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Abstract. This paper deals with the estimation problemhaf tritical plane orientation in
multiaxial fatigue failure criteria. Experimentat¢sults from multiaxial proportional, non-
proportional cyclic loading and variable-amplitudeending and torsion were used to
determine the macroscopic fracture plane oriematand the fatigue lives. It was concluded
that more important than macroscopic fracture planentation is the evolution (Stage |,
Stage Il) of fracture planes and an appropriatacehof the fatigue failure criterion for the
fatigue life estimation.

Introduction

Numerous multiaxial fatigue failure criteria basaa the critical plane approach have
been proposed [1-4]. This approach assumes that stess or/and strain components acting
on the critical plane are responsible for the fagigailure of the material. It is based upon the
experimental observation that fatigue cracks itet@nd grow on the certain material planes.
The critical plane criteria define different furans that combine the shear and normal stress
or/and strain components on a plane into one ebpnvgarameter. It is commonly accepted
that depends on the test conditions (loading lexeehperature, material type, state of stress,
ect.) material generally forms one of the two typésracks - shear cracks or tensile cracks.
The shear cracks are formed on the maximum shessssplane and Forsyth [5] called this
process as Stage |. The tensile cracks are formestage Il that is predominated by the
maximum normal stress component. The equivalentadarparameter is usually compared to
the uniaxial shear or tensile damage parameteringlataby the experimental tests under
torsion or push-pull loading (S-N curves). Howewierjs also accepted that either under
multiaxial and uniaxial fatigue tests the cracksyrmatiate and propagate on different planes
— contradictory to the one critical plane oriergati To solve this problem, a wide range of
multiaxial fatigue failure criteria were proposedIy for materials and test conditions for
which one of the two stages (I or 1) dominatesha total fatigue life. There are two aspects
in the critical plane approach that should be dised: (i) Should the critical plane orientation
be determined by the maximum shear or normal ¢stess component or rather by the plane
with the highest damage degree estimated usingghivalent damage parameter? (ii) Should
the critical plane orientation coincide with théidae fracture plane position at the microscale
or macroscale? Based on the experimental resudlysad in this paper, some comments will
be drawn to the mentioned aspects.

The Findley Criterion
Findley [1] proposed a linear combination of theximam normal stress, max and the
shear stress amplitudg ,on the critical plane for a given number of cydlesailureN;

Iootko,  ..=T, (1)

nsa n max
wheref andk are the material coefficients. The critical plarentation coincides with the
plane orientation where the maximum value of timedr combination occurs. Findley did not
define a mathematical formula for the material Goeint f. Some researchers [6, 7] assume
that it can be determined from the shear-mode argck
NT j/]/mr

N

Tns,a + kO-n max = Taf ( (2)
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where 1, m; are the fatigue limit and the exponent of the Suve for fully reversed (R=-1)
torsion loading, respectively; is the considered number of cycles to failukg;is the
number of cycles corresponding to the fatigue ligitor fully reversed torsion loading.

The Findley criterion and other are based on tleficproperties of fatigue loading for
which the amplitude of the shear stremgt) can be found. The problem appears under
random loading. Nevertheless, it is possible tqpatize Findley and other criteria to random
loading. For the Findley criterion, the equivalstress course is as follows

Toq(1) =Tos(t) ko (). (3)
The equivalent shear stress histayt) at observation timé& is then used as the cyclic
counting variable. In this case, the range of atmgdis could be divided into the finite
numbers of stress levels. For eadh stress levelr!) . damage degree is computed by the

ega’
general equation as follows
n® 0
|
—_— >
DO =/ ND for Fe,.=aF; | (@)

0 for FU <aF,

ega
whereF is the generalised fatigue damage parameter lfoiFindley criterionF=17), n¥ is
the number of cycles assigned into thh stress levela is a coefficient allowing to include
amplitudes belowF, in the damage accumulatiotN’is a computed number of cycles to

failure for thei-th stress level (e.g. by Eq. (2)). It is assumed #wt0.5 is sufficient, for
lower value, the damage degree is too small t@akentinto account.

The Matake Criterion
Matake [2] introduced a linear combination of theea and normal stresses on the
critical plane, similar to the Findley proposal
N;— ]}/m,

Nf
where g, 5 is the normal stress amplitude on the criticahplaHowever, the critical plane
orientation coincides with the plane of the maximsitmear stress amplitude. For such
orientation of the critical plane, it is possible tetermine the material coefficient
K = 204 0ar1.

Under random loading, the equivalent shear stregsrit has the same mathematical
form as Eq. (3). However, for the Matake criterithie maximum shear stress ranfygs
determines the critical plane orientation

(7,8): AT, = max{7,. (O} - min{r, ()}, (6)

whereT is the time of observation. Damage degbdeis computed on the critical plane for
eachi-th stress level according to the general Eq. (4)re/Re 1.

(5)

Tnsa + kan,a = Taf(

The Maximum Normal Stress Criterion On The Critical Plane
This failure criterion comes from the static hypestis of material strength. According
to this criterion, the maximum normal stress raisgeesponsible for the fatigue of materials.
For the cyclic loading it leads to the followinguadion
N /l/mo
Un,a = Uaf £_UJ )

7
N, (7)
wherem, is the exponent of the S-N curve for fully revergR=-1) push-pull loading\, is
the number of cycles corresponding to the fatigué lox.

For random loading the equivalent stress histogsifollows
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| 1) =0, (0). ®)
Damage degreB" is computed on the critical plane for eath stress level according
to the general Eq. (4), whefe 0.

Damage Degree Accumulation And Fatigue Life Calooita
For the variable-amplitude loading, a linear dam&geensen-Kogayev accumulation
hypothesis [8] was applied
I
1 j ) ZFe(q)af() _aFaf )
D:_ZD(I)' p:|:1F = , f(l):j—
pi= eqa ~aFy 0
n

9)

whereD® is the damage degree computed according to therajefq. $_4)p is the hypothesis
coefficient,j is the total number of loading levels (we assime4),f" is the frequency of

the i-th loading level, F.'2* is the maximum amplitude of the generalised faigiamage

ega
parameter K=7, g). Accumulated damage degr€eat the observation tim& is used to
estimate the fatigue life according to the follog/iexpression
T
Tcal i
D(T)
In the case of the cyclic loading, the number afley to failureN; is computed directly

from Eqgs (2), (5), (7) and then recalculated §g=N:/f, wheref is the frequency of the cyclic
loading.

(10)

Fatigue Tests
Detailed information about the experimental setapld be found in [9]. Fatigue tests
were performed on the round full cross-section ispes made of 18G2A steel under
constant- and variable-amplitude combined bendingd &orsion moment histories
measurement (bendinily(t), torsion:M(t)). Some mechanical properties of the 18G2A steel
are shown in Tab. 1.
Table 1. Mechanical properties of the 18G2A steel

Property Value
Quasi-static yield stressi MPa) and ultimate strengti{ MPa), respectively 357,535
Young's modulusE, GPa) and Poisson’s ratio)( 210, 0.30
Fatigue limit for fully reversed torsion loading;, MPa (*) 142.5
Exponent of the S-N curve for fully reversed torsioading,m; (*) 12.3

Number of cycles corresponding to the fatigue limjtfor fully reversed torsion loadingy, , | 1.9810°
cycles
Fatigue limit for fully reversed push-pull loadingy, MPa 204
Exponent of the S-N curve for fully reversed pusti-fpading,m,, 8.2
Number of cycles corresponding to the fatigue limjtfor fully reversed push-pull loadingy,, | 1.2410°
cycles

(*) — value recalculated from the torsion S-N cuparformed on the full round cross-section specimsing the
algorithm presented in the next paragraph.

For the constant-amplitude sinusoidal proporti@ral non-proportional (phase shift
n/2) loading, the tests were carried out with a tiesteyf = 20 Hz under different ratios of the
torsion and bending moments = Mima/Mpmax FOr the variable-amplitude loading, the
specimens were subjected to bending or torsion avittormal probability distribution and a
narrow frequency band. The fatigue life and the nosopic fatigue fracture plane orientation
was determined for each specimen. The experimeesalts are presented in Tab. 2, where

G oo is the averaged value of experimental angtes, <a,, +4,, > IS the confidence

interval (assuming a normal distribution of thg, which contains 50% of the probability
and aexp Is the angle between unit-normal vectdio crack plane and the specimen axis
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Two fatigue crack behaviours were observed: (i) gareral crack orientation at the
macroscale was detected under all the investigaiadtant-amplitude loadings and under the
variable-amplitude bending; (i) two crack oriemdas were observed for the specimens
subjected to variable-amplitude torsion. The fogentation with a crack length of around
0.15-0.3 mm is parallel to the specimen axis. Timemorientation comes from branching of
the primary crack, and these branching directiorsraclined to the specimen axis by around
45° (load case no 7 in Tab. 2).

Table 2. Experimental data

No| ¢ Mp, max Am dexp < ﬁmin +5'max >
rad Nm - ] (]

Constant-amplitude loading

1| 0| 8.0;10.0;10.3| 0.8 18.1 17.1+19.0

2| 0] 64;74;82;9.8 096 21.9 20.0+ 23.8

3|0 5.3;6.2;7.2; | 144 26.5 23.8+29.2

4 |n/2|8.9;9.2;9.6;10.80.68| 12.3 9.1+15.5

5 |n/2 8.3 098 84 7.3+9.5

6 |n/2 6.4;7.2 142 10.2 6.4+ 13.9
Variable-amplitude loading

7 - 184 o |43.6/86.3 42.2:45.0/82.3+ 90.2

8| - 16.3 0 15 0.8+2.2

Stress And Strain Computations

Stress and strain histories in an arbitrary poiny) of the specimen cross-section were
computed from bending and torsion momehtgt), M(t) considering the plastic strains.
Plasticity was included in the computation since tlgclic propertiesi’, n’) of the 18G2A
steel reveal the appearance of the plastic steaiea under low stress leved(= 065% for
Oy = 204 MPa). The Chu [10] plasticity model of mé&krbehaviour was applied to
determine the strain-stress relation and the infleeof loading history on the strain state for
each point of the specimen cross-section. For emergment of bendindMy(t) and torsion
AM(t) moments the following quasi-static equilibriumuatjons were solved by the trust-
region method

[0, (xy.)ydA-AM, (1) =0, [Ar,,(o.t)pdA-AM,(t) =0, (11)

where the incrememt is defined af\o.{X, V, ) = 04X, Y, t+tAt)—0.AX, v, ); Ao, is the normal
stress increment for the finite element with thigiarin the plane (X, y)Az,(t, p) is the shear

stress increment for the finite element with thigiordetermined by the radius=,/x* +y?;

dA is the area of the finite element. Detailed infatibn about the stress and strain
computations are presented in [11].

Evaluation And Discussion
The following error parameters were analised to gam the experimental macroscopic
fracture plane orientation with the critical plasrgentation

_ 1
Ec(rl) = ) Ea,m :NZEC(II) ) (12)
i=1

whereN is the number of load caseN £ 8), analysedr range ¢[1<-90°, 90°>, Aa=0.1°).
Absolute differenceE!’ and the mean valué, , computed according to the analysed

criteria are presented in Table 3. Bold face characare used for error parameters smaller
than 5.

G0 — g0

exp cal
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Table 3. Error parameterg;’, g, computed according to the analysed criteria

" v A= MaEE]ake, Findley, [], k max{a.}.
MPa ToxmakGrzmax | = 0.4 | 502 k=04 k=0.8 k=16| []
1 223; 280; 286 0.29 11.8 6.1 09 7.5 17.2 3.0
2 184; 214; 236; 280 0.44 25 31 8.4 16.8 17.3 1.3
3 156; 182; 212 0.68 8.3 14.0 19.2 25.3 15.7 0.3
4 262; 272; 281; 295 0,50 22.2 18.0 14.3 7.50.8 7.8
5 262 0,62 7.4 586 454 319 207 28
6 250; 278 0,71 10.0 68.9 584 42214 2.9
7 0 0 0.9 54 10.9 19.3 29.0 14
8 280 0 43.5 37.8 326 242 146 15
Eon 13.3 26.5 23.3 21.8 146 26

The macroscopic fracture plane orientation coireidéh the maximum shear stress
plane (Stage I) only in the case of the pure torslo all other cases, the best correlation
between macroscopic fracture plane orientationtaedcritical plane orientation is obtained
by the criterion of the maximum normal stress. THiadley criterion was verified for
different values of thek coefficient. With increasing thé& value the mean errog,

decreases. However, the smallest mean errdq $0t.6 is still larger than the result given by
the maximum normal stress plane.

After the critical plane evaluation, the fatiguduee criteria were used to calculate the
fatigue life. The following errors parameters wapplied for the fatigue life verification:
T _lseo _ 1 (R0 2
Te()i(z,, Em N ;E ! Estd \/N _1;(E Em) '

The mean error parameté&, reflects the general results conformity. The stadd
deviation error parametdfsy is the superior parameter since it reflects thettsc of the
results and therefore gives us the information abwaifailure criterion ability to correlate the
different kind of multiaxial stress states and #wiivalent damage parameter. The second-
rate parametdg,, depends on the material constants and the stradegt influence.

Scatter of the result&yy) is very small for the specimens that exhibit om&croscopic
fracture plane orientation which coincide with theximum normal stress plane. The results

exposed by the criterion of the maximum

shear stress (Table 4) show very large

EC =log (13)

10°

¢ O geatterEqq = 0.69 although the mean error is
1w Em Z0S * o | very smallEn=0.05. The other criteria that
T o sz 0so | COmbine the shear and normal stress/strain
al o s 0s2 | COmponents on the critical plane (Findley,
o sm2a ~o7 | Matake) are not appropriate for the analysed
m—!_“ 10°L < var.amp.I—forsion steel (Table 4)
= > var.amp-bending From the engineering point of view,

4
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10°t

10°

‘
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10°
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exp

S
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the material fracture behaviour is not known
before the material fatigue failure and
therefore this feature cannot be used as a
key in the selection of the fatigue criterion.
It was assumed that this selection could be
made by the maximum damage degree
computed by two simple criteria, i.e. the

Fi_gure 1. (_Zompar_ison between themaximum normal stress criterion (Eq. (7))
experimental fatigue livesTeyp and the and the maximum shear stress criterion (Eq.

calculated

fatigue

max{cn, Tng Criterion.

lives Tea

for

the (3) fork=0). For each specimen, the damage

degree on the critical plane is computed by
these two criteria (maxdy, Tng) and than the
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fatigue lifeT¢y is determined by the highest damage degree (Fig.1)

Using this idea, the smallest scatter of the reqHlis = 0.32) was obtained. It suggests
that the fatigue failure under the analysed tesditmns is governed only by the maximum
normal stresses or by the maximum shear stresseq éming).

It should be noticed that the fatigue lifég, were estimated using the local approach
(only the stress state at one point is analysedreas we deal with stress gradients generated
by bending and torsion. It is manifested by theanadtimated fatigue lifes - the mean error
parameteE,, is negativeE, = -0.58.

Table 4. Error life parameters for the analysedtiaxibl fatigue failure criteria

Findley, k
Matake 0 03 04 0E max{an} |Max{ o, ¢
Esww| 0.4€ | 0.6¢ 0.4¢ 0.4% 0.5¢ 0.5€ 0.32
E, | -1.14 | 0.0 -0.6C -1.3¢ -2.9¢| -0.4C -0.5¢

Conclusions

The following general conclusion appears: the aaltiplane and the fracture plane
notions must be separated. The critical planengplsi a plane that used in the fatigue life
assessment. The fracture plane at the microscalesswale is a plane where material
cohesion is lost. Depending on loading levels gstétstress etc. the critical plane and fracture
plane orientations may or not coincide. We postuthtit the critical plane approach may be
successfully used in the fatigue life estimatiodemdifferent test conditions but the proposed
damage parameter should be equivalent to the whiaxie not only in term of the total
fatigue life but also in term of the macroscopiacture plane behaviour. For example, if
under uniaxial torsion loading for a given fatidife, some macroscopic cracks coincide with
the maximum shear stress plane and other with #veémum normal stress plane than the
fatigue criterion based on the torsion S-N curveusth be used in the fatigue life estimation if
the same fracture behaviour is revealed under axigii loading.

Although, plastic strains were taken into accouné computed fatigue life$., are
underestimated (conservative). It means that ttheeince of stress gradient on the fatigue life
cannot be neglected.
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