Použijte tento identifikátor k citaci nebo jako odkaz na tento záznam: http://elartu.tntu.edu.ua/handle/lib/47589
Full metadata record
DC poleHodnotaJazyk
dc.contributor.authorYasniy, Oleh-
dc.contributor.authorTymoshchuk, Dmytro-
dc.contributor.authorDidych, Iryna-
dc.contributor.authorZagorodna, Nataliya-
dc.contributor.authorMalyshevska, Olha-
dc.date.accessioned2025-01-16T21:30:55Z-
dc.date.available2025-01-16T21:30:55Z-
dc.date.issued2024-10-23-
dc.identifier.citationYasniy, O., Tymoshchuk, D., Didych, I., Zagorodna, N., Malyshevska O., (2024). Modelling of automotive steel fatigue lifetime by machine learning method. CEUR Workshop Proceedings, 3896, pp. 165-172.uk_UA
dc.identifier.issn1613-0073-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/47589-
dc.description.abstractIn the current study, the fatigue life of QSTE340TM steel was modelled using a machine learning method, namely, a neural network. This problem was solved by a Multi-Layer Perceptron (MLP) neural network with a 3-75-1 architecture, which allows the prediction of the crack length based on the number of load cycles N, the stress ratio R, and the overload ratio Rol. The proposed model showed high accuracy, with mean absolute percentage error (MAPE) ranging from 0.02% to 4.59% for different R and Rol. The neural network effectively reveals the nonlinear relationships between input parameters and fatigue crack growth, providing reliable predictions for different loading conditions.uk_UA
dc.format.extent165-172-
dc.publisherCEUR Workshop Proceedingsuk_UA
dc.subjectmachine learninguk_UA
dc.subjectneural networkuk_UA
dc.subjectfatigue lifeuk_UA
dc.subjectcrack lengthuk_UA
dc.subjectQSTE340TM steeluk_UA
dc.titleModelling of automotive steel fatigue lifetime by machine learning methoduk_UA
dc.typeArticleuk_UA
dc.rights.holder© Oleh Yasniy, Dmytro Tymoshchuk, Iryna Didych, Nataliya Zagorodna, Olha Malyshevskauk_UA
dc.coverage.placenameTernopil, Ukraine, Opole, Poland, October 23-25, 2024.uk_UA
dc.relation.references[1] Salzgitter Flachstahl GmbH, QStE340TM, Accessed: Aug. 21, 2024. URL: https://www.salzgitter-flachstahl.de/fileadmin/mediadb/szfg/ informationsmaterial/produktinformationen/warmgewalzte_produkte/eng/QStE340TM.pdf.uk_UA
dc.relation.references[2] Yasniy O., Pasternak I., Didych I., Fedak S., Tymoshchuk D. Methods of jump-like creep modeling of AMg6 aluminum alloy. Procedia Structural Integrity, 2023, 48: 149–154. doi:10.1016/j.prostr.2023.07.141.uk_UA
dc.relation.references[3] Didych, I., Yasniy, O., Fedak, S., Lapusta, Y. Prediction of jump-like creep using preliminary plastic strain. Procedia Structural Integrity, 2022, 36, 166-170. doi:10.1016/j.prostr.2022.01.019.uk_UA
dc.relation.references[4] Tymoshchuk, D., Yasniy, O., Maruschak, P., Iasnii, V., Didych, I. Loading Frequency Classification in Shape Memory Alloys: A Machine Learning Approach. Computers, 2024. 13(12), 339. doi: 10.3390/computers13120339.uk_UA
dc.relation.references[5] Okipnyi, I.B., Maruschak, P.O., Zakiev, V.I. et al. Fracture Mechanism Analysis of the Heat-Resistant Steel 15Kh2MFA(II) After Laser Shock-Wave Processing. J Fail. Anal. and Preven. 14, 668–674 (2014). doi:10.1007/s11668-014-9869-4.uk_UA
dc.relation.references[6] I. Konovalenko, P. Maruschak, J. Brezinová, O. Prentkovskis, J. Brezina, Research of u-net-based CNN architectures for metal surface defect detection, Machines 10.5 (2022) 327. doi:10.3390/machines10050327.uk_UA
dc.relation.references[7] Y. Lu, F. Yang, T. Chen. Effect of single overload on fatigue crack growth in QSTE340TM steel and retardation model modification. Engineering Fracture Mechanics, 2019, 212: 81-94. doi:10.1016/j.engfracmech.2019.03.029.uk_UA
dc.relation.references[8] Y. Lu, F. Yang, T. Chen. Data for: Effect of single overload on fatigue crack growth in QSTE340TM steel and retardation model modification. Engineering Fracture Mechanics, 2019, 212: 81-94. doi:10.17632/8pcx2mgfd4.1.uk_UA
dc.relation.references[9] Rosenblatt, F. Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Cornell Aeronautical Lab Inc Buffalo NY, 1961.uk_UA
dc.contributor.affiliationTernopil Ivan Puluj National Technical University, Ruska str. 56, Ternopil, 46001, Ukraineuk_UA
dc.citation.volume3896-
dc.citation.spage165-
dc.citation.epage172-
dc.citation.conference4th International Workshop on Information Technologies: Theoretical and Applied Problems, ITTAP 2024-
dc.identifier.citationenAPAYasniy, O., Tymoshchuk, D., Didych, I., Zagorodna, N., Malyshevska O. (2024). Modelling of automotive steel fatigue lifetime by machine learning method. CEUR Workshop Proceedings, 3896, 165-172.uk_UA
Vyskytuje se v kolekcích:Наукові публікації працівників кафедри кібербезпеки

Soubory připojené k záznamu:
Soubor Popis VelikostFormát 
ITTAP_2024_3896_short4_tntu.pdf1,01 MBAdobe PDFZobrazit/otevřít


Všechny záznamy v DSpace jsou chráněny autorskými právy, všechna práva vyhrazena.

Nástroje administrátora