Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/36651
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorЯворська, Євгенія Богданівна-
dc.contributor.authorДозорська, Оксана Федорівна-
dc.contributor.authorДозорський, Василь Григорович-
dc.contributor.authorПаньків, Ірина Михайлівна-
dc.contributor.authorКапаціла, Юрій Богданович-
dc.contributor.authorКубашок, Андрій-
dc.date.accessioned2021-12-21T17:04:14Z-
dc.date.available2021-12-21T17:04:14Z-
dc.date.issued2021-12-
dc.date.submitted2021-
dc.identifier.citationOksana Dozorska, Vasil Dozorskyi, Evhenia Yavorska, Yuriy Kapatsila, Iryna Pankiv, Andriy Kubashok. The methods of biosignals processing and their implementation in the structure of the system of impaired human communicative function compensation // ADVANCED APPLIED ENERGY and INFORMATION TECHNOLOGIES 2021. Proceedings of the International Conference (Ternopil, 15-17 of December 2021.) / Ministry of Education and Science of Ukraine, Ternopil Ivan Puluj National Technical Universtiy [and other.]. – Ternopil : TNTU, Zhytomyr : «Publishing house “Book-Druk”» LLC, 2021. – 222 c.uk_UA
dc.identifier.isbn978-617-8079-60-4-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/36651-
dc.description.abstractThe methods of biosignals processing and structure of the system of impaired human communicative function compensation are proposed. The methods of biosignals processing are based on the application of spectralcorrelation analysis methods using the sliding window method and include preparatory and main stages. The sequence of steps of biosignals processing at the preparatory and main stages is substantiated. Also technical parameters and features of practical realization of constituent elements of the system of impaired human communicative function compensation are offered. The principle of operation of the system is based on the parallel selection and processing of electroencephalographic and electromyographic signals. At the same time the features of electrode constructions for selection of electroencephalographic signals, which are widespread today, as well as possible artifacts that will arise in the process of selection of these signals are analyzed. The design of electrodes for registration of electroencephalographic and electromyographic signals is proposed, the selection and processing of which is the basis of the method of indirect compensation of the impaired communicative function, which is realized by this system. A variant of realization of the functional diagram of the block of biosignals selection is proposed. The proposed design of the system of impaired human communicative function compensation can be manufactured using 3D printing technology, which will reduce its cost.uk_UA
dc.format.extent151-157-
dc.language.isoenuk_UA
dc.publisherTNTU, Zhytomyr : «Publishing house “Book-Druk”» LLC, 2021uk_UA
dc.subjecthuman communicative functionuk_UA
dc.subjectcompensation systemuk_UA
dc.subjectprocessing methodsuk_UA
dc.subjectspectral-correlation analysisuk_UA
dc.subjectelectrodesuk_UA
dc.subjectblock of biosignals selectionuk_UA
dc.titleThe methods of biosignals processing and their implementation in the structure of the system of impaired human communicative function compensationuk_UA
dc.typeConference Abstractuk_UA
dc.rights.holderЯворська Є.Б., 2021uk_UA
dc.rights.holderО.Ф. Дозорська, 2021uk_UA
dc.rights.holderДозорський В.Г., 2021uk_UA
dc.rights.holderПаньків І.М., 2021uk_UA
dc.rights.holderКапаціла Ю.Б., 2021uk_UA
dc.rights.holderКубашок А.В., 2021uk_UA
dc.coverage.placenameТНТУuk_UA
dc.relation.references1. Brigham, K., Vijaya Kumar B.V.K. (2010). Imagined Speech Classification with EEG Signals for Silent Communication: A Preliminary Investigation into Synthetic Telepathy. Bioinformatics and Biomedical Engineering, Proceedings of the 4th International Conference. Chengdu, China.uk_UA
dc.relation.references2. Porbadnigk, A., Wester, M., Schultz, T. (2009). EEG-Based Speech Recognition: Impact of Temporal Effects. Bio-inspired Systems and Signal, Processing, Proceedings of the 2nd International Conference. Porto. Portugal.uk_UA
dc.relation.references3. Meltzner, G.S., Heaton, J.T., Deng, Y., De Luca, G., Roy, S.H., Joshua, C. Kline. (2017). Silent Speech Recognition as an Alternative Communication Device for Persons with Laryngectomy. IEEE/ACM Trans Audio Speech Lang Process, Proceedings of the Conference.uk_UA
dc.relation.references4. Herff, C., Schultz, T. (2016). Automatic speech recognition from neural signals: A focused review. Frontiers in Neuroscience, 10, 1-7.uk_UA
dc.relation.references5. Wand, M., Schmidhuber, J. (2016). Deep Neural Network Frontend for Continuous EMG-based Speech Recognition. International Speech Communication Association (Interspeech), Proceedings of the 17th Annual Conference. San Francisco, USA.uk_UA
dc.relation.references6. Jorgensen, C., Lee, D.D., Agabon, S. (2003). Sub Auditory Speech Recognition Based on EMG/EPG Signals. Neural Networks, Proceedings of the International Joint Conference.uk_UA
dc.relation.references7. Khan, M., Jahan, M. (2016). Sub-vocal speech pattern recognition of Hindi alphabet with surface electromyography signal. Perspectives in Science,uk_UA
dc.relation.references8, 558-560. 8. Gonzalez, J.A., Cheah, L.A., Gilbert, J.M., Bai, J., Ell, S.R., Green, P.D., Moore, R.K. (2016). A silent speech system based on permanent magnet articulography and direct synthesis. Computer Speech & Language, 67–87.uk_UA
dc.relation.references9. Xueqian, J., Li, J., Du, Y. (2008). Unvoiced Speech Recognition Based on One-Channel Facial Myoelectric Signal. Intelligent Control and Automation, Proceedings of the Sixth World Congress. Dalian, China.uk_UA
dc.relation.references10. Sannykov, V. (2008). Syloj mysli. Populiarnaia mekhanika, 6(68), 72-75. (in Russian).uk_UA
dc.relation.references11. Dozorska, O. (2018). The mathematical model of electroenсephalographic and electromyographic signals for the task of human communicative function restoration. Scientific jornal of the Ternopil National Technical University, 92(4), 126–132.uk_UA
dc.relation.references12. Nykytyuk, V., Dozorskyi, V., Dozorska, O. (2018). Detection of biomedical signals disruption using a sliding window. Scientific jornal of the Ternopil National Technical University, 91(3), 125–133.uk_UA
dc.identifier.citationenOksana Dozorska, Vasil Dozorskyi, Evhenia Yavorska, Yuriy Kapatsila, Iryna Pankiv, Andriy Kubashok. The methods of biosignals processing and their implementation in the structure of the system of impaired human communicative function compensation // ADVANCED APPLIED ENERGY and INFORMATION TECHNOLOGIES 2021. Proceedings of the International Conference (Ternopil, 15-17 of December 2021.) / Ministry of Education and Science of Ukraine, Ternopil Ivan Puluj National Technical Universtiy [and other.]. – Ternopil : TNTU, Zhytomyr : «Publishing house “Book-Druk”» LLC, 2021. – 222 c.uk_UA
dc.contributor.affiliationТНТУuk_UA
dc.coverage.countryUAuk_UA
Розташовується у зібраннях:Наукові публікації працівників кафедри біотехнічних систем

Файли цього матеріалу:
Файл Опис РозмірФормат 
ICAAEIT-2021_proceedings.pdf21,53 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора