Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elartu.tntu.edu.ua/handle/lib/47610
Назва: The use of neural networks for modeling the thermophysical characteristics of epoxy composites treated with electric spark water hammer
Автори: Petpo, Stukhliak
Vasyl, Martsenyuk
Oleg, Totosko
Danulo, Stukhlyak
Iryna, Didych
Приналежність: Ternopil Ivan Puluj National Technical University, Ruska 56, 46001 Ternopil, Ukraine
University of Bielsko-Biala, Willowa St. 2, Bielsko-Biala, 43-300, Poland
Бібліографічний опис: Stukhliak P., Martsenyuk V., Totosko O., Stukhlyak D., Didych I. (2024). The use of neural networks for modeling the thermophysical characteristics of epoxy composites treated with electric spark water hammer.CEUR Workshop Proceedings, 3742, 13–24.
Bibliographic citation (APA): Stukhliak P., Martsenyuk V., Totosko O., Stukhlyak D., Didych I. (2024). The use of neural networks for modeling the thermophysical characteristics of epoxy composites treated with electric spark water hammer.CEUR Workshop Proceedings, 3742, 13–24.
Конференція/захід: CEUR Workshop Proceedings
Дата публікації: 12-чер-2024
Дата внесення: 23-січ-2025
Видавництво: CEUR-WS
Країна (код): UA
Місце видання, проведення: Ternopil, Ukraine, June 12–14, 2024
Теми: machine learning
neural networks
composite
Діапазон сторінок: 13–24
Серія/номер: ;3742
Короткий огляд (реферат): In this work, the properties of epoxy composites modified with an active plasticizer were modeled. The material was treated with electrospark water hammer. The material was treated with electric spark water hammer, which improves their physical and mechanical properties. The main attention is paid to the study of the thermal coefficient of linear expansion, which is a critical parameter for the use of composites in different temperature conditions. The results of modeling the thermophysical characteristics showed a high correlation with the experimental data, where the correlation coefficient in the test sample was 0.99%. The prediction error of epoxy polymers filled with DEG-1, aluminum oxide, chromium oxide, and carbon black by neural networks is 0.11, 0.17, 0.93, and 0.04% in test samples for different fillers. It has been shown that neural networks are capable of analyzing data and learning from it. Therefore, modeling the properties of materials by neural networks allows achieving high prediction accuracy.
URI (Уніфікований ідентифікатор ресурсу): http://elartu.tntu.edu.ua/handle/lib/47610
Власник авторського права: Stukhliak P., Martsenyuk V., Totosko O., Stukhlyak D., Didych I.
Перелік літератури: [1] J. Jiang, M. Chen and J. Fan, “Deep neural networks for the evaluation and design of photonic devices,” Nature Reviews Materials, vol. 6, pp. 679–700. Dec. 2021. doi:10.1038/s41578-020-00260-1. [2] Wu. Lingling, L. Lei, W. Yong, Z. Zirui, Z. Houlong, K. Deepakshyam, W. Qianxuan and J. Hanqing, “A machine learning-based method to design modular metamaterials,” Extreme Mechanics Letters, vol. 36, no. 100657, Apr. 2020. doi:10.1016/j.eml.2020.100657. [3] Mazumder, Rahinul & Govindaraj, Premika & Mathews, Lalson & Salim, Nisa & Antiohos, Dennis & Hameed, Nishar. (2023). Modeling, Simulation, and Machine Learning in Thermally Conductive Epoxy Materials, Multifunctional Epoxy Resins, 295-326. DOI:10.1007/978-981-19-6038-3_11. [4] M. Zozyuk, D. Koroliouk, P. Krysenko, A. Yurikov and Y. Yakymenko, Prediction of characteristics using a convolutional neural network based on experimental data on the structure and composition of metamaterials, Statistics, optimization and information computing, vol. 11, pp. 777–787, doi:10.19139/soic-2310-5070-1707. [5] Wan, X., Feng, W., Wang, Y., Wang, H., Zhang, X., Deng, C., et al.: Materials discovery and properties prediction in thermal transport via materials informatics: a mini review. Nano Lett. 19, 3387–3395 (2019). https://doi.org/10.1021/acs.nanolett.8b05196 [6] Sydorets, V., Berdnikova, O., Polovetskyi, Ye., Titkov, Ye., & Bernatskyi, A. (2020). Modern Techniques for Automated Acquiring and Processing Data of Diffraction Electron Microscopy for Nano-Materials and Single-Crystals. In Materials Science Forum (Vol. 992, pp. 907–915). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/msf.992.907 [7] O. Khatib, S. Ren, J. Malof and W. Padilla, “Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review,” Adv. Funct. Mater, vol. 31, no. 2101748, May. 2021. doi:10.1002/adfm.202101748. [8] Oleg TOTOSKO, Petro STUKHLYAK, Mykola MYTNYK, Nikolay DOLGOV, Roman ZOLOTIY, Danilo STUKHLYAK, Investigation of Corrosion Resistance of Two-Layer Protective Coatings, Challenges to national defence in contemporary geopolitical situation 2022(2022), no. 1, 50-54, DOI 10.47459/cndcgs.2022.6 [9] Fialko, N., Dinzhos, R., Sherenkovskii, J., Meranova, N., Aloshko, S., Izvorska, D., Korzhyk, V., Lazarenko, M., Mankus, I., & Nedbaievska, L. (2021). Establishment of regularities of influence on the specific heat capacity and thermal diffusivity of polymer nanocomposites of a complex of defining parameters . Eastern-European Journal of Enterprise Technologies, 6(12) (114), 34–39. https://doi.org/10.15587/1729-4061.2021.245274 [10] Fialko, N., Dinzhos, R., Sherenkovskii, J., Meranova, N., Navrodska, R., Izvorska, D., Korzhyk, V., Lazarenko, M., & Koseva, N. (2021). Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties . Eastern-European Journal of Enterprise Technologies, 4(5(112), 21–26. https://doi.org/10.15587/1729-4061.2021.236915 [11] G. M. Hryhorenko, L. I. Adeeva, A. Yu. Tunik, M. V. Karpets, V. N. Korzhyk, M. V. Kindrachuk, and O. V. Tisov, Formation of Microstructure of Plasma-Arc Coatings Obtained Using Powder Wires with Steel Skin and B4 C+(Cr,Fe)7С3+Al Filler, Metallofiz. Noveishie Tekhnol., 42, No. 9: 1265—1282 (2020) https://doi.org/10.15407/mfint.42.09.1265 [12] Dobrotvor I.G. et al. Influence of Thickness and Dispersed Impurities on Residual Stresses in Epoxy Composite Coatings, Strength of Materials. Springer, 2021. Vol. 53, № 2. P. 283–290. [13] Wenzhu Zhang, Youwei Xu, Yu Shi, Guoxing Su, Yufen Gu, Korzhyk Volodymyr, Intergranular corrosion characteristics of high-efficiency wire laser additive manufactured Inconel 625 alloys, Corrosion Science, Volume 205, 2022, 110422, ISSN 0010-938X, https://doi.org/10.1016/j.corsci.2022.110422. [14] Markashova, L., Tyurin, Y., Berdnikova, O., Kolisnichenko, O., Polovetskyi, I., Titkov, Y. (2019). Effect of Nano-Structured Factors on the Properties of the Coatings Produced by Detonation Spraying Method. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_11 [15] Berdnikova, O., Sydorets, V., & Alekseienko, T. (2014). Structure and Properties of Laser-Welded Joints from High-Strength Steels. In Applied Mechanics and Materials (Vol. 682, pp. 240–245). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/amm.682.240 [16] Korzhyk, V., Khaskin, V., Grynyuk, A., Ganushchak, O., Peleshenko, S., Konoreva, O., Demianov, O., Shcheretskiy, V., & Fialko, N. (2021). Comparing features in metallurgical interaction when applying different techniques of arc and plasma surfacing of steel wire on titanium . Eastern-European Journal of Enterprise Technologies, 4(12(112), 6–17. https://doi.org/10.15587/1729-4061.2021.238634 [17] Skorokhod, A.Z., Sviridova, I.S. & Korzhik, V.N. The effect of mechanical pretreatment of polyethylene terephthalate powder on the structural and mechanical properties of coatings made from it. Mechanics of Composite Materials 30, 328–334 (1995). https://doi.org/10.1007/BF00634755 [18] O.V.Totosko, P.D.Stukhlyak, A.H.Mykytyshyn, V.V.Levytskyi. Investigation of electrospark hydraulic shock influence on adhesive-cohesion characteristics of epoxy coatings. Funct. Mater. 2020; 27 4: 760-766. doi:https://doi.org/10.15407/fm27.04.760 [19] V. Martsenyuk, I. Andrushchak, A. Sverstiuk, A. Klos-Witkowska. On investigation of stability and bifurcation of neural network with discrete and distributed delays.) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 11127. LNCS, pp. 300 – 313. DOI: 10.1007/978-3-319-99954-8_26. [20] V. Martsenyuk, A. Sverstiuk. An exponential evaluation for recurrent neural network with discrete delays. System Research and Information Technologies, 2019. Vol. 2. pp. 83 – 93. DOI: 10.20535/SRIT.2308-8893.2019.2.07 [21] O. Nakonechnyi, V. Martsenyuk, A. Sverstiuk. On Application of Kertesz Method for Exponential Estimation of Neural Network Model with Discrete Delays. Mechanisms and Machine Science. 2020. Vol. 70. pp. 165 – 176. DOI: 10.1007/978-3-030-13321- 4_14. [22] V. Martsenyuk, A. Klos-Witkowska, S. Dzyadevych, A. Sverstiuk. Nonlinear Analytics for Electrochemical Biosensor Design Using Enzyme Aggregates and Delayed Mass Action. Sensors 2022, 22(3), 980; https://doi.org/10.3390/s22030980. [23] V. Martsenyuk, O. Soldatkin, A. Klos-Witkowska, A. Sverstiuk, K. Berketa. Operational stability study of lactate biosensors: modeling, parameter identification, and stability analysis. In Frontiers in Bioengineering and Biotechnology. 2024. Vol. 12. Frontiers Media SA. https://doi.org/10.3389/fbioe.2024.1385459. [24] A. Sverstiuk. Research of global attractability of solutions and stability of the immunosensor model using difference equations on the hexagonal lattice. Innovative Biosystems and Bioengineering. 2019. Vol. 3 (1), pp. 17 – 26. DOI: 10.20535/ibb.2019.3.1.157644. [25] V. Martsenyuk, A. Sverstiuk, I. Andrushchak. Approach to the study of global asymptotic stability of lattice differential equations with delay for modeling of immunosensors. Journal of Automation and Information Sciences. 2019. Vol. 51 (2), pp. 58 – 71. DOI: 10.1615/jautomatinfscien.v51.i2.70. [26] A. Nakonechnyi, V. Martsenyuk, A. Sverstiuk, V. Arkhypova, S. Dzyadevych. Investigation of the mathematical model of the biosensor for the measurement of α- chaconine based on the impulsive differential system CEUR Workshop Proceedings. 2020. Vol. 2762, pp. 209 – 217. [27] V. Martsenyuk, O. Bahrii-Zaiats, A. Sverstiuk, S. Dzyadevych, B. Shelestovskyi. Mathematical and Computer Simulation of the Response of a Potentiometric Biosensor for the Determination of α-сhaconine. CEUR Workshop Proceedings. 2023. Vol. 3468, pp. 1 – 11. [28] V. Martsenyuk, A. Sverstiuk, A. Klos-Witkowska, K. Nataliia, O. Bagriy-Zayats, I. Zubenko. Numerical analysis of results simulation of cyber-physical biosensor systems. CEUR Workshop Proceedings. 2019. Vol. 2516, pp. 149 – 164. [29] V. Martsenyuk, A. Sverstiuk, O. Bahrii-Zaiats, A. Kłos-Witkowska. Qualitative and Quantitative Comparative Analysis of Results of Numerical Simulation of Cyber- Physical Biosensor Systems. CEUR Workshop Proceedings. 2022. Vol. 3309, pp. 134 – 149. [30] Haykin S. Neural Networks - A Comprehensive Foundation - Simon Haykin.pdf. McMaster University, Hamilton, Ontario, Canada, 2006. P. 823. [31] B. Cunha, C. Droz, A. Zine, S. Foulard and M. Ichchou, “A review of machine learning methods applied to structural dynamics and vibroacoustic,” Mechanical Systems and Signal Processing, vol. 200, pp. 110535, Jun. 2023, doi:10.1016/j.ymssp.2023.110535. [32] R. Tan, N. Zhang and W. Ye, “A deep learning–based method for the design of microstructural materials,” Struct. Multidisc. Optim., vol. 61, pp. 1417–1438. Nov. 2019, doi:: 10.1007/s00158-019-02424-2. [33] H. Lypak, A. Rzheuskyi, N. Kunanets and V. Pasichnyk, "Formation of a consolidated information resource by means of cloud technologies", 5th International Scientific- Practical Conference Problems of Infocommunications. Science and Technology PIC S&T’2018, October 9–12, 2018. [34] N. Richard: Applied regression analysis, third ed., John Wiley & Sons, New York, 1998 [35] Ian Goodfellow, Yoshua Bengio, Aaron Courville: Deep Learning, The MIT Press, 2016 [36] Buketov, A., Stukhlyak, P., Maruschak, P., Panin, S. V., & Menou, A. (2016). Physical and Chemical Aspects of Formation of Epoxy Composite Material with Microfilling Agent. In Key Engineering Materials (Vol. 712, pp. 143–148). Trans Tech Publications, Ltd. https://doi.org/10.4028/www.scientific.net/kem.712.143 [37] Stukhlyak, P.D., Mytnyk, M.M. & Orlov, V.O. Influence of Boundary Interlayers on Properties of Composite Polymeric Materials (a Review). Materials Science 37, 80–86 (2001). https://doi.org/10.1023/A:1012338422984 [38] Paton, B.E., Chernets, A.V., Marinsky, G.S., Korzhik, V.N., Petrov, V.S., Prospects of using plasma technologies for disposal and recycling of medical and other hazardous waste. Part 1., Problemy Spetsial'noj Electrometallugii, 42005, (3), рр.. 49-57 [39] Dolgov, N., Stukhlyak, P., Totosko, O., Melnychenko, O., Stukhlyak, D., & Chykhira, I. (2023). Analytical stress analysis of the furan epoxy composite coatings subjected to tensile test. Mechanics of Advanced Materials and Structures, 1–11. https://doi.org/10.1080/15376494.2023.2239811
Тип вмісту: Article
Розташовується у зібраннях:Навчальна література кафедри КТ

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper2.pdf1,37 MBAdobe PDFПереглянути/відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.

Інструменти адміністратора