Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/50357
Назва: Digital twins in hospitality management: Simulation-based decision models for efficiency optimization in Central Europe
Автори: Vovk, Iryna Petrivna
Vovk, Oleh
Vovk, Yuriy
Palianytsia, Viktor
Бібліографічний опис: Vovk, I., Vovk, O., Vovk, Y., & Palianytsia, V. Digital twins in hospitality management: Simulation-based decision models for efficiency optimization in Central Europe. Ekonomicko-manazerske spektrum, 2025, vol. 19, no. 2, pp. 44–59. DOI: 10.26552/ems.2025.2.44-59.
Bibliographic citation (APA): Vovk, I., Vovk, O., Vovk, Y., & Palianytsia, V. (2025). Digital twins in hospitality management: Simulation-based decision models for efficiency optimization in Central Europe. Ekonomicko-manazerske spektrum, 19(2), 44–59. https://doi.org/10.26552/ems.2025.2.44-59
Дата публікації: гру-2025
Дата внесення: 7-гру-2025
Країна (код): SK
Місце видання, проведення: Zilina
Діапазон сторінок: 44-59
Короткий огляд (реферат): Purpose of the article: This study examines the effectiveness of digital twin implementation in Central European hotel operations, focusing on simulation-based decision-support capabilities for energy optimization, staff productivity enhancement, and improved occupancy forecasting accuracy. Methods: A visualization-oriented case study methodology analyzed digital twin simulations across ten mid-scale and upscale hotels (3-4 star categories) in the Czech Republic, Slovakia, Poland, and Hungary during January to June 2025. The research integrated Building Information Modelling data, Internet of Things sensor networks, and property management system analytics to create dynamic operational models. The comparative analysis evaluated simulation predictions against actual performance metrics, including occupancy patterns (90-day forecasting), energy consumption (kWh per room night), and staff efficiency (labor hours per occupied room). Return on investment calculations incorporated implementation costs, operational benefits, and five-year discounted cash flow projections. Findings & Value added: Digital twin simulations demonstrated strong predictive accuracy, with an occupancy forecasting correlation coefficient (R²) of 0.86 and energy consumption variance within 8.3% of measured values. Energy optimization simulations identified HVAC control strategies that reduced consumption by an average of 11.5% (from 287.5 kWh/m²/year to 254.3 kWh/m²/year post-implementation) with 98.7% simulation accuracy. Staff productivity improvements averaged 14.7% through occupancy-driven scheduling optimization. Financial analysis confirmed investment viability, with a 3.4-year payback period and a 5-year cumulative benefit of €13,440 per property. Practical implications: Hotel operators benefit from evidence-based guidance for digital twin investment decisions, including quantified performance expectations across operational, financial, and sustainability dimensions. The study demonstrates digital twins' capacity to enhance profitability while advancing Industry 5.0 sustainability objectives by reducing energy consumption and optimizing resource allocation. Implementation requires comprehensive change management that addresses upfront capital requirements (€28,560 on average), IoT infrastructure deployment, and organizational readiness for simulation-driven decision-making. This research provides the first systematic empirical analysis of digital twin applications specifically designed for hospitality management in Central European markets, extending knowledge beyond manufacturing and smart building domains. The visualization-rich approach offers a practical framework for simulation-based operational optimization while contributing to Industry 5.0 literature on human-centric, sustainable technology integration in service sectors.
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/50357
References: 1. Anshori, M. Y., Herlambang, T., Asyari, V., Arof, H., Firdaus, A. A., Oktafianto, K., & Suharto, B. (2024). Optimization of Hotel W Management through Performance Comparison of Support Vector Machine and Linear Regression Algorithm in Forecasting Occupancy. Nonlinear Dynamics and Systems Theory, 24(3), 228-235. 2. Arctiq. (2025). The rise of cyber-physical systems. Arctiq Blog. https://arctiq.com/blog/the-rise-of-cyber-physical-systems 3. Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 7, 167653-167671. https://doi.org/10.1109/ACCESS.2019.2953499 4. Build-UP EU. (2024). Enhancing building energy performance with digital twin technologies: Insights from the SmartWins project. Retrieved from https://build-up.ec.europa.eu/en/resources-and-tools/articles/enhancing-building-energy-performance-digital-twin-technologies 5. Chan, A. T. K., Wang, M., Brilakis, I., & Ip, N. M. Y. (2025, April). Digital twin for sustainable hospitality facilities management: A review and empirical investigation. ASCE. https://doi.org/10.17863/CAM.117392 6. Claroty. (2025a). Bridging the gap: Cyber-physical system (CPS) security for hospitality. Retrieved from https://claroty.com/blog/bridging-the-gap-cyber-physical-system-security-for-hospitality 7. Claroty. (2025b). Cybersecurity for the hospitality industry. Claroty Commercial Cybersecurity. https://claroty.com/commercial-cybersecurity/hospitality 8. Edelheim, J. R., & Ueda, D. (2007). Effective use of simulations in hospitality management education-a case study. Journal of Hospitality, Leisure, Sport and Tourism Education, 6(1), 18-28. https://doi.org/10.3794/johlste.61.104 9. Eiada, R. R., Elabasy, M. M., Abdelrasheed, S. A., Elhmady, N., & Elshahat, D. R. (2025). Integrating digital twin technology in energy management: A review of smart building solutions. Journal of Engineering Research and Reports, 27(4), 354-360. https://doi.org/10.9734/jerr/2025/v27i41477 10. European Commission. (2024). Industry 5.0. Research and Innovation. Retrieved from https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en 11. Feinstein, A. H., & Parks, S. J. (2002). Simulation research in the hospitality industry. In Developments in Business Simulation and Experiential Learning: Proceedings of the Annual ABSEL conference (Vol. 29), 45-57. 12. Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: enabling technologies, challenges and open research. IEEE Access, 8, 108952-108971. https://doi.org/10.1109/ACCESS.2020.2998358 13. Hariharasitaraman, S., Yadav, R., & Agrawal, P. (2023). Some Insights of Cyber Physical Systems in the Context of the Tourism and Travel Industry: A Blockchain-Based Smart Framework for Smart Services. In Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies (pp. 357-379). IGI Global. https://doi.org/10.4018/978-1-6684-8145-5.ch018 14. He, B., & Bai, K. J. (2021). Digital twin-based sustainable intelligent manufacturing: A review. Advances in Manufacturing, 9(1), 1-21. https://doi.org/10.1007/s40436-020-00302-5 15. Horecfex. (2025). Digital twin in hospitality marks the dawn of limitless operations. Retrieved from https://horecfex.com/en/digital-twin-in-hospitality-dawn-of-limitless-operations/ 16. Hwang, J., Kim, J., & Yoon, S. (2025). DT-BEMS: Digital twin-enabled building energy management system for information fusion and energy efficiency. Energy, 326, 136162. https://doi.org/10.1016/j.energy.2025.136162 17. Javaid, M., Haleem, A., & Suman, R. (2023). Digital twin applications toward Industry 4.0: A review. Cognitive Robotics, 3, 71-92. https://doi.org/10.1016/j.cogr.2023.04.003 18. Joglekar, S., Kadam, S., & Dharmadhikari, S. (2023). Industry 5.0: Analysis applications and prognosis. The Online Journal of Distance Education and e-Learning, 11(1), 257-264. 19. Jradi, M., & Bjørnskov, J. (2023, July). A digital twin platform for energy efficient and smart buildings applications. In 2023 Fifth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA) (pp. 1-6). IEEE. https://doi.org/10.1109/ACTEA58025.2023.10194071 20. Lu, Y., Liu, C., Kevin, I., Wang, K., Huang, H., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and computer-integrated manufacturing, 61, 101837. https://doi.org/10.1016/j.rcim.2019.101837 21. Lvov, S. (2025). Transforming hospitality: Implementing digital twins in the hotel industry. LinkedIn Pulse. Retrieved from https://www.linkedin.com/pulse/transforming-hospitality-implementing-digital-twins-hotel-sergei-lvov-cgk9e 22. Maddikunta, P. K. R., Pham, Q. V., Deepa, N., Dev, K., Gadekallu, T. R., Ruby, R., & Liyanage, M. (2022). Industry 5.0: A survey on enabling technologies and potential applications. Journal of Industrial Information Integration, 26, 100257. https://doi.org/10.1016/j.jii.2021.100257 23. MarketIntelo. (2025). Digital twin for hospitality market research report 2033. Retrieved from https://marketintelo.com/report/digital-twin-for-hospitality-market 24. Nahavandi, S. (2019). Industry 5.0 - A human-centric solution. Sustainability, 11(16), 4371. https://doi.org/10.3390/su11164371 25. Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in CPS-based production systems. Procedia Manufacturing, 11, 939-948. https://doi.org/10.1016/j.promfg.2017.07.198 26. Neuron Cloud. (2024). Digital twin for hotels: Unlocking visual data to power sustainable hospitality. Retrieved from https://www.neuroncloud.ai/digital-twin-for-hotels-hospitality/ 27. Peng, X., Zhu, J., Lee, S., Zhou, D., Song, W., & Ying, T. (2024). Digital transformation in the hospitality industry: A bibliometric review from 2000 to 2023. International Journal of Hospitality Management, 120, 103761. https://doi.org/10.1016/j.ijhm.2024.103761 28. Pylianidis, C., Osinga, S., & Athanasiadis, I. N. (2021). Introducing digital twins to agriculture. Computers and Electronics in Agriculture, 184, 105942. https://doi.org/10.1016/j.compag.2020.105942 29. Rame, R., Purwanto, P., & Sudarno, S. (2024). Industry 5.0 and sustainability: An overview of emerging trends and challenges for a green future. Innovation and Green Development, 3(4), 100173. https://doi.org/10.1016/j.igd.2024.100173 30. Ricaurte, E., & Jagarajan, R. (2024). Hotel Sustainability Benchmarking Index 2024: Carbon, energy, and water. Cornell Hospitality Report, 24(10) (May 2024), 1-38. https://hdl.handle.net/1813/115166 31. Sayed, A. N., Bensaali, F., Himeur, Y., Dimitrakopoulos, G., & Varlamis, I. (2025). Enhancing building sustainability: A Digital Twin approach to energy efficiency and occupancy monitoring. Energy and Buildings, 328, 115151. https://doi.org/10.1016/j.enbuild.2024.115151 32. Schick, A. (2024). Reporting metrics and benchmarking results in hotel energy consumption: A systematic literature review (SLR). Journal for Facility Management, 1(26), 32-54. https://doi.org/10.34749/jfm.2024.4683 33. Schick, A., & Redlein, A. (2025). Energy consumption intensity indicators and sustainability benchmarking in the hotel industry: Perceptions of stakeholders in the DACH region. In CIB Conferences (Vol. 1, No. 1, p. 310). https://doi.org/10.7771/3067-4883.1776 34. Semeraro, C., Biyrouti, S. J. A., Abdelkareem, M. A., & Olabi, A. G. (2025). Digital twin-driven innovation in smart and green building: a structured review and research agenda. International Journal of Thermofluids, 101393. https://doi.org/10.1016/j.ijft.2025.101393 35. TWI Global. (2021). What is Industry 5.0? (Top 5 Things You Need To Know). Retrieved from https://www.twi-global.com/technical-knowledge/faqs/industry-5-0 36. Twinview. (2025). The intelligent hotel: Navigating costs with digital twins. Retrieved from https://www.twinview.com/insights/the-intelligent-hotel-navigating-costs-with-digital-twins 37. XenonStack. (2023). Understanding cyber-physical systems (CPS) and their elements. XenonStack Insights. https://www.xenonstack.com/insights/cyber-physical-systems 38. Zaki, K. G. (2019). Using the mixed methods research to model the hotel performance measurement in Egypt: An example from a hotel chain. Journal of Global Business Insights, 4(1), 18-33. https://www.doi.org/10.5038/2640-6489.4.1.1054 39. Zhao, Z. (2025, March). Design of Smart Building Energy Management System Based on Digital Twin Technology. In Proceedings of the 2024 10th International Conference on Architectural, Civil and Hydraulic Engineering (ICACHE 2024) (Vol. 259, p. 192). Springer Nature. https://doi.org/10.2991/978-94-6463-658-1_19
Тип вмісту: Article
Розташовується у зібраннях:Наукові публікації працівників кафедри автомобілів

Файли цього матеріалу:
Файл Опис РозмірФормат 
EMS_2_2025_04_Vovk_etal (1).pdf402,84 kBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора