (1954). Vibration Problems in Engineering. New York: Van Nostrand.
6. Korenev, B.G., Reznikov L.M. (1993). Dynamic vibration absorber. Wiley.
7. Constantinou, M.C., Soong, T.T., Dargush, G.F. (1998). Passive energy dissipation systems for Structural design and retrofit. New York, Multidisciplinary Center for Earthquake Engineering Research.
8. Truesdell, C., Noll, W. (2004). The Non-Linear Field Theories of Mechanics. Third Edition. Berlin-Heidelberg-New York: Springer-Verlag.
9. Ashley, S. (1984). On the passive damping mechanisms in large space structures. Journal of Spacecraft and Rockets, 21(5), 448–455.
10. Nashif, A.D., Jones D., Henderson, J.P. (1985), Vibration Damping. John Wiley & Sons.
11. Ungar, E.E., Kerwin, E.M. (1962). Loss factors of viscoelastic systems in terms of energy concepts. The Journal of the Acoustical Society of America, 34(7), 954–957.
12. Diveyev, B. (2017). Impact and particle buffered vibration absorbers optimization and design. Ukrainian Journal of Mechanical Engineering and Material Science, 1(2), 35–50.
13. Diveyev, B., Vikovych, I., Martyn V., Dorosh I. (2015). Optimization of the impact and particle vibration absorbers. Sound and Vibration, Proceedings of the XXII International Congress. Florence, Italy.
14. Diveiev, B. (2003). Rotating machine dynamics with application of variation-analytical methods for rotors calculation. Implementation and Education Problems, Proceedings of the XІ Polish – Ukrainian Conference on CAD in Machinery Design. Warsaw, Poland.
15. Stocko, Z., Diveyev, B., Topilnyckyj, V. (2007). Diskrete-cotinuum methods application for rotating machine-absorber interaction analysis. Journal of Achievements in Materials and Manufacturing Engineering, 20(1-2), 387–390.
16. Cherchyk, H., Diveyev, B., Martyn, V., Sava, R. (2014). Parameters identification of particle vibration absorber for rotating machines. The International Congress on Sound and Vibration (ICSV), Proceeding of the Congress. Beijing, China.
17. Masanobu, I., Isao, Y., Koju, H. (2005). Design of Particle Granules Damper for Vertical Vibration with Approximate Analysis. Journal of System Design and Dynamics, 7(4), 233–241.
18. Saeki, M. (2014). Analytical study of multi-particle damping. Journal of Sound and Vibration, 281, 1133–1144.
19. Diveyev, B., Konyk, S., Malcolm, C. (2018). Dynamic properties and damping predictions for laminated plates: High order theories, Timoshenko beam. Journal of Sound and Vibration, 413, 173–190.
Content type: Conference Abstract
ปรากฏในกลุ่มข้อมูล:International conference „Advanced Applied Energy and Information Technologies 2021“, (ICAAEIT 2021)

แฟ้มในรายการข้อมูลนี้:
แฟ้ม รายละเอียด ขนาดรูปแบบ 
ICAAEIT_2021_Cherchyk_H-Theoretical_and_experimental_170-178.pdf2,67 MBAdobe PDFดู/เปิด
ICAAEIT_2021_Cherchyk_H-Theoretical_and_experimental_170-178.djvu597,25 kBDjVuดู/เปิด
ICAAEIT_2021_Cherchyk_H-Theoretical_and_experimental_170-178__COVER.png540,11 kBimage/pngดู/เปิด


รายการทั้งหมดในระบบคิดีได้รับการคุ้มครองลิขสิทธิ์ มีการสงวนสิทธิ์เว้นแต่ที่ระบุไว้เป็นอื่น