Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/123456789/2823

Назва: Коливання ортотропної циліндричної оболонки з множиною включень довільної конфігурації, жорстко з’єднаних з оболонкою
Інші назви: Vibration of orthotropic cylindrical shell with a set of inclusions of arbitrary configuration rigidly clamped to the shell
Автори: Шопа, Тетяна Василівна
Shopa, T.
Бібліографічний опис: Т.Шопа. Коливання ортотропної циліндричної оболонки з множиною включень довільної конфігурації, жорстко з’єднаних з оболонкою / Т.Шопа // Вісник ТНТУ. — 2013. — Том 70. — № 2. — С.38-51. — (механіка та матеріалознавство).
Дата публікації: 31-січ-2013
Дата внесення: 11-лют-2014
Видавництво: Тернопільський національний технічний університет ім. Івана Пулюя
Місце видання, проведення: Тернопіль, Україна
УДК: 539.3
Теми: ортотропна циліндрична оболонка
коливання
включення
власні частоти
послідовнісний підхід
функція Гріна
непрямий метод граничних елементів
метод колокацій
orthotropic cylindrical shell
vibration
inclusions
natural frequencies
sequential approach
Green function
indirect boundary elements method
collocation method
Короткий огляд (реферат): В рамках уточненої моделі, яка враховує деформацію поперечного зсуву, побудовано розв’язок задачі про усталені коливання ортотропної замкненої циліндричної оболонки з довільною кількістю абсолютно жорстких включень довільної геометричної форми, орієнтації та розташування, які жорстко з’єднані з оболонкою. Торці оболонки є довільної геометричної конфігурації. Розглянуто довільні гармонічні в часі граничні умови на зовнішній границі оболонки. Розв’язок побудовано на основі непрямого методу граничних елементів та секвенціального підходу до зображення функції Гріна. Крайову задачу зведено до системи лінійних алгебраїчних рівнянь.
In the framework of the refined theory, which takes into account transverse shear deformation, the solution of the problem on the steady state vibrations of the orthotropic closed cylindrical shell with the arbitrary number of rigid inclusions of the arbitrary geometrical form, orientation, and location is constructed. Inclusions are rigidly clamped to the shell. The case of the translational motion of the inclusions along the normal direction to the middle surface of the shell is investigated. The shell of the uniform thickness is considered. External boundaries of the shell is of the arbitrary geometrical configuration. This object can be obtained as the result of an arbitrary cut out from the shell of the canonical shape. Arbitrary harmonic in time boundary conditions are considered on the external boundaries of the shell. The solution of the system of partial differential equations in the multi-connected domain with the non-homogeneous boundary conditions of different types is built on the basis of the indirect boundary elements method. The Green’s functions are found on the base of the sequential approach to the representation of the Dirac delta function (as the sequence of the delta-like functions) and the Fourier series method. The boundary value problem is reduced to the system of the Fredholm type integral equations on the base of indirect boundary element method and is solved by the collocation method. The cases of external boundaries of the shell and the contours of the inclusions with the corner points can be analysed within the solution constructed. The solutions for arbitrary mixed cases of the boundary conditions on the external boundaries of the shell can be obtained on the base of integral equations constructed in the paper. Different arbitrary mixed boundary conditions on all subsections of the external boundaries are also allowed. Some aspects of the efficient numerical schemes of the collocation method in order to obtain the convergent solutions for the ill-posed problems, considering Fredholm integral equations of the first kind and the cases of non-smooth boundaries, are discussed.
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/123456789/2823
ISSN: 1727-7108
Власник авторського права: © „Вісник Тернопільського національного технічного університету“
Статус публікації : Опубліковано раніше
Тип вмісту: Article
Розташовується у зібраннях:Вісник ТНТУ, 2013, № 2 (70)



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.