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Abstract. This paper deals with the estimation problem of the critical plane orientation in 
multiaxial fatigue failure criteria. Experimental results from multiaxial proportional, non-
proportional cyclic loading and variable-amplitude bending and torsion were used to 
determine the macroscopic fracture plane orientations and the fatigue lives. It was concluded 
that more important than macroscopic fracture plane orientation is the evolution (Stage I, 
Stage II) of fracture planes and an appropriate choice of the fatigue failure criterion for the 
fatigue life estimation.  

 
Introduction 
Numerous multiaxial fatigue failure criteria based on the critical plane approach have 

been proposed [1-4]. This approach assumes that some stress or/and strain components acting 
on the critical plane are responsible for the fatigue failure of the material. It is based upon the 
experimental observation that fatigue cracks initiate and grow on the certain material planes. 
The critical plane criteria define different functions that combine the shear and normal stress 
or/and strain components on a plane into one equivalent parameter. It is commonly accepted 
that depends on the test conditions (loading level, temperature, material type, state of stress, 
ect.) material generally forms one of the two types of cracks - shear cracks or tensile cracks. 
The shear cracks are formed on the maximum shear stress plane and Forsyth [5] called this 
process as Stage I. The tensile cracks are formed in Stage II that is predominated by the 
maximum normal stress component. The equivalent damage parameter is usually compared to 
the uniaxial shear or tensile damage parameter obtained by the experimental tests under 
torsion or push-pull loading (S-N curves). However, it is also accepted that either under 
multiaxial and uniaxial fatigue tests the cracks may initiate and propagate on different planes 
– contradictory to the one critical plane orientation. To solve this problem, a wide range of 
multiaxial fatigue failure criteria were proposed only for materials and test conditions for 
which one of the two stages (I or II) dominates in the total fatigue life. There are two aspects 
in the critical plane approach that should be discussed: (i) Should the critical plane orientation 
be determined by the maximum shear or normal stress/strain component or rather by the plane 
with the highest damage degree estimated using the equivalent damage parameter? (ii) Should 
the critical plane orientation coincide with the fatigue fracture plane position at the microscale 
or macroscale? Based on the experimental results analysed in this paper, some comments will 
be drawn to the mentioned aspects. 

 
The Findley Criterion 

Findley [1] proposed a linear combination of the maximum normal stress σn,max and the 
shear stress amplitude τns,a on the critical plane for a given number of cycles to failure Nf 

 fk nans =+ max,, στ , (1) 

where f and k are the material coefficients. The critical plane orientation coincides with the 
plane orientation where the maximum value of this linear combination occurs. Findley did not 
define a mathematical formula for the material coefficient f. Some researchers [6, 7] assume 
that it can be determined from the shear-mode cracking 
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where τaf, mτ are the fatigue limit and the exponent of the S-N curve for fully reversed (R=-1) 
torsion loading, respectively; Nf is the considered number of cycles to failure; Nτ is the 
number of cycles corresponding to the fatigue limit τaf for fully reversed torsion loading. 

The Findley criterion and other are based on the cyclic properties of fatigue loading for 
which the amplitude of the shear stress τns(t) can be found. The problem appears under 
random loading. Nevertheless, it is possible to adapt the Findley and other criteria to random 
loading. For the Findley criterion, the equivalent stress course is as follows 

 )()()( tktt nnseq σττ += . (3) 

The equivalent shear stress history τeq(t) at observation time T is then used as the cyclic 
counting variable. In this case, the range of amplitudes could be divided into the finite 
numbers of stress levels. For each i-th stress level )(

,
i

aeqτ , damage degree is computed by the 

general equation as follows 
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where F is the generalised fatigue damage parameter (for the Findley criterion: F=τ), n(i) is 
the number of cycles assigned into the i-th stress level, a is a coefficient allowing to include 
amplitudes below Faf in the damage accumulation, )(i

fN is a computed number of cycles to 

failure for the i-th stress level (e.g. by Eq. (2)). It is assumed that a = 0.5 is sufficient, for 
lower value, the damage degree is too small to be taken into account.  

 
The Matake Criterion 

Matake [2] introduced a linear combination of the shear and normal stresses on the 
critical plane, similar to the Findley proposal 
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where σn,a is the normal stress amplitude on the critical plane. However, the critical plane 
orientation coincides with the plane of the maximum shear stress amplitude. For such 
orientation of the critical plane, it is possible to determine the material coefficient 
k = 2τaf/σaf−1. 

Under random loading, the equivalent shear stress history has the same mathematical 
form as Eq. (3). However, for the Matake criterion the maximum shear stress range ∆τns 
determines the critical plane orientation 
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where T is the time of observation. Damage degree D(i) is computed on the critical plane for 
each i-th stress level according to the general Eq. (4), where F=τ.  

 
The Maximum Normal Stress Criterion On The Critical Plane 
This failure criterion comes from the static hypothesis of material strength. According 

to this criterion, the maximum normal stress range is responsible for the fatigue of materials. 
For the cyclic loading it leads to the following equation  
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where mσ is the exponent of the S-N curve for fully reversed (R=-1) push-pull loading; Nσ is 
the number of cycles corresponding to the fatigue limit σaf. 

For random loading the equivalent stress history is as follows 
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 )()( tt neq σσ = . (8) 

Damage degree D(i) is computed on the critical plane for each i-th stress level according 
to the general Eq. (4), where F=σ. 

 
Damage Degree Accumulation And Fatigue Life Calculation 

For the variable-amplitude loading, a linear damage Sorensen-Kogayev accumulation 
hypothesis [8] was applied 
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where D(i) is the damage degree computed according to the general Eq. (4), p is the hypothesis 
coefficient, j is the total number of loading levels (we assume j = 64), f(i) is the frequency of 
the i-th loading level, max

,aeqF  is the maximum amplitude of the generalised fatigue damage 

parameter (F=τ, σ). Accumulated damage degree D at the observation time T is used to 
estimate the fatigue life according to the following expression 
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T
Tcal = , (10) 

In the case of the cyclic loading, the number of cycles to failure Nf is computed directly 
from Eqs (2), (5), (7) and then recalculated to Tcal=Nf/f, where f is the frequency of the cyclic 
loading. 

 
Fatigue Tests 
Detailed information about the experimental setup could be found in [9]. Fatigue tests 

were performed on the round full cross-section specimen made of 18G2A steel under 
constant- and variable-amplitude combined bending and torsion moment histories 
measurement (bending: Mb(t), torsion: Mt(t)). Some mechanical properties of the 18G2A steel 
are shown in Tab. 1. 

Table 1. Mechanical properties of the 18G2A steel 
Property Value 
Quasi-static yield stress (σy, MPa) and ultimate strength (σu, MPa), respectively 357, 535 
Young’s modulus (E, GPa) and Poisson’s ratio (ν) 210, 0.30 
Fatigue limit for fully reversed torsion loading, τaf, MPa (*) 142.5 
Exponent of the S-N curve for fully reversed torsion loading, mτ  (*) 12.3 
Number of cycles corresponding to the fatigue limit τaf for fully reversed torsion loading, Nτ , 
cycles 

1.98·106 

Fatigue limit for fully reversed push-pull loading, σaf, MPa 204 
Exponent of the S-N curve for fully reversed push-pull loading, mσ , 8.2 
Number of cycles corresponding to the fatigue limit σaf for fully reversed push-pull loading, Nσ , 
cycles 

1.24·106 

(*) – value recalculated from the torsion S-N curve performed on the full round cross-section specimen using the 
algorithm presented in the next paragraph. 

 
For the constant-amplitude sinusoidal proportional and non-proportional (phase shift δ = 

π/2) loading, the tests were carried out with a frequency f = 20 Hz under different ratios of the 
torsion and bending moments λM = Mt,max/Mb,max. For the variable-amplitude loading, the 
specimens were subjected to bending or torsion with a normal probability distribution and a 
narrow frequency band. The fatigue life and the macroscopic fatigue fracture plane orientation 
was determined for each specimen. The experimental results are presented in Tab. 2, where 

expα̂  is the averaged value of experimental angles αexp, >÷< maxmin ˆˆ αα  is the confidence 

interval (assuming a normal distribution of the αexp) which contains 50% of the probability 
and αexp is the angle between unit-normal vector n

r
to crack plane and the specimen axis z. 
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Two fatigue crack behaviours were observed: (i) one general crack orientation at the 
macroscale was detected under all the investigated constant-amplitude loadings and under the 
variable-amplitude bending; (ii) two crack orientations were observed for the specimens 
subjected to variable-amplitude torsion. The first orientation with a crack length of around 
0.15-0.3 mm is parallel to the specimen axis. The other orientation comes from branching of 
the primary crack, and these branching directions are inclined to the specimen axis by around 
45o (load case no 7 in Tab. 2). 

Table 2. Experimental data 
No δ Mb,max λM 

expα̂  >÷< maxmin ˆˆ αα  

 rad Nm - [o] [o] 
Constant-amplitude loading 

1 0 8.0; 10.0; 10.3 0.68 18.1 17.1 ÷ 19.0 
2 0 6.4; 7.4; 8.2; 9.8 0.96 21.9 20.0 ÷ 23.8 
3 0 5.3; 6.2; 7.2;  1.44 26.5 23.8 ÷ 29.2 
4 π/2 8.9; 9.2; 9.6; 10.3 0.68 12.3 9.1 ÷ 15.5 
5 π/2 8.3 0.98 8.4 7.3 ÷ 9.5 
6 π/2 6.4; 7.2 1.42 10.2 6.4 ÷ 13.9 

Variable-amplitude loading 
7 - 18.4 ∞ 43.6/86.3 42.2÷45.0/82.3 ÷ 90.2 
8 - 16.3 0 1.5 0.8÷2.2 

 
Stress And Strain Computations  
Stress and strain histories in an arbitrary point (x, y) of the specimen cross-section were 

computed from bending and torsion moments Mb(t), Mt(t) considering the plastic strains. 
Plasticity was included in the computation since the cyclic properties (K’, n’ ) of the 18G2A 
steel reveal the appearance of the plastic strains even under low stress level ( %65.0=p

aε  for 

σaf = 204 MPa). The Chu [10] plasticity model of material behaviour was applied to 
determine the strain-stress relation and the influence of loading history on the strain state for 
each point of the specimen cross-section. For every increment of bending ∆Mb(t) and torsion 
∆Mt(t) moments the following quasi-static equilibrium equations were solved by the trust-
region method 

 0)(),,( =∆−∆∫ tMydAtyx b
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where the increment ∆ is defined as ∆σzz(x, y, t) = σzz(x, y, t+∆t)−σzz(x, y, t); ∆σzz is the normal 
stress increment for the finite element with the origin in the plane (x, y); ∆τzφ(t, ρ) is the shear 

stress increment for the finite element with the origin determined by the radius 22 yx +=ρ ; 

dA is the area of the finite element. Detailed information about the stress and strain 
computations are presented in [11]. 

 
Evaluation And Discussion 
The following error parameters were analised to compare the experimental macroscopic 

fracture plane orientation with the critical plane orientation 
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where N is the number of load cases (N = 8), analysed α range (α∈<-90o, 90o>, ∆α=0.1o). 
Absolute difference )(iEα  and the mean value mE ,α  computed according to the analysed 

criteria are presented in Table 3. Bold face characters are used for error parameters smaller 
than 5o. 
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Table 3. Error parameters: )(iEα , mE ,α  computed according to the analysed criteria 

No σzz,max 

MPa 
λτσ = 

τzx,max/σzz,max 

Matake, 
[o] 

k = 0.4 

Findley, [o], k 
max{σn},  

[o] k=0.2 k=0.4 k=0.8 k=1.6 

1 223; 280; 286 0.29 11.8 6.1 0.9 7.5 17.2 3.0 
2 184; 214; 236; 280 0.44 2.5 3.1 8.4 16.8 17.3 1.3 
3 156; 182; 212 0.68 8.3 14.0 19.2 25.3 15.7 0.3 
4 262; 272; 281; 295 0,50 22.2 18.0 14.3 7.5 0.8 7.8 
5 262 0,62 7.4 58.6 45.4 31.9 20.7 2.8 
6 250; 278 0,71 10.0 68.9 58.4 42.2 1.4 2.9 
7 0 ∞ 0.9 5.4 10.9 19.3 29.0 1.4 
8 280 0 43.5 37.8 32.6 24.2 14.6 1.5 

Eα,m: 13.3 26.5 23.3 21.8 14.6 2.6 
 
The macroscopic fracture plane orientation coincides with the maximum shear stress 

plane (Stage I) only in the case of the pure torsion. In all other cases, the best correlation 
between macroscopic fracture plane orientation and the critical plane orientation is obtained 
by the criterion of the maximum normal stress. The Findley criterion was verified for 
different values of the k coefficient. With increasing the k value the mean error mE ,α  

decreases. However, the smallest mean error for k = 1.6 is still larger than the result given by 
the maximum normal stress plane.  

After the critical plane evaluation, the fatigue failure criteria were used to calculate the 
fatigue life. The following errors parameters were applied for the fatigue life verification: 
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The mean error parameter Em reflects the general results conformity. The standard 
deviation error parameter Estd is the superior parameter since it reflects the scatter of the 
results and therefore gives us the information about the failure criterion ability to correlate the 
different kind of multiaxial stress states and the equivalent damage parameter. The second-
rate parameter Em depends on the material constants and the stress gradient influence.  

Scatter of the results (Estd) is very small for the specimens that exhibit one macroscopic 
fracture plane orientation which coincide with the maximum normal stress plane. The results 

exposed by the criterion of the maximum 
shear stress (Table 4) show very large 
scatter Estd = 0.69 although the mean error is 
very small Em = 0.05. The other criteria that 
combine the shear and normal stress/strain 
components on the critical plane (Findley, 
Matake) are not appropriate for the analysed 
steel (Table 4). 

From the engineering point of view, 
the material fracture behaviour is not known 
before the material fatigue failure and 
therefore this feature cannot be used as a 
key in the selection of the fatigue criterion. 
It was assumed that this selection could be 
made by the maximum damage degree 
computed by two simple criteria, i.e. the 
maximum normal stress criterion (Eq. (7)) 
and the maximum shear stress criterion (Eq. 
(3) for k=0). For each specimen, the damage 
degree on the critical plane is computed by 
these two criteria (max{σn,τns}) and than the 

10
2

10
4

10
6

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8

T
exp

, s

T ca
l, s

 

 

×3

×3

Em  =-0.58
Estd=0.32

δ=0, λτσ=0.29

δ=0, λτσ=0.44

δ=0, λτσ=0.68

δ=π/2, λτσ=0.50

δ=π/2, λτσ=0.62

δ=π/2, λτσ=0.71

var.amp.-torsion
var.amp.-bending

 
Figure 1. Comparison between the 

experimental fatigue lives Texp and the 
calculated fatigue lives Tcal for the 
max{σn,τns} criterion. 
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fatigue life Tcal is determined by the highest damage degree (Fig.1).  
Using this idea, the smallest scatter of the results (Estd = 0.32) was obtained. It suggests 

that the fatigue failure under the analysed test conditions is governed only by the maximum 
normal stresses or by the maximum shear stresses (max{σn,τns}).  

It should be noticed that the fatigue lifes Tcal were estimated using the local approach 
(only the stress state at one point is analysed) whereas we deal with stress gradients generated 
by bending and torsion. It is manifested by the underestimated fatigue lifes - the mean error 
parameter Em is negative Em = -0.58.  

 

Table 4. Error life parameters for the analysed multiaxial fatigue failure criteria 

 Matake 
Findley, k 

max{σn} Max{ σn,τns} 0.0 0.2 0.4 0.8 
Estd 0.46 0.69 0.44 0.43 0.58 0.56 0.32 
Em -1.14 0.05 -0.60 -1.38 -2.96 -0.40 -0.58 

 
Conclusions 
The following general conclusion appears: the critical plane and the fracture plane 

notions must be separated. The critical plane is simply a plane that used in the fatigue life 
assessment. The fracture plane at the microscale/macroscale is a plane where material 
cohesion is lost. Depending on loading levels, state of stress etc. the critical plane and fracture 
plane orientations may or not coincide. We postulate that the critical plane approach may be 
successfully used in the fatigue life estimation under different test conditions but the proposed 
damage parameter should be equivalent to the uniaxial one not only in term of the total 
fatigue life but also in term of the macroscopic fracture plane behaviour. For example, if 
under uniaxial torsion loading for a given fatigue life, some macroscopic cracks coincide with 
the maximum shear stress plane and other with the maximum normal stress plane than the 
fatigue criterion based on the torsion S-N curve should be used in the fatigue life estimation if 
the same fracture behaviour is revealed under multiaxial loading. 

Although, plastic strains were taken into account, the computed fatigue lifes Tcal are 
underestimated (conservative). It means that the influence of stress gradient on the fatigue life 
cannot be neglected. 
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