Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://elartu.tntu.edu.ua/handle/lib/48180

Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorДобржанський, Олександр
dc.contributor.authorКирилович, Валерій
dc.contributor.authorКравчук, Антон
dc.contributor.authorПуховський, Євген
dc.contributor.authorСавків, Володимир Богданович
dc.contributor.authorDobrzhanskyi, Oleksandr
dc.contributor.authorKyrylovych, Valerii
dc.contributor.authorKravchuk, Anton
dc.contributor.authorPuhovsky, Eugene
dc.contributor.authorSavkiv, Volodymyr
dc.date.accessioned2025-02-19T18:52:45Z-
dc.date.available2025-02-19T18:52:45Z-
dc.date.created2024-12-17
dc.date.issued2024-12-17
dc.date.submitted2024-11-25
dc.identifier.citationОсобливості програмної реалізації та тривимірного моделювання автоматизованої сертифікації метрик промислових роботів у середовищі CoppeliaSim / Олександр Добржанський, Валерій Кирилович, Антон Кравчук, Євген Пуховський, Володимир Богданович Савків // Вісник ТНТУ. — Т. : ТНТУ, 2024. — Том 116. — № 4. — С. 135–148.
dc.identifier.issn2522-4433
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/48180-
dc.description.abstractПрисвячено проблемі автоматизованої сертифікації метрик промислових роботів (MПР) у програмному середовищі CoppeliaSim. Автори детально розглядають можливості та інструменти програмного середовища CoppeliaSim для вимірювання та оцінювання таких просторових параметрів ПР, як робоча зона та конфігурація геометричного положення інструменту. Дослідження механічних, техніко-технологічних систем і віртуальних середовищ давно є предметом наукової діяльності. Наприклад, у роботах описано математичні моделі поведінки гнучких механічних передач, дослідження яких проведено без урахування автоматизованої реалізації. Відомі також дослідження методом компʼютерного моделювання технічних систем силового навантаження різальних інструментів із використанням вузькоспеціалізованих програмних середовищ. Не розглянуто особливостей програмної реалізації пропонованих моделей. Пропонований в даній роботі матеріал акцентує увагу на універсальних програмних продуктах та мовах програмування для тривимірного моделювання. Представлено результати дослідження методів та підходів до автоматизованої реалізації метрики, які дозволяють забезпечити надійність і точність при подальшому синтезі елементів робототехнічних технологій, таких, як оптимізація розміщення обладнання, формування оптимальної траєкторії руху ланок системи маніпуляції ПР з інструментом або захватом. Наведено обґрунтування необхідності використання просторового 3D моделювання з повнорозмірними віртуальними моделями ПР у середовищі CoppeliaSim. Проаналізовано інструменти та засоби, що дозволяють врахувати вплив на метрику ПР насамперед просторових факторів, таких, як геометричні параметри конструкції ПР, інструменти, захват, можливі обмеження, зумовлені конструктивними та технологічними особливостями технологічного обладнання. Стаття може бути корисною для дослідників, інженерів та студентів, які вивчають ПР з точки зору їх автоматизованого моделювання та аналізу
dc.description.abstractThe paper is devoted to the problem of automated certification of industrial robot metrics (IRM) in the CoppeliaSim software environment. The authors in detail consider the capabilities and tools of the CoppeliaSim software environment for measuring and evaluating such spatial parameters of the IR as the working area and the configuration of the toolʼs geometric position. The study of mechanical, technical and technological systems and virtual environments has long been the subject of scientific activity. For example, the papers describe mathematical models of the behaviour of flexible mechanical transmissions, the research of which is carried out without taking into account automated implementation. There are also known studies by the method of computer modelling of technical systems for the power load of cutting tools using highly specialized software environments. Moreover, the features of the software implementation of the proposed models are usually not considered. The material proposed in this paper focuses on universal software products and programming languages for three- dimensional modelling. The results of the investigation of methods and approaches to the automated implementation of the metric, which make it possible to ensure reliability and accuracy in the further synthesis of elements of robotic technologies, such as optimisation of equipment placement, formation of the optimal trajectory of movement of links of the manipulation system of the IR with a tool or a gripper are presented in this paper. Rationale for the use of spatial 3D modelling with full-size virtual models of the IR in the CoppeliaSim environment are presented in the paper. The authors analyse the tools and instruments that allow taking into account the influence of primarily spatial factors on the metric of the IR, such as geometric parameters of the IR design, tools, gripper, possible limitations due to the design and technological features of the technological equipment. This paper can be useful for researchers, engineers and students studying IRs in terms of their automated modelling and analysis
dc.format.extent135-148
dc.language.isouk
dc.publisherТНТУ
dc.publisherTNTU
dc.relation.ispartofВісник Тернопільського національного технічного університету, 4 (116), 2024
dc.relation.ispartofScientific Journal of the Ternopil National Technical University, 4 (116), 2024
dc.relation.urihttps://www.researchgate.net/publication/377133228_Kinematics_Study_of_Six-Axis_Industrial_Robots_
dc.relation.urihttps://doi.org/10.1007/978-981-99-9239-3_51
dc.relation.urihttps://doi.org/10.1007/978-3-031-55015-7_23
dc.relation.urihttps://doi.org/10.1007/978-3-031-47454-5_5
dc.relation.urihttps://doi.org/10.54941/ahfe1003868
dc.relation.urihttps://www.researchgate.net/publication/369021403_Spatiotemporal_modeling_of_grip_forces_captures_proficiency_in_manual_robot_control
dc.relation.urihttps://doi.org/10.3390/bioengineering10010059
dc.relation.urihttps://doi.org/10.36227/techrxiv.171198254.46018996/v1
dc.relation.urihttps://www.researchgate.net/publication/361479841_Hybrid_Physical_Metric_For_6-DoF_Grasp_Pose_Detection
dc.relation.urihttps://doi.org/10.1109/ICRA46639.2022.9811961
dc.relation.urihttps://www.researchgate.net/publication/281716706_A_performance_evaluation_methodology_for_robotic_machine_tools_used_in_large_volume_manufacturing
dc.relation.urihttps://doi.org/10.1016/j.rcim.2015.06.002
dc.relation.urihttps://www.researchgate.net/publication/238308032_Assessment_of_the_positioning_performance_of_an_industrial_robot
dc.relation.urihttps://doi.org/10.1108/01439911211192501
dc.relation.urihttps://www.researchgate.net/publication/348232778_Simulation_of_Robot_Kinematic_Motions_using_Collision_Mapping_Planner_using_Robo_Dk_Solver
dc.relation.urihttps://doi.org/10.35940/ijitee.J7588.0991120
dc.relation.urihttps://www.researchgate.net/publication/357158252_ABB_IRB_120-306_Build_Procedure_in_Robo
dc.relation.urihttps://doi.org/10.47992/IJMTS.2581.6012.0169
dc.relation.urihttps://doi.org/10.1109/ICCMA59762.2023.10374649
dc.relation.urihttps://doi.org/10.1007/978-3-031-31967-9_21
dc.relation.urihttps://doi.org/10.1109/WZEE54157.2021.9576924
dc.relation.urihttps://doi.org/10.47992/IJAEML.2581.7000.0095
dc.relation.urihttps://doi.org/10.1007/978-3-030-68014-5_79
dc.relation.urihttp://www.coppeliarobotics.com
dc.relation.urihttps://doi.org/10.47992/IJCSBE.2581.6942.0102
dc.relation.urihttps://new.abb.com
dc.relation.urihttps://onrobot.com/en/products/rg2-gripper
dc.relation.urihttps://doi.org/10.1090/noti2137
dc.subjectмоделювання
dc.subjectпромислова робототехніка
dc.subjectробототехніка
dc.subjectавтоматизована сертифікація метрики
dc.subjectmodelling
dc.subjectindustrial robot
dc.subjectrobotic technology
dc.subjectautomated metric certification
dc.titleОсобливості програмної реалізації та тривимірного моделювання автоматизованої сертифікації метрик промислових роботів у середовищі CoppeliaSim
dc.title.alternativeFeatures of software implementation and three-dimensional modelling of the automated certification of industrial robot metrics in coppeliasim environment
dc.typeArticle
dc.rights.holder© Тернопільський національний технічний університет імені Івана Пулюя, 2024
dc.coverage.placenameТернопіль
dc.coverage.placenameTernopil
dc.format.pages14
dc.subject.udc621.865.82
dc.relation.references1. Hlembotska L., Balytska N., Melnychuk P., Melnyk O. (2019) Computer modelling power load of face mills with cylindrical rake face of inserts in machining difficult-to-cut materials. Scientific Journal of TNTU, vol. 93, no. 1, pp. 70–80. Doi: 10.33108/visnyk_tntu2019.01.070.
dc.relation.references2. Lutsiv I., Dubyniak T., Manziy O., Andreichuk S. (2022) Mathematical represantation of the branch kinematics of a transmission with descrete flexible connection. Scientific Journal of TNTU, vol. 106, no. 2, pp. 5–15. Doi:10.33108/visnyk_tntu2022.02.005.
dc.relation.references3. Liu Y., Zhao L., Liang M., Wang F. (2024) Kinematics Study of Six-Axis Industrial Robots Based on Virtual Simulation Technology. Proceedings of the 13th International Conference on Computer Engineering and Networks. CENet 2023. Lecture Notes in Electrical Engineering, Springer, vol. 1125, pp. 520–531. Available at: https://www.researchgate.net/publication/377133228_Kinematics_Study_of_Six-Axis_Industrial_Robots_ Based_on_Virtual_Simulation_Technology. https://doi.org/10.1007/978-981-99-9239-3_51
dc.relation.references4. Li L., Neau M., Ung T., Buche C. (2024) Crossing Real and Virtual: Pepper Robot as an Interactive Digital Twin. RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science, Springer, vol. 14140, pp. 275–286. https://doi.org/10.1007/978-3-031-55015-7_23
dc.relation.references5. Guanopatin A. V., Ortiz J. S. (2023) Meaningful Learning Processes of Service Robots Through Virtual Environments. Proceedings of the Future Technologies Conference (FTC), Vol. 1. FTC 2023. Lecture Notes in Networks and Systems, Springer, vol. 813, pp. 59–73. https://doi.org/10.1007/978-3-031-47454-5_5
dc.relation.references6. Ge Y., Hu Y., Sun X. (2023) Co-Design of Service Robot Applications Using Virtual Reality. Human Factors in Virtual Environments and Game Design. AHFE. International Conference. AHFE Open Access, AHFE International, USA, vol. 96, pp. 65–73. https://doi.org/10.54941/ahfe1003868
dc.relation.references7. Liu R., Wandeto J., Nageotte F., Zanne P., de Mathelin M., Dresp-Langley B. (2023) Spatiotemporal Modeling of Grip Forces Captures Proficiency in Manual Robot Control. Bioengineering, vol. 10, 59, pp. 1–18. Available at: https://www.researchgate.net/publication/369021403_Spatiotemporal_modeling_of_grip_forces_captures_proficiency_in_manual_robot_control https://doi.org/10.3390/bioengineering10010059
dc.relation.references8. Junya Y., Kenji T., Takahiro W. (2024) Effect of Presenting Stiffness of Robot Hand to Human on Human-Robot Handovers. TechRxiv, April 01, pp. 1–8. https://doi.org/10.36227/techrxiv.171198254.46018996/v1
dc.relation.references9. Lu Y., Deng B., Wang Z., Zhi P., Li Y., Wang S. (2022) Hybrid Physical Metric For 6-DoF Grasp Pose Detection, arXiv.2206.11141, vol. 1, pp. 1–7. Available at: https://www.researchgate.net/publication/361479841_Hybrid_Physical_Metric_For_6-DoF_Grasp_Pose_Detection. https://doi.org/10.1109/ICRA46639.2022.9811961
dc.relation.references10. Barnfather J., Goodfellow M.J., Abram T. (2016) A performance evaluation methodology for robotic machine tools used in large volume manufacturing. Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 49–56. Available at: https://www.researchgate.net/publication/281716706_A_performance_evaluation_methodology_for_robotic_machine_tools_used_in_large_volume_manufacturing https://doi.org/10.1016/j.rcim.2015.06.002
dc.relation.references11. Slamani M., Nubiola A., Bonev I. (2012) Assessment of the positioning performance of an industrial robot. Industrial Robot: An International Journal, vol. 39, no. 1 , pp. 57–68. Available at: https://www.researchgate.net/publication/238308032_Assessment_of_the_positioning_performance_of_an_industrial_robot https://doi.org/10.1108/01439911211192501
dc.relation.references12. Panneerselvam S., Karthikeyan R. (2020) Simulation of Robot Kinematic Motions using Collision Mapping Planner using Robo Dk Solver. International Journal of Innovative Technology and Exploring Engineering, vol. 9, pp. 2278–3075. Available at: https://www.researchgate.net/publication/348232778_Simulation_of_Robot_Kinematic_Motions_using_Collision_Mapping_Planner_using_Robo_Dk_Solver. https://doi.org/10.35940/ijitee.J7588.0991120
dc.relation.references13. Chakraborty S., Aithal S. (2021) ABB IRB 120-30.6 Build Procedure in RoboDK. International Journal of Management, Technology, and Social Sciences, vol. 6, no. 2, pp. 256–264. Available at: https://www.researchgate.net/publication/357158252_ABB_IRB_120-306_Build_Procedure_in_Robo DK. https://doi.org/10.47992/IJMTS.2581.6012.0169
dc.relation.references14. Henriques J., Neto E., Paiva J., Carneiro S., Letícia L., Alexandre F., Flávio C., Giuliano. Trajectory Generation Using RoboDK for a Staubli SCARA TS 60 Robot. 2023 11th International Conference on Control, Mechatronics and Automation (ICCMA), Grimstad, Norway. 2023, pp. 121–126. https://doi.org/10.1109/ICCMA59762.2023.10374649
dc.relation.references15. Goryl K., Pollák M. (2023) Calibration of Panasonic TM-2000 Welding Robot Using Simulation Software. EAI ARTEP 2023. EAI International Conference on Automation and Control in Theory and Practice. Springer Innovations in Communication and Computing. Springer, pp. 273–284. https://doi.org/10.1007/978-3-031-31967-9_21
dc.relation.references16. Salihovic I., Skamo A., Jokic D. (2021). RoboDK to MATLAB Joint Position Transformation. 2021 Selected Issues of Electrical Engineering and Electronics (WZEE), Rzeszow, Poland, pp. 1–6. https://doi.org/10.1109/WZEE54157.2021.9576924
dc.relation.references17. Chakraborty S., Aithal S. (2021) Forward and Inverse Kinematics Demonstration using RoboDK and C#. International Journal of Applied Engineering and Management Letters (IJAEML), vol. 5, no. 1, pp. 97–105. https://doi.org/10.47992/IJAEML.2581.7000.0095
dc.relation.references18. Kyrylovych V., Kravchuk A., Melnychuk P., Mohelnytska L. (2021). Automated Attestation of Metrics for Industrial Robots’ Manipulation Systems. Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, pp. 813–822. https://doi.org/10.1007/978-3-030-68014-5_79
dc.relation.references19. Kyrylovych V., Kravchuk A. (2023) A Three-Tiered Approach to The Initial Stages of Design of Collaborative Robotic. Technical sciences. Technologies Herald of Khmelnytskyi national university, issue 4, no. 323, pp. 180–187. Doi:10.31891/2307-5732-2023-323-4-180-187 81.5.
dc.relation.references20. CoppeliaSim Homepage. Available at: http://www.coppeliarobotics.com.
dc.relation.references21. Chakraborty S., Aithal S. (2021) An Inverse Kinematics Demonstration of a Custom Robot using C# and CoppeliaSim. International Journal of Case Studies in Business, IT, and Education (IJCSBE), vol. 5, no. 1, pp. 78–87. https://doi.org/10.47992/IJCSBE.2581.6942.0102
dc.relation.references22. ABB Homepage. Available at: https://new.abb.com.
dc.relation.references23. OnRobot – RG2 gripper. Available at: https://onrobot.com/en/products/rg2-gripper.
dc.relation.references24. Escobar L., Kaveh K. (2020) Convex polytopes, algebraic geometry, and combinatorics // Notices of the American Mathematical Society, vol. 67, no. 8, pp. 1116–1123. https://doi.org/10.1090/noti2137
dc.relation.referencesen1. Hlembotska L., Balytska N., Melnychuk P., Melnyk O. (2019) Computer modelling power load of face mills with cylindrical rake face of inserts in machining difficult-to-cut materials. Scientific Journal of TNTU, vol. 93, no. 1, pp. 70–80. Doi: 10.33108/visnyk_tntu2019.01.070.
dc.relation.referencesen2. Lutsiv I., Dubyniak T., Manziy O., Andreichuk S. (2022) Mathematical represantation of the branch kinematics of a transmission with descrete flexible connection. Scientific Journal of TNTU, vol. 106, no. 2, pp. 5–15. Doi:10.33108/visnyk_tntu2022.02.005.
dc.relation.referencesen3. Liu Y., Zhao L., Liang M., Wang F. (2024) Kinematics Study of Six-Axis Industrial Robots Based on Virtual Simulation Technology. Proceedings of the 13th International Conference on Computer Engineering and Networks. CENet 2023. Lecture Notes in Electrical Engineering, Springer, vol. 1125, pp. 520–531. Available at: https://www.researchgate.net/publication/377133228_Kinematics_Study_of_Six-Axis_Industrial_Robots_ Based_on_Virtual_Simulation_Technology. https://doi.org/10.1007/978-981-99-9239-3_51
dc.relation.referencesen4. Li L., Neau M., Ung T., Buche C. (2024) Crossing Real and Virtual: Pepper Robot as an Interactive Digital Twin. RoboCup 2023: Robot World Cup XXVI. RoboCup 2023. Lecture Notes in Computer Science, Springer, vol. 14140, pp. 275–286. https://doi.org/10.1007/978-3-031-55015-7_23
dc.relation.referencesen5. Guanopatin A. V., Ortiz J. S. (2023) Meaningful Learning Processes of Service Robots Through Virtual Environments. Proceedings of the Future Technologies Conference (FTC), Vol. 1. FTC 2023. Lecture Notes in Networks and Systems, Springer, vol. 813, pp. 59–73. https://doi.org/10.1007/978-3-031-47454-5_5
dc.relation.referencesen6. Ge Y., Hu Y., Sun X. (2023) Co-Design of Service Robot Applications Using Virtual Reality. Human Factors in Virtual Environments and Game Design. AHFE. International Conference. AHFE Open Access, AHFE International, USA, vol. 96, pp. 65–73. https://doi.org/10.54941/ahfe1003868
dc.relation.referencesen7. Liu R., Wandeto J., Nageotte F., Zanne P., de Mathelin M., Dresp-Langley B. (2023) Spatiotemporal Modeling of Grip Forces Captures Proficiency in Manual Robot Control. Bioengineering, vol. 10, 59, pp. 1–18. Available at: https://www.researchgate.net/publication/369021403_Spatiotemporal_modeling_of_grip_forces_captures_proficiency_in_manual_robot_control https://doi.org/10.3390/bioengineering10010059
dc.relation.referencesen8. Junya Y., Kenji T., Takahiro W. (2024) Effect of Presenting Stiffness of Robot Hand to Human on Human-Robot Handovers. TechRxiv, April 01, pp. 1–8. https://doi.org/10.36227/techrxiv.171198254.46018996/v1
dc.relation.referencesen9. Lu Y., Deng B., Wang Z., Zhi P., Li Y., Wang S. (2022) Hybrid Physical Metric For 6-DoF Grasp Pose Detection, arXiv.2206.11141, vol. 1, pp. 1–7. Available at: https://www.researchgate.net/publication/361479841_Hybrid_Physical_Metric_For_6-DoF_Grasp_Pose_Detection. https://doi.org/10.1109/ICRA46639.2022.9811961
dc.relation.referencesen10. Barnfather J., Goodfellow M.J., Abram T. (2016) A performance evaluation methodology for robotic machine tools used in large volume manufacturing. Robotics and Computer-Integrated Manufacturing, vol. 37, pp. 49–56. Available at: https://www.researchgate.net/publication/281716706_A_performance_evaluation_methodology_for_robotic_machine_tools_used_in_large_volume_manufacturing https://doi.org/10.1016/j.rcim.2015.06.002
dc.relation.referencesen11. Slamani M., Nubiola A., Bonev I. (2012) Assessment of the positioning performance of an industrial robot. Industrial Robot: An International Journal, vol. 39, no. 1 , pp. 57–68. Available at: https://www.researchgate.net/publication/238308032_Assessment_of_the_positioning_performance_of_an_industrial_robot https://doi.org/10.1108/01439911211192501
dc.relation.referencesen12. Panneerselvam S., Karthikeyan R. (2020) Simulation of Robot Kinematic Motions using Collision Mapping Planner using Robo Dk Solver. International Journal of Innovative Technology and Exploring Engineering, vol. 9, pp. 2278–3075. Available at: https://www.researchgate.net/publication/348232778_Simulation_of_Robot_Kinematic_Motions_using_Collision_Mapping_Planner_using_Robo_Dk_Solver. https://doi.org/10.35940/ijitee.J7588.0991120
dc.relation.referencesen13. Chakraborty S., Aithal S. (2021) ABB IRB 120-30.6 Build Procedure in RoboDK. International Journal of Management, Technology, and Social Sciences, vol. 6, no. 2, pp. 256–264. Available at: https://www.researchgate.net/publication/357158252_ABB_IRB_120-306_Build_Procedure_in_Robo DK. https://doi.org/10.47992/IJMTS.2581.6012.0169
dc.relation.referencesen14. Henriques J., Neto E., Paiva J., Carneiro S., Letícia L., Alexandre F., Flávio C., Giuliano. Trajectory Generation Using RoboDK for a Staubli SCARA TS 60 Robot. 2023 11th International Conference on Control, Mechatronics and Automation (ICCMA), Grimstad, Norway. 2023, pp. 121–126. https://doi.org/10.1109/ICCMA59762.2023.10374649
dc.relation.referencesen15. Goryl K., Pollák M. (2023) Calibration of Panasonic TM-2000 Welding Robot Using Simulation Software. EAI ARTEP 2023. EAI International Conference on Automation and Control in Theory and Practice. Springer Innovations in Communication and Computing. Springer, pp. 273–284. https://doi.org/10.1007/978-3-031-31967-9_21
dc.relation.referencesen16. Salihovic I., Skamo A., Jokic D. (2021). RoboDK to MATLAB Joint Position Transformation. 2021 Selected Issues of Electrical Engineering and Electronics (WZEE), Rzeszow, Poland, pp. 1–6. https://doi.org/10.1109/WZEE54157.2021.9576924
dc.relation.referencesen17. Chakraborty S., Aithal S. (2021) Forward and Inverse Kinematics Demonstration using RoboDK and C#. International Journal of Applied Engineering and Management Letters (IJAEML), vol. 5, no. 1, pp. 97–105. https://doi.org/10.47992/IJAEML.2581.7000.0095
dc.relation.referencesen18. Kyrylovych V., Kravchuk A., Melnychuk P., Mohelnytska L. (2021). Automated Attestation of Metrics for Industrial Robots’ Manipulation Systems. Advanced Manufacturing Processes II. InterPartner 2020. Lecture Notes in Mechanical Engineering. Springer, pp. 813–822. https://doi.org/10.1007/978-3-030-68014-5_79
dc.relation.referencesen19. Kyrylovych V., Kravchuk A. (2023) A Three-Tiered Approach to The Initial Stages of Design of Collaborative Robotic. Technical sciences. Technologies Herald of Khmelnytskyi national university, issue 4, no. 323, pp. 180–187. Doi:10.31891/2307-5732-2023-323-4-180-187 81.5.
dc.relation.referencesen20. CoppeliaSim Homepage. Available at: http://www.coppeliarobotics.com.
dc.relation.referencesen21. Chakraborty S., Aithal S. (2021) An Inverse Kinematics Demonstration of a Custom Robot using C# and CoppeliaSim. International Journal of Case Studies in Business, IT, and Education (IJCSBE), vol. 5, no. 1, pp. 78–87. https://doi.org/10.47992/IJCSBE.2581.6942.0102
dc.relation.referencesen22. ABB Homepage. Available at: https://new.abb.com.
dc.relation.referencesen23. OnRobot – RG2 gripper. Available at: https://onrobot.com/en/products/rg2-gripper.
dc.relation.referencesen24. Escobar L., Kaveh K. (2020) Convex polytopes, algebraic geometry, and combinatorics, Notices of the American Mathematical Society, vol. 67, no. 8, pp. 1116–1123. https://doi.org/10.1090/noti2137
dc.identifier.doihttps://doi.org/10.33108/visnyk_tntu2024.04.135
dc.contributor.affiliationДержавний університет «Житомирська політехніка», Житомир, Україна
dc.contributor.affiliationТернопільський національний технічний університет імені Івана Пулюя, Тернопіль, Україна
dc.contributor.affiliation«Zhytomyr Polytechnic» State University, Zhytomyr, Ukraine
dc.contributor.affiliationTernopil Ivan Puluj National Technical University, Ternopil, Ukraine
dc.citation.journalTitleВісник Тернопільського національного технічного університету
dc.citation.volume116
dc.citation.issue4
dc.citation.spage135
dc.citation.epage148
dc.identifier.citation2015Особливості програмної реалізації та тривимірного моделювання автоматизованої сертифікації метрик промислових роботів у середовищі CoppeliaSim / Добржанський О. та ін. // Вісник ТНТУ, Тернопіль. 2024. Том 116. № 4. С. 135–148.
dc.identifier.citationenAPADobrzhanskyi, O., Kyrylovych, V., Kravchuk, A., Puhovsky, E., & Savkiv, V. (2024). Osoblyvosti prohramnoi realizatsii ta tryvymirnoho modeliuvannia avtomatyzovanoi sertyfikatsii metryk promyslovykh robotiv u seredovyshchi CoppeliaSim [Features of software implementation and three-dimensional modelling of the automated certification of industrial robot metrics in coppeliasim environment]. Scientific Journal of the Ternopil National Technical University, 116(4), 135-148. TNTU. [in Ukrainian].
dc.identifier.citationenCHICAGODobrzhanskyi O., Kyrylovych V., Kravchuk A., Puhovsky E., Savkiv V. (2024) Osoblyvosti prohramnoi realizatsii ta tryvymirnoho modeliuvannia avtomatyzovanoi sertyfikatsii metryk promyslovykh robotiv u seredovyshchi CoppeliaSim [Features of software implementation and three-dimensional modelling of the automated certification of industrial robot metrics in coppeliasim environment]. Scientific Journal of the Ternopil National Technical University (Tern.), vol. 116, no 4, pp. 135-148 [in Ukrainian].
Vyskytuje se v kolekcích:Вісник ТНТУ, 2024, № 4 (116)



Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.