Utilizza questo identificativo per citare o creare un link a questo documento: http://elartu.tntu.edu.ua/handle/lib/47592
Record completo di tutti i metadati
Campo DCValoreLingua
dc.contributor.authorLypa, Borys-
dc.contributor.authorHoryn, Ivan-
dc.contributor.authorZagorodna, Natalia-
dc.contributor.authorTymoshchuk, Dmytro-
dc.contributor.authorLechachenko, Taras-
dc.date.accessioned2025-01-19T12:32:18Z-
dc.date.available2025-01-19T12:32:18Z-
dc.date.issued2024-10-23-
dc.identifier.citationLypa, B., Horyn, I., Zagorodna, N., Tymoshchuk, D., Lechachenko T., (2024). Comparison of feature extraction tools for network traffic data. CEUR Workshop Proceedings, 3896, pp. 1-11.uk_UA
dc.identifier.isbn1613-0073-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/47592-
dc.description.abstractThe comparison analysis of the most popular tools to extract features from network traffic is conducted in this paper. Feature extraction plays a crucial role in Intrusion Detection Systems (IDS) because it helps to transform huge raw network data into meaningful and manageable features for analysis and detection of malicious activities. The good choice of feature extraction tool is an essential step in construction of Artificial Intelligence-based Intrusion Detection Systems (AI-IDS), which can help to enhance the efficiency, accuracy, and scalability of such systems.-
dc.format.extent1-11-
dc.publisherCEUR-WSuk_UA
dc.subjectcybersecurityuk_UA
dc.subjectbig datauk_UA
dc.subjectintrusion detection systemuk_UA
dc.subjectnetworkuk_UA
dc.subjecttrafficuk_UA
dc.subjectfeature extractionuk_UA
dc.subjectartificial intelligenceuk_UA
dc.titleComparison of feature extraction tools for network traffic datauk_UA
dc.typeArticle-
dc.rights.holder© Borys Lypa, Ivan Horyn, Natalia Zagorodna, Dmytro Tymoshchuk, Taras Lechachenkouk_UA
dc.coverage.placenameTernopil, Ukraine, Opole, Poland, October 23-25, 2024.uk_UA
dc.relation.references[1] Petliak, N., Klots, Y., Titova, V., Cheshun, V., Boyarchuk, A. Signature-based Approach to Detecting Malicious Outgoing Traffic. 4th International Workshop on Intelligent Information Technologies and Systems of Information Security, IntellTSIS 2023. CEUR Workshop Proceedings, 2023, 3373, pp. 486–506uk_UA
dc.relation.references[2] Ioulianou, Philokypros, Vasilakis, Vasileios orcid.org/0000-0003-4902-8226, Moscholios, Ioannis et al. (1 more author) (Accepted: 2018) A Signature-based Intrusion Detection System for the Internet of Things. In: Information and Communication Technology Form, 11-13 Jul 2018. (In Press)uk_UA
dc.relation.references[3] Y. Klots, N. Petliak and V. Titova, "Evaluation of the efficiency of the system for detecting malicious outgoing traffic in public networks," 2023 13th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, 2023, pp. 1-5, doi: 10.1109/DESSERT61349.2023.10416502.uk_UA
dc.relation.references[4] Hashemi, M. J., Cusack, G., & Keller, E. (2019, December). Towards evaluation of nidss in adversarial setting. In Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data Communication Networks (pp. 14- 21).uk_UA
dc.relation.references[5] ZAGORODNA, N., STADNYK, M., LYPA, B., GAVRYLOV, M., & KOZAK, R. (2022). Network Attack Detection Using Machine Learning Methods. Challenges to national defence in contemporary geopolitical situation, 2022(1), 55-61.uk_UA
dc.relation.references[6] Sarhan, M., Layeghy, S., & Portmann, M. (2022). Evaluating standard feature sets towards increased generalisability and explainability of ML-based network intrusion detection. Big Data Research, 30, 100359.uk_UA
dc.relation.references[7] Nimbalkar, P., & Kshirsagar, D. (2021). Feature selection for intrusion detection system in Internet-of-Things (IoT). ICT Express, 7(2), 177-181.uk_UA
dc.relation.references[8] Data never sleeps URL: https://www.domo.com/solution/data-never-sleeps-6uk_UA
dc.relation.references[9] Andreas, B., Dilruksha, J., & McCandless, E. (2020). Flow-based and packet-based intrusion detection using BLSTM. SMU Data Science Review, 3(3), 8.uk_UA
dc.relation.references[10] CICFlowMeter (2017). Canadian institute for cybersecurity (cic).uk_UA
dc.relation.references[11] Habibi Lashkari, A., Draper Gil, G., Mamun, M. S. I., and Ghorbani, A. A. (2017). Characterization of tor traffic using time based features. In In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP), pages 253–262.uk_UA
dc.relation.references[12] Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1, 108-116.uk_UA
dc.relation.references[13] CICFlowMeter GitHub. URL: https://github.com/ahlashkari/CICFlowMeteruk_UA
dc.relation.references[14] Python CICFlowMeter. URL: https://github.com/hieulw/cicflowmeteruk_UA
dc.relation.references[15] Wireshark. URL: https://www.wireshark.org/uk_UA
dc.relation.references[16] Argus. URL: https://openargus.org/uk_UA
dc.relation.references[17] Rodríguez, M., Alesanco, Á., Mehavilla, L., & García, J. (2022). Evaluation of machine learning techniques for traffic flow-based intrusion detection. Sensors, 22(23), 9326.uk_UA
dc.relation.references[18] Sarhan, M., Layeghy, S., & Portmann, M. (2022). Evaluating standard feature sets towards increased generalisability and explainability of ML-based network intrusion detection. Big Data Research, 30, 100359.uk_UA
dc.relation.references[19] Engelen, G.; Rimmer, V.; Joosen, W. Troubleshooting an intrusion detection dataset: The CICIDS2017 case study. In Proceedings of the 2021 IEEE Symposium on Security and Privacy Workshops, SPW, San Francisco, CA, USA, 27–27 May 2021; pp. 7–12.uk_UA
dc.relation.references[20] Rosay, A.; Cheval, E.; Carlier, F.; Leroux, P. Network intrusion detection: A comprehensive analysis of CIC-IDS2017. In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), Online, 9–11 February 2022; pp. 25–36.uk_UA
dc.contributor.affiliationTernopil Ivan Puluj National Technical University, Ruska str. 56, Ternopil, 46001, Ukraineuk_UA
dc.citation.journalTitleCEUR Workshop Proceedings-
dc.citation.volume3896-
dc.citation.spage1-
dc.citation.epage11-
dc.identifier.citationenAPALypa, B., Horyn, I., Zagorodna, N., Tymoshchuk, D., Lechachenko T. (2024). Comparison of feature extraction tools for network traffic data. CEUR Workshop Proceedings, 3896, 1-11.uk_UA
È visualizzato nelle collezioni:Наукові публікації працівників кафедри кібербезпеки

File in questo documento:
File Descrizione DimensioniFormato 
ITTAP_2024_3896_paper1_tntu.pdf270,67 kBAdobe PDFVisualizza/apri


Tutti i documenti archiviati in DSpace sono protetti da copyright. Tutti i diritti riservati.

Strumenti di amministrazione