Please use this identifier to cite or link to this item: http://elartu.tntu.edu.ua/handle/123456789/16761

Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarolczuk, A.uk
dc.contributor.authorMacha, E.uk
dc.coverage.temporal25-28 вересня 2006 рокуuk
dc.coverage.temporal25-28 September 2006uk
dc.date.accessioned2016-06-05T06:57:52Z-
dc.date.available2016-06-05T06:57:52Z-
dc.date.created2006-09-25uk
dc.date.issued2006-09-25uk
dc.identifier.citationKarolczuk A. Critical plane approach in stage i and stage ii of fatigue under multiaxial loading / A. Karolczuk, E. Macha // Механічна втома металів. Праці 13-го міжнародного колоквіуму (МВМ-2006), 25-28 вересня 2006 року — Т. : ТДТУ, 2006 — С. 30-35. — (Пленарні доповіді).uk
dc.identifier.isbn966-305-027-6uk
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/123456789/16761-
dc.description.abstractThis paper deals with the estimation problem of the critical plane orientation in multiaxial fatigue failure criteria. Experimental results from multiaxial proportional, nonproportional cyclic loading and variable-amplitude bending and torsion were used to determine the macroscopic fracture plane orientations and the fatigue lives. It was concluded that more important than macroscopic fracture plane orientation is the evolution (Stage I, Stage II) of fracture planes and an appropriate choice of the fatigue failure criterion for the fatigue life estimation.uk
dc.format.extent30-35uk
dc.language.isoenuk
dc.publisherТДТУuk
dc.publisherTDTUuk
dc.relation.ispartofⅩⅢ міжнародний колоквіум „Механічна втома металів“uk
dc.relation.ispartofⅩⅢ Internation Colloquium "Mechanical fatigue of metals"uk
dc.titleCritical plane approach in stage i and stage ii of fatigue under multiaxial loadinguk
dc.typeArticleuk
dc.rights.holder© Тернопільський державний технічний університет імені Івана Пулюяuk
dc.coverage.placenameУкраїна, Тернопільuk
dc.coverage.placenameUkraine, Ternopiluk
dc.format.pages6uk
dc.relation.references1. Findley, W.N. (1959), A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Journal of Engineering for Industry, November, 301-306.uk
dc.relation.references2. Matake, T. (1977), An explanation on fatigue limit under combined stress, Bulletin of The Japan Society of Mech. Eng. 20, 257-263.uk
dc.relation.references3. Fatemi, A. and Socie, D.F. (1988), A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract Engng Mater Struct 11, 149–165.uk
dc.relation.references4. Karolczuk A., Macha E. (2005), A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials, Int J Fracture 134, 267-304uk
dc.relation.references5. Forsyth, P.J.E. (1961), A two-stage process of fatigue crack growth. Proceedings of the Symposium on Crack Propagation, Cranfield, England, 76-94.uk
dc.relation.references6. Park, J., Nelson, D. (2000), Evaluation of an energy-based approach and critical plane approach for predicting constant amplitude multiaxial fatigue limit, Int. J. Fatigue 22, 23-39.uk
dc.relation.references7. Backstrom, M., Marquis, G. (2001), A review of multiaxial fatigue of weldments: experimental results, design code and critical plane approaches, Fatigue Fract Engng Mater Struct 24, 279-291.uk
dc.relation.references8. Serensen, S.V., Kogayev, V.P. & Shnejderovich, R.M. (1975), Permissible Loading and Strength Calculations of Machine Components, Third Edn., Mashinostroenie, Moskva (in Russian).uk
dc.relation.references9. Karolczuk, A., Macha, E. (2005), Fatigue fracture planes and expected principal stress directions under biaxial variable amplitude loading, Fatigue and Fracture of Engineering Materials and Structures 28, 99-106.uk
dc.relation.references10. Chu, C.C. (1984) A three-dimensional model of anisotropic hardening in metals and its application to the analysis of sheet metal formability, J. Mech. Phys. Solids Vol. 32, No. 3, 197-212.uk
dc.relation.references11. Karolczuk, A. (2006), Plastic strains and the macroscopic critical plane orientations under combined bending and torsion with constant and variable amplitudes, Engineering Fracture Mechanics, 73, 1629–1652.uk
dc.relation.referencesen1. Findley, W.N. (1959), A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending, Journal of Engineering for Industry, November, 301-306.uk
dc.relation.referencesen2. Matake, T. (1977), An explanation on fatigue limit under combined stress, Bulletin of The Japan Society of Mech. Eng. 20, 257-263.uk
dc.relation.referencesen3. Fatemi, A. and Socie, D.F. (1988), A critical plane approach to multiaxial fatigue damage including out-of-phase loading, Fatigue Fract Engng Mater Struct 11, 149–165.uk
dc.relation.referencesen4. Karolczuk A., Macha E. (2005), A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials, Int J Fracture 134, 267-304uk
dc.relation.referencesen5. Forsyth, P.J.E. (1961), A two-stage process of fatigue crack growth. Proceedings of the Symposium on Crack Propagation, Cranfield, England, 76-94.uk
dc.relation.referencesen6. Park, J., Nelson, D. (2000), Evaluation of an energy-based approach and critical plane approach for predicting constant amplitude multiaxial fatigue limit, Int. J. Fatigue 22, 23-39.uk
dc.relation.referencesen7. Backstrom, M., Marquis, G. (2001), A review of multiaxial fatigue of weldments: experimental results, design code and critical plane approaches, Fatigue Fract Engng Mater Struct 24, 279-291.uk
dc.relation.referencesen8. Serensen, S.V., Kogayev, V.P. & Shnejderovich, R.M. (1975), Permissible Loading and Strength Calculations of Machine Components, Third Edn., Mashinostroenie, Moskva (in Russian).uk
dc.relation.referencesen9. Karolczuk, A., Macha, E. (2005), Fatigue fracture planes and expected principal stress directions under biaxial variable amplitude loading, Fatigue and Fracture of Engineering Materials and Structures 28, 99-106.uk
dc.relation.referencesen10. Chu, C.C. (1984) A three-dimensional model of anisotropic hardening in metals and its application to the analysis of sheet metal formability, J. Mech. Phys. Solids Vol. 32, No. 3, 197-212.uk
dc.relation.referencesen11. Karolczuk, A. (2006), Plastic strains and the macroscopic critical plane orientations under combined bending and torsion with constant and variable amplitudes, Engineering Fracture Mechanics, 73, 1629–1652.uk
dc.identifier.citationenKarolczuk A., Macha E. (2006) Critical plane approach in stage i and stage ii of fatigue under multiaxial loading. Mechanical Fatigue of Metals: Proceeding of the 13-th International Colloquium (MFM) (Tern., 25-28 September 2006), pp. 30-35 [in English].uk
dc.contributor.affiliationOpole University of Technology, Faculty of Mechanical Engineering, ul. Mikolajczyka 5, 45-271 Opole, Poland, karol@po.opole.pl, emac@po.opole.pluk
dc.citation.journalTitleⅩⅢ міжнародний колоквіум „Механічна втома металів“uk
dc.citation.spage30uk
dc.citation.epage35uk
dc.citation.conference13-ий міжнародний колоквіум (МВМ-2006) „Механічна втома металів“uk
Appears in Collections:13-ий міжнародний колоквіум (МВМ-2006) „Механічна втома металів“ (2006)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.