Please use this identifier to cite or link to this item: http://elartu.tntu.edu.ua/handle/lib/46966
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTymkiv, Pavlo-
dc.contributor.authorTkachuk, Roman-
dc.contributor.authorYanenko, Oleksiy-
dc.date.accessioned2024-12-30T09:14:37Z-
dc.date.available2024-12-30T09:14:37Z-
dc.date.issued2024-12-
dc.identifier.citationТимків, П., Ткачук, Р. і Яненко , О. 2024. Методи оптимізації ідентифікації параметрів моделі тестового електроретиносигналу для оцінювання ризиків нейротоксикації. Вісник Київського політехнічного інституту. Серія Приладобудування. 68(2) (Груд 2024), 80–86. DOI: https://doi.org/10.20535/1970.68(2).2024.318208.uk_UA
dc.identifier.issn2663-3450-
dc.identifier.issn0321-2211-
dc.identifier.urihttp://elartu.tntu.edu.ua/handle/lib/46966-
dc.description.abstractThe development of advanced optimization methods plays a crucial role in the enhancement of diagnostic tools in the biomedical field, particularly in the analysis of complex physiological signals. Electroretinography (ERG) is a widely used diagnostic technique that records electrical responses generated by the retina in response to light stimuli, providing valuable insights into the functional health of retinalcells. ERG is instrumental in diagnosing conditions such as retinitis pigmentosa, diabetic retinopathy, and neurotoxicity. However, the analysis of low-intensity electroretinograms (ERG) presents numerous challenges, particularly due to noise and signal distortion, which complicate accurate signal interpretation.Main purpose of this study.This paper is dedicated to developing an expert system for real-time analysis of electroretinographic signals (ERS), focusing on optimizing the parameters of a mathematical model for ERS analysis in conditions where noise and other distortions are present. The primary aim is to improve the accuracy and efficiency of ERG data processing, enabling early detection of neurotoxicity and other retinal conditions. To achieve this, we applied advanced optimization techniques, such as the Nelder-Mead method, known for its effectiveness in handling non-smooth, noisy functions.Conclusions.1. The application of the Nelder-Mead algorithm for optimizing the complex and noisy ERS modelsignificantly improved the performance of ERG data analysis. The algorithm's adaptability to varying optimization conditions allowed for more accurate model parameter determination, particularly in the context of real-time neurotoxicity detection.2. Reduction in Processing Time: The time complexity analysis revealed that the Nelder-Mead method reduced the time required to compute the model coefficients by approximately 15%. This improvement was achieved while maintaining the necessary precision for reproducing the test electroretinosignal, making it suitable for real-time applications.3. Computational Efficiency: One of the key findings of this study is that the use of the Nelder-Mead algorithm reduced the computational load by up to 30%. This makes the method feasible for use in expert systems designed for real-time ERS analysis, allowing for the monitoring of functional changes in the retina during the early stages of neurotoxicity detection.uk_UA
dc.format.extent80-86-
dc.language.isoenuk_UA
dc.subjectelectroretinogramuk_UA
dc.subjectlow intensityuk_UA
dc.subjectneurotoxicityuk_UA
dc.subjectoptimizationuk_UA
dc.subjectparametric identificationuk_UA
dc.titleOptimization methods for parameter identification model of test electroretinosignal to assess neurotoxicity risksuk_UA
dc.title.alternativeМетоди оптимізації ідентифікації параметрів моделі тестового електроретиносигналу для оцінювання ризиків нейротоксикаціїuk_UA
dc.typeArticleuk_UA
dc.coverage.placenameКиївuk_UA
dc.subject.udc53.05: 617.753uk_UA
dc.relation.referencesenE.E.Cornish,A.Vaze, R.V.Jamieson,and J.R.Grigg,“The electroretinogram in the genomics era: outer retinal disorders”Eye, vol. 35(12), pp.2406-2418, 2021. DOI: 10.1038/s41433-021-01659-y.uk_UA
dc.relation.referencesenD.L.McCulloch,M.F.Marmor, M.G.Brigell,R.Hamilton,G.E.Holder,R.Tzekov,and Inter-national Society for Clinical Electrophysiology of Vision, 2015. ISCEV Standardfor full-field clini-cal electroretinography (2015 update). Documen-ta Ophthalmologica,vol. 130, no. 1, pp.1-12.DOI: 10.1007/s10633-014-9473-7uk_UA
dc.relation.referencesenA.J.Tatham,and F.A.Medeiros,“Detecting Structural Progression in Glaucoma with Optical Coherence Tomography”,Ophthalmology, vol.124(4S), pp.S57-S65,2017.DOI: 10.1016/j.ophtha.2017.07.015uk_UA
dc.relation.referencesenA.G.Robson,J.Nilsson,S.Li,S.Jalali,A.B.Fulton,A.P.Tormene,G.E.Holder,and S.E.Brodie,“ISCEV guideto visual electrodiagnostic procedures”, Documenta Ophthalmologica, 136(1), pp.1-26, 2018. DOI: 10.1007/s10633-017-9621-yuk_UA
dc.relation.referencesenR.A.Tkachuk,B.I.Yavorsky,and O.P.Yanen-ko, “Problems of neurotoxicity assessment with using of electroretinography”, Visnyk NTUU KPI Seriia -Radiotekhnika Radioaparatobuduvannia, 0(61), pp.108-115, 2015. DOI: 10.20535/RADAP.2015.61.108-115.uk_UA
dc.relation.referencesenP.Tymkiv, and M.Bachynskiy,“Assessing neu-rotoxicity risk through electroretinography with reduced light irritation intensity”,Scientific Jour-nal of TNTU, 111(3), pp. 58-66,2023.DOI: 10.33108/visnyk_tntu2023.03.058uk_UA
dc.relation.referencesenP.Tymkiv,“Analysis of the Complexity of Algo-rithms for Finding the Coefficients of the Mathemat-ical Model of Low-Intensity Electroretinosignal,”in Advanced Applied Energy and Information Tech-nologies 2021. Proc.of the International Confer-ence, Ternopil, 15-17 December 2021, pp.145-150.uk_UA
dc.relation.referencesenTymkiv, P., Kłos-Witkowska, A. and Andrush-chak, I., “Optimization Methods for Determining Coefficients of Mathematical Model of Electroreti-nosignal for Detection of Neurotoxicity Risks,”in Proc. of the 1st International Workshop on Com-puter Information Technologies in Industry 4.0(CITI 2023). Ternopil, Ukraine, June 14-16, 2023, pp.109-116,2023.uk_UA
dc.relation.referencesenR.Byrd, G.M.Chin, W.Neveitt, J.Nocedal,“On the use of stochastic Hessian information in un-constrained optimization,”SIAM Journal on Op-timization, vol. 21, is. 3, pp.977-995, 2011.uk_UA
dc.relation.referencesenReza Barati, “Parameter Estimation of Nonlinear Muskingum Models Using Nelder-Mead Simplex Algorithm,” Journal of Hydrologic Engineering, vol.16, no 11, pp.946-954, 2011. DOI: 10.1061/(ASCE)HE.1943-5584.0000379.uk_UA
dc.relation.referencesenS Takenaga, Y Ozaki, M Onishi,“Practical initiali-zation of the Nelder–Mead method for computation-ally expensive optimization problems,”Optimiza-tion Letters, Springer,17:283–297,2023. https://doi.org/10.1007/s11590-022-01953-y.uk_UA
dc.coverage.countryUAuk_UA
dc.identifier.citation2015П. Тимків, Р. Ткачук, і О. . Яненко, «Методи оптимізації ідентифікації параметрів моделі тестового електроретиносигналу для оцінювання ризиків нейротоксикації», Bull. Kyiv Polytech. Inst. Ser. Instrum. Mak., вип. 68(2), с. 80–86, Груд 2024.uk_UA
Appears in Collections:Наукові публікації працівників кафедри біотехнічних систем

Files in This Item:
File Description SizeFormat 
Tymkiv P.pdf544,01 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools